Cerebrolysin (CBL) is a neuroprotective agent in central nervous system (CNS) injury and stimulates neurorepair processes. Several studies in our laboratory suggest that CBL administered through nanowired technology may have superior neuroprotective efficacy in CNS trauma. In this investigation, we compared the neuroprotective efficacy of poly-lactide-co-glycolide nanoparticles (NPs) loaded with CBL vs. unloaded CBL in a rat model of closed head injury (CHI). Free CBL or CBL loaded NPs was administered 1 h after CHI and animals sacrificed 4 h later. Changes in blood-brain barrier and brain edema formation were measured as parameters of neuroprotection in CHI after giving CBL alone or as the nanodelivered compound. Our results clearly show that delivery of CBL by NPs has superior neuroprotective effects following CHI as compared to normal CBL. This suggests that CBL delivered by NPs could have strong neuroprotective ability in CNS trauma. These findings have potential clinical relevance with regard to nanodelivery of CBL, a feature that requires further investigation.
Poly (D,L-lactide-co-glycolide) nanoparticles loaded with Cerebrolysin display neuroprotective activity in a rat model of closed head injury / Ruozi, Barbara; Belletti, Daniela; Forni, Flavio; Sharma, A.; Muresanu, D.; Mössler, H.; Vandelli, Maria Angela; Tosi, Giovanni; Sharma, H. S.. - In: CNS & NEUROLOGICAL DISORDERS. DRUG TARGETS. - ISSN 1871-5273. - STAMPA. - 13:8(2014), pp. 1475-1482. [10.2174/1871527313666140806145540]
Poly (D,L-lactide-co-glycolide) nanoparticles loaded with Cerebrolysin display neuroprotective activity in a rat model of closed head injury
RUOZI, Barbara;BELLETTI, Daniela;FORNI, Flavio;VANDELLI, Maria Angela;TOSI, Giovanni;
2014
Abstract
Cerebrolysin (CBL) is a neuroprotective agent in central nervous system (CNS) injury and stimulates neurorepair processes. Several studies in our laboratory suggest that CBL administered through nanowired technology may have superior neuroprotective efficacy in CNS trauma. In this investigation, we compared the neuroprotective efficacy of poly-lactide-co-glycolide nanoparticles (NPs) loaded with CBL vs. unloaded CBL in a rat model of closed head injury (CHI). Free CBL or CBL loaded NPs was administered 1 h after CHI and animals sacrificed 4 h later. Changes in blood-brain barrier and brain edema formation were measured as parameters of neuroprotection in CHI after giving CBL alone or as the nanodelivered compound. Our results clearly show that delivery of CBL by NPs has superior neuroprotective effects following CHI as compared to normal CBL. This suggests that CBL delivered by NPs could have strong neuroprotective ability in CNS trauma. These findings have potential clinical relevance with regard to nanodelivery of CBL, a feature that requires further investigation.File | Dimensione | Formato | |
---|---|---|---|
Ruozi et al., CNS&ND_DT Cerebro and NPs.pdf
Solo gestori archivio
Tipologia:
Versione pubblicata dall'editore
Dimensione
782.32 kB
Formato
Adobe PDF
|
782.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris