Mitochondrial components, including mitochondrial DNA (mtDNA), when released extracellularly, can act as "damage-associated molecular pattern" (DAMP) agents and cause inflammation. As many elderly people are characterized by a low-grade, chronic inflammatory status defined "inflamm-aging", we evaluated if circulating mtDNA can contribute to this phenomenon. Eight hundred and thirty-one Caucasian subjects were enrolled in the study, including 429 siblings aged 90-104 years (90+ siblings). MtDNA plasma levels increased gradually after the fifth decade of life. In 90+ subjects, mtDNA values of two members of the same sibling relationship were directly correlated, suggesting a role for familiar/genetic background in controlling the levels of circulating mtDNA. The subjects with the highest mtDNA plasma levels had the highest amounts of TNF-??, IL-6, RANTES and IL-1ra; the subjects with the lowest mtDNA levels had the lowest levels of the same cytokines. In vitro stimulation of monocytes with mtDNA concentrations similar to the highest levels observed in vivo resulted in an increased production of TNF-??, suggesting that mtDNA can modulate the production of proinflammatory cytokines. Our findings therefore show that circulating mtDNA increases with age, and can significantly contribute to the maintenance of the low grade, chronic inflammation observed in elderly people This article is protected by copyright. All rights reserved.
Circulating mitochondrial DNA increases with age and is a familiar trait: implications for "inflamm-aging" / Pinti, Marcello; Cevenini, E; Nasi, Milena; De Biasi, Sara; Salvioli, S; Monti, Daniela; Benatti, Stefania; Gibellini, Lara; Cotichini, R; Stazi, Ma; Trenti, T; Franceschi, C; Cossarizza, Andrea. - In: EUROPEAN JOURNAL OF IMMUNOLOGY. - ISSN 0014-2980. - STAMPA. - 44:5(2014), pp. 1552-1562. [10.1002/eji.201343921]
Circulating mitochondrial DNA increases with age and is a familiar trait: implications for "inflamm-aging"
PINTI, Marcello;NASI, Milena;DE BIASI, SARA;MONTI, Daniela;BENATTI, STEFANIA;GIBELLINI, Lara;COSSARIZZA, Andrea
2014
Abstract
Mitochondrial components, including mitochondrial DNA (mtDNA), when released extracellularly, can act as "damage-associated molecular pattern" (DAMP) agents and cause inflammation. As many elderly people are characterized by a low-grade, chronic inflammatory status defined "inflamm-aging", we evaluated if circulating mtDNA can contribute to this phenomenon. Eight hundred and thirty-one Caucasian subjects were enrolled in the study, including 429 siblings aged 90-104 years (90+ siblings). MtDNA plasma levels increased gradually after the fifth decade of life. In 90+ subjects, mtDNA values of two members of the same sibling relationship were directly correlated, suggesting a role for familiar/genetic background in controlling the levels of circulating mtDNA. The subjects with the highest mtDNA plasma levels had the highest amounts of TNF-??, IL-6, RANTES and IL-1ra; the subjects with the lowest mtDNA levels had the lowest levels of the same cytokines. In vitro stimulation of monocytes with mtDNA concentrations similar to the highest levels observed in vivo resulted in an increased production of TNF-??, suggesting that mtDNA can modulate the production of proinflammatory cytokines. Our findings therefore show that circulating mtDNA increases with age, and can significantly contribute to the maintenance of the low grade, chronic inflammation observed in elderly people This article is protected by copyright. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
eji.201343921.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
455.02 kB
Formato
Adobe PDF
|
455.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris