The aim of the present contribution is to prepare a functionalized bioactive glass potentially useful as prosthetic material, but also able to release organic molecules in response to a change of the pH environment. By this approach it is possible to develop devices which can be used for a triggered drug release in response to specific stimuli; this is an attractive research field, in order to avoid either systemic and/or local toxic effects of drugs. In particular, in the present paper we report data related to the development of a new formulation of bioactive glasses, their functionalization with organic molecules to obtain a pH-sensitive bond, their physicochemical characterization and in vitro bioactivity in simulated biological fluids (SBF), and organic molecule delivery tests at different pH. The glass functionalization, by means of a covalent reaction, allows us to produce a model of pH-responsive bioactive biomaterial: when it is exposed to specific pH changes, it can favor the release of the organic molecules directly at the target site. Cysteamine and 5-aminofluorescein are used as model molecules to simulate a drug. The materials, before and after the different functionalization steps and in vitro release tests at different pH, have been characterized by means of different experimental techniques such as X-ray powder diffraction (XRPD), Raman, FTIR and fluorescence spectroscopies, N-2 adsorption, thermogravimetric (TGA) and elemental analysis.
New Formulation of Functionalized Bioactive Glasses to Be Used as Carriers for the Development of pH-Stimuli Responsive Biomaterials for Bone Diseases / Valentina, Aina; Claudio, Magistris; Giuseppina, Cerrato; Gianmario, Martra; Guido, Viscardi; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi. - In: LANGMUIR. - ISSN 0743-7463. - 30:16(2014), pp. 4703-4715. [10.1021/la5003989]
New Formulation of Functionalized Bioactive Glasses to Be Used as Carriers for the Development of pH-Stimuli Responsive Biomaterials for Bone Diseases
LUSVARDI, Gigliola;MALAVASI, Gianluca;MENABUE, Ledi
2014
Abstract
The aim of the present contribution is to prepare a functionalized bioactive glass potentially useful as prosthetic material, but also able to release organic molecules in response to a change of the pH environment. By this approach it is possible to develop devices which can be used for a triggered drug release in response to specific stimuli; this is an attractive research field, in order to avoid either systemic and/or local toxic effects of drugs. In particular, in the present paper we report data related to the development of a new formulation of bioactive glasses, their functionalization with organic molecules to obtain a pH-sensitive bond, their physicochemical characterization and in vitro bioactivity in simulated biological fluids (SBF), and organic molecule delivery tests at different pH. The glass functionalization, by means of a covalent reaction, allows us to produce a model of pH-responsive bioactive biomaterial: when it is exposed to specific pH changes, it can favor the release of the organic molecules directly at the target site. Cysteamine and 5-aminofluorescein are used as model molecules to simulate a drug. The materials, before and after the different functionalization steps and in vitro release tests at different pH, have been characterized by means of different experimental techniques such as X-ray powder diffraction (XRPD), Raman, FTIR and fluorescence spectroscopies, N-2 adsorption, thermogravimetric (TGA) and elemental analysis.File | Dimensione | Formato | |
---|---|---|---|
proof.pdf
Solo gestori archivio
Tipologia:
Versione pubblicata dall'editore
Dimensione
6.07 MB
Formato
Adobe PDF
|
6.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris