In the present paper we consider the Quasi Maximum Likelihood (QML) procedure for the estimation of stationary Stochastic Volatility models. We prove the consistency of the QML estimators and compute explicitly their asymptotic variances. This allows us to obtain also consistent estimators of the asymptotic variances in explicit forms. The knowledge of the asymptotic variance-covariance matrix of the QML estimators gives a concrete possibility for the use of the classical testing procedures. Our results are related to those obtained in Ruiz (1994) and Bartolucci and De Luca (2001) (2003).

Quasi Maximum Likelihood Inference for Stochastic Volatility Models / Cavicchioli, Maddalena. - In: FRONTIERS IN FINANCE AND ECONOMICS. - ISSN 1814-2044. - STAMPA. - 11:(2014), pp. 1-24.

Quasi Maximum Likelihood Inference for Stochastic Volatility Models

CAVICCHIOLI, MADDALENA
2014

Abstract

In the present paper we consider the Quasi Maximum Likelihood (QML) procedure for the estimation of stationary Stochastic Volatility models. We prove the consistency of the QML estimators and compute explicitly their asymptotic variances. This allows us to obtain also consistent estimators of the asymptotic variances in explicit forms. The knowledge of the asymptotic variance-covariance matrix of the QML estimators gives a concrete possibility for the use of the classical testing procedures. Our results are related to those obtained in Ruiz (1994) and Bartolucci and De Luca (2001) (2003).
2014
11
1
24
Quasi Maximum Likelihood Inference for Stochastic Volatility Models / Cavicchioli, Maddalena. - In: FRONTIERS IN FINANCE AND ECONOMICS. - ISSN 1814-2044. - STAMPA. - 11:(2014), pp. 1-24.
Cavicchioli, Maddalena
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1041125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact