It has been previously shown IFN-α, -β, -γ and TNF-α (synergically with IFNs) dose-dependently induce the release of CXCL9 and CXCL10 chemokines by thyroid follicular cells, suggesting that this process may be related, at least in part, to the appearance of thyroid dysfunction during IFNs therapy. No study has evaluated the effect of IFN-α and -β on CXCL11 chemokine production in thyrocytes. The aims of this study were: (a) to test the effect of IFN-α, -β and -γ on the secretion of the Th1 chemokine CXCL11, in primary cultures of human thyroid follicular cells; (b) to assess the effect of PPAR-γ activation on CXCL11 secretion. In primary cultures of human thyroid follicular cells, CXCL11 was undetectable in the supernatant. IFN-γ, -α and -β dose dependently induced CXCL11 release. TNF-α alone had no effect. The combination of each of the IFNs with TNF-α had a significant synergistic effect on CXCL11 secretion. Treatment of primary cultures of human thyroid follicular cells with rosiglitazone dose dependently inhibited the IFNs stimulated CXCL11 release. Compared with IFN-α and -β, IFN-γ was the most potent stimulus of CXCL11 secretion. In conclusion, we first show that IFN-α, -β and -γ and TNF-α (synergically with IFNs) dose-dependently induce the release of CXCL11 by primary cultures of human thyroid follicular cells, suggesting that this process may be related to the appearance of thyroid dysfunction during IFNs therapy. Furthermore, PPAR-γ activation partially inhibits this process.

Interferon-α, -β and -γ induce CXCL11 secretion in human thyrocytes: modulation by peroxisome proliferator-activated receptor γ agonists / Antonelli, A; Ferrari, Silvia Martina; Mancusi, C; Mazzi, V; Pupilli, C; Centanni, M; Ferri, Clodoveo; Ferrannini, E; Fallahi, P.. - In: IMMUNOBIOLOGY. - ISSN 0171-2985. - STAMPA. - 218:5(2013), pp. 690-695. [10.1016/j.imbio.2012.08.267]

Interferon-α, -β and -γ induce CXCL11 secretion in human thyrocytes: modulation by peroxisome proliferator-activated receptor γ agonists.

FERRARI, Silvia Martina;FERRI, Clodoveo;
2013

Abstract

It has been previously shown IFN-α, -β, -γ and TNF-α (synergically with IFNs) dose-dependently induce the release of CXCL9 and CXCL10 chemokines by thyroid follicular cells, suggesting that this process may be related, at least in part, to the appearance of thyroid dysfunction during IFNs therapy. No study has evaluated the effect of IFN-α and -β on CXCL11 chemokine production in thyrocytes. The aims of this study were: (a) to test the effect of IFN-α, -β and -γ on the secretion of the Th1 chemokine CXCL11, in primary cultures of human thyroid follicular cells; (b) to assess the effect of PPAR-γ activation on CXCL11 secretion. In primary cultures of human thyroid follicular cells, CXCL11 was undetectable in the supernatant. IFN-γ, -α and -β dose dependently induced CXCL11 release. TNF-α alone had no effect. The combination of each of the IFNs with TNF-α had a significant synergistic effect on CXCL11 secretion. Treatment of primary cultures of human thyroid follicular cells with rosiglitazone dose dependently inhibited the IFNs stimulated CXCL11 release. Compared with IFN-α and -β, IFN-γ was the most potent stimulus of CXCL11 secretion. In conclusion, we first show that IFN-α, -β and -γ and TNF-α (synergically with IFNs) dose-dependently induce the release of CXCL11 by primary cultures of human thyroid follicular cells, suggesting that this process may be related to the appearance of thyroid dysfunction during IFNs therapy. Furthermore, PPAR-γ activation partially inhibits this process.
2013
218
5
690
695
Interferon-α, -β and -γ induce CXCL11 secretion in human thyrocytes: modulation by peroxisome proliferator-activated receptor γ agonists / Antonelli, A; Ferrari, Silvia Martina; Mancusi, C; Mazzi, V; Pupilli, C; Centanni, M; Ferri, Clodoveo; Ferrannini, E; Fallahi, P.. - In: IMMUNOBIOLOGY. - ISSN 0171-2985. - STAMPA. - 218:5(2013), pp. 690-695. [10.1016/j.imbio.2012.08.267]
Antonelli, A; Ferrari, Silvia Martina; Mancusi, C; Mazzi, V; Pupilli, C; Centanni, M; Ferri, Clodoveo; Ferrannini, E; Fallahi, P.
File in questo prodotto:
File Dimensione Formato  
interferon a b c.pdf

Solo gestori archivio

Tipologia: Versione pubblicata dall'editore
Dimensione 365.76 kB
Formato Adobe PDF
365.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1004553
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact