As known, metallic materials presenting HCP crystallographic structure show a marked anisotropic behavior during plastic deformation, especially deep drawing. This attitude is due to the intrinsic asymmetry of hexagonal crystal lattice and is also depending on the c/a ratio of the cell itself. In addition to this aspect, also the tendency of materials such as titanium, magnesium and zirconium, to give rise to a preferential crystallographic orientation (texture) during the rolling phases needs to be taken into account. The most important aspects which contribute to texture formation are: nature and quantity of the alloying elements, reduction ratio during rolling, and heat treatments made on the alloys. Subject of present study are two alpha titanium alloys, specifically developed for heat resistant applications. Despite being quite similar in terms of chemical composition, oxidation resistance and field of application, these two alloys exhibit dissimilar plastic deformation mechanisms. The feature which makes the use of these materials very demanding on an industrial scale is the modification of their plastics properties, in particular plastic strain ratio (R-value), during the deformation progress. On the aforementioned alpha titanium alloys, a complete microstructural and mechanical characterization has been performed analyzing the material according to different orientation, whit the main purpose of identifying the trend of R-value toward strain. In addition to that, a study of the original texture of the two alloys has been made using different measuring methods (X-Ray diffraction, Electron Back-Scattering Diffraction). The purpose of this activity is finding a correlation between the macroscopic behavior of the alloys during deformation and their crystallographic orientation on microstructural scale, for better understanding the specific role played by the individual sliding systems and their spatial orientation on the plastic properties of the materials.

As known, metallic materials presenting HCP crystallographic structure show a marked anisotropic behavior during plastic deformation, especially deep drawing. This attitude is due to the intrinsic asymmetry of hexagonal crystal lattice and is also depending on the c/a ratio of the cell itself. In addition to this aspect, also the tendency of materials such as titanium, magnesium and zirconium, to give rise to a preferential crystallographic orientation (texture) during the rolling phases needs to be taken into account. The most important aspects which contribute to texture formation are: nature and quantity of the alloying elements, reduction ratio during rolling, and heat treatments made on the alloys. Subject of present study are two alpha titanium alloys, specifically developed for heat resistant applications. Despite being quite similar in terms of chemical composition, oxidation resistance and field of application, these two alloys exhibit dissimilar plastic deformation mechanisms. The feature which makes the use of these materials very demanding on an industrial scale is the modification of their plastics properties, in particular plastic strain ratio (R-value), during the deformation progress. On the aforementioned alpha titanium alloys, a complete microstructural and mechanical characterization has been performed analyzing the material according to different orientation, whit the main purpose of identifying the trend of R-value toward strain. In addition to that, a study of the original texture of the two alloys has been made using different measuring methods (X-Ray diffraction, Electron Back-Scattering Diffraction). The purpose of this activity is finding a correlation between the macroscopic behavior of the alloys during deformation and their crystallographic orientation on microstructural scale, for better understanding the specific role played by the individual sliding systems and their spatial orientation on the plastic properties of the materials.

Plastic behaviour and cristallographic texture of alpha titanium alloys for heat resistant applications [Anisotropia ed orientamento cristallografico preferenziale di leghe di titanio alfa per impieghi a caldo] / Gaiani, Silvia; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; I., Pribošič. - In: LA METALLURGIA ITALIANA. - ISSN 0026-0843. - STAMPA. - 105:5(2013), pp. 31-39.

Plastic behaviour and cristallographic texture of alpha titanium alloys for heat resistant applications [Anisotropia ed orientamento cristallografico preferenziale di leghe di titanio alfa per impieghi a caldo]

Gaiani, Silvia;COLOMBINI, Elena;VERONESI, Paolo;POLI, Giorgio;
2013

Abstract

As known, metallic materials presenting HCP crystallographic structure show a marked anisotropic behavior during plastic deformation, especially deep drawing. This attitude is due to the intrinsic asymmetry of hexagonal crystal lattice and is also depending on the c/a ratio of the cell itself. In addition to this aspect, also the tendency of materials such as titanium, magnesium and zirconium, to give rise to a preferential crystallographic orientation (texture) during the rolling phases needs to be taken into account. The most important aspects which contribute to texture formation are: nature and quantity of the alloying elements, reduction ratio during rolling, and heat treatments made on the alloys. Subject of present study are two alpha titanium alloys, specifically developed for heat resistant applications. Despite being quite similar in terms of chemical composition, oxidation resistance and field of application, these two alloys exhibit dissimilar plastic deformation mechanisms. The feature which makes the use of these materials very demanding on an industrial scale is the modification of their plastics properties, in particular plastic strain ratio (R-value), during the deformation progress. On the aforementioned alpha titanium alloys, a complete microstructural and mechanical characterization has been performed analyzing the material according to different orientation, whit the main purpose of identifying the trend of R-value toward strain. In addition to that, a study of the original texture of the two alloys has been made using different measuring methods (X-Ray diffraction, Electron Back-Scattering Diffraction). The purpose of this activity is finding a correlation between the macroscopic behavior of the alloys during deformation and their crystallographic orientation on microstructural scale, for better understanding the specific role played by the individual sliding systems and their spatial orientation on the plastic properties of the materials.
2013
105
5
31
39
Plastic behaviour and cristallographic texture of alpha titanium alloys for heat resistant applications [Anisotropia ed orientamento cristallografico preferenziale di leghe di titanio alfa per impieghi a caldo] / Gaiani, Silvia; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; I., Pribošič. - In: LA METALLURGIA ITALIANA. - ISSN 0026-0843. - STAMPA. - 105:5(2013), pp. 31-39.
Gaiani, Silvia; Colombini, Elena; Veronesi, Paolo; Poli, Giorgio; I., Pribošič
File in questo prodotto:
File Dimensione Formato  
MetallurgiaItaliana_5_2013.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 636.33 kB
Formato Adobe PDF
636.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1021314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact