Hartman-type conditions are presented for the solvability of a multivalued Dirichlet problem in a Banach space by means of topological degree arguments, bounding functions, and a Scorza-Dragoni approximation technique. The required transversality conditions are strictly localized on the boundaries of given bound sets. The main existence and localization result is applied to a partial integro-differential equation involving possible discontinuities in state variables. Two illustrative examples are supplied. The comparison with classical single-valued results in this field is also made.

Scorza-Dragoni approach to Dirichlet problem in Banach spaces / Jan, Andres; Malaguti, Luisa; Martina, Pavlacková. - In: BOUNDARY VALUE PROBLEMS. - ISSN 1687-2770. - STAMPA. - 23:(2014), pp. 1-23. [10.1186/1687-2770-2014-23]

Scorza-Dragoni approach to Dirichlet problem in Banach spaces

MALAGUTI, Luisa;
2014

Abstract

Hartman-type conditions are presented for the solvability of a multivalued Dirichlet problem in a Banach space by means of topological degree arguments, bounding functions, and a Scorza-Dragoni approximation technique. The required transversality conditions are strictly localized on the boundaries of given bound sets. The main existence and localization result is applied to a partial integro-differential equation involving possible discontinuities in state variables. Two illustrative examples are supplied. The comparison with classical single-valued results in this field is also made.
2014
23
1
23
Scorza-Dragoni approach to Dirichlet problem in Banach spaces / Jan, Andres; Malaguti, Luisa; Martina, Pavlacková. - In: BOUNDARY VALUE PROBLEMS. - ISSN 1687-2770. - STAMPA. - 23:(2014), pp. 1-23. [10.1186/1687-2770-2014-23]
Jan, Andres; Malaguti, Luisa; Martina, Pavlacková
File in questo prodotto:
File Dimensione Formato  
Andres Malaguti Pavlackova 2014.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1037517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact