
Sophon: an Extensible Platform for Collaborative Research
Stefano Pigozzi

ste.pigozzi@gmail.com
University of Modena and Reggio

Emilia
Modena, Italy, Italy

Francesco Faenza
francesco.faenza@unimore.it

University of Modena and Reggio
Emilia

Modena, Italy, Italy

Claudia Canali
claudia.canali@unimore.it

University of Modena and Reggio
Emilia

Modena, Italy, Italy

ABSTRACT
In the last few years, the web-based interactive computational envi-
ronment called Jupyter notebook has been gaining more and more
popularity as a platform for collaborative research and data analysis,
becoming a de-facto standard among researchers. In this paper we
present a first implementation of Sophon, an extensible web plat-
form for collaborative research based on JupyterLab. Our aim is to
extend the functionality of JupyterLab and improve its usability by
integrating it with Django. In the Sophon project, we integrate the
deployment of dockerized JupyterLab instances into a Django web
server, creating an extensible, versatile and secure environment,
while also being easy to use for researchers of different disciplines.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools; Synchronous editors; • Software
and its engineering → Collaboration in software development; •
Applied computing→ Education.

KEYWORDS
Notebook, Jupyter, Collaborative Research, Extensibility
ACM Reference Format:
Stefano Pigozzi, Francesco Faenza, and Claudia Canali. 2022. Sophon: an
Extensible Platform for Collaborative Research. In Practice and Experience
in Advanced Research Computing (PEARC ’22), July 10–14, 2022, Boston, MA,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3491418.
3535163

1 INTRODUCTION
Computational notebooks allow users to execute their code and
show result of its execution on the same document, marking an es-
sential step towards explainability of research output [9], hindered
sometimes by poor code quality and practices, which impact the
reproducibility of the results [15]. Project Jupyter is a non-profit or-
ganization whose goal is to provide "free software, open standards,
and web services for interactive computing across all programming
languages.". Their leading open-source software, JupyterLab [12],
the successor of Jupyter Notebook, is a browser-based tool that
brings together code, text, charts, and rich media, widely used in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEARC ’22, July 10–14, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9161-0/22/07.
https://doi.org/10.1145/3491418.3535163

the field of research to provide the results and the details of research
processes. Its usage has seen a consistent spike in adoption in the
last years, and it is now considered a de-facto standard [11].

From a research institute’s point of view, the research workflow
consists of many other important aspects besides the main elements
related to data analysis and results. As we experienced during inter-
disciplinary research projects, such as [6, 7], critical elements for
the success of a platform for collaborative research are related to the
capability to support an easy and productive collaboration between
researchers and a high usability for scientists who are not experts
of system administration. With the Sophon project, we try to pose
the foundations for a new and more extensible platform for collab-
orative research based on JupyterLab, providing the extra features
responding to the needs of our research group, such as usability,
extensibility and controlled access to the various resources, thus
taking steps to allow members of inter-disciplinary research groups
with little knowledge of system administration to easily use power-
ful cloud collaborative research tools. To this end, we integrate the
deployment of dockerized JupyterLab instances into a Django [2]
web server, creating an extensible, versatile, and secure environ-
ment for all researchers. In this paper, we present the proposed
Sophon platform, focusing the description of the Sophon client-
server architecture, the interaction between the main modules and
the principal offered and planned features of the platform.

The rest of the paper is organized as follows. Section 2 discusses
some related works. Section 3 presents the Sophon collaborative
platform, and Section 4 summarizes the conclusions.

2 RELATEDWORK
Approaching this project, we first evaluated the already available
Jupyter Hub [13], a multi-user version of the notebook designed for
companies, classrooms and research labs. The platform already pro-
vided the possibility to share access to notebooks and, additionally,
many features related to scalability, flexibility and portability.

Since more fine-tuning was needed, we decided to opt for the
aforementioned approach to link Jupyter to a Django server. The
main drives in adopting the Django web framework were its built-
in concept of modularity, its very active and vast community and
its soft learning curve [1]. For the same reasons, the Center for
Integrated Cyberinfrastructure Research at Indiana University’s
Pervasive Technology Institute used the Django web framework to
develop a frontend for Apache Airavata, simplifying the steps of
their specific workflow. Their idea was to expose the capabilities of
Airavata in a simplified manner other than allowing customization
through Django framework modularity.

In the research community, especially amongst groups using
cyber environments, it is common to try to abstract away the com-
plexities of programming and computer science from peers with

https://orcid.org/0000-0003-3385-3192
https://orcid.org/0000-0002-7258-7192
https://orcid.org/0000-0001-8448-7693
https://doi.org/10.1145/3491418.3535163
https://doi.org/10.1145/3491418.3535163
https://doi.org/10.1145/3491418.3535163
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491418.3535163&domain=pdf&date_stamp=2022-07-08


PEARC ’22, July 10–14, 2022, Boston, MA, USA Pigozzi, et al.

Figure 1: The modules of Sophon and their interactions.

no experience in the field, and to try to integrate platforms, such as
JupyterLab, in the pre-existent infrastructure. It is the case of the
Texas Advanced Computing Center [5], which successfully inte-
grated Jupyter Hub into their ecosystem, providing advanced com-
putational capabilities to their University researcher. Another case
of integration with a pre-existing platform is the Galaxy-Jupyter
integration [8]. Biologists commonly use Galaxy, a web-based plat-
form for reproducible computational analysis, and the integration
with Jupyter allows them to try new tools without an initial set
of programming or scripting skills. While these studies integrate
Jupyter in very domain-specific platforms, in this paper we pro-
posed its integration in another general-purpose framework as
Django, thus creating a more flexible and versatile instrument that
may help researchers working on different disciplines. Moreover,
the popularity of Django may help the diffusion and the adoption
of the proposed platform.

3 THE SOPHON PLATFORM
In this section, we describe Sophon, a web platform for collaborative
research that we developed. We focus on the provided features, and
on how these features were implemented. The source code of the
project is available on GitHub1.

3.1 Client-server Architecture
The Sophon platform is based on a client-server architecture, with
a Django REST Framework [4] web server acting as a machine-
accessible interface, and a React [10] single-page application using
the methods of the Django API to display a user-accessible interface.

1https://github.com/Steffo99/sophon

We decided to use Django for the Sophon backend module be-
cause it is widely adopted among the research groups of the Depart-
ment of Engineering ‘Enzo Ferrari’ of the University of Modena
and Reggio Emilia. Additionally, it has the advantage of being a
very popular framework with many plugins and online resources.
For the frontend, we decided to use the React framework, because
it allows for a smooth user experience in a custom user interface
accessible from any user device.

3.2 Jupyter Host
The primary goal of Sophon is to act as a remote host for collabo-
rative computational notebooks, automating the setup of shared
research environments.

Sophon can currently launch complete web-accessible Jupyter
environments contained in Docker [3] images. This is achieved by
having the platform access the Docker Engine management socket,
and having it create and destroy specially configured containers
that provide their service on the TCP port 8888. To preserve user
data between creations and destructions of containers, a uniquely
named volume is generated for each container, which is then bound
to the data directory used in Jupyter. The port is later locally ex-
posed to a random available port of the host system, allowing an
Apache HTTP Server to access it. After the port is exposed, Sophon
communicates to the Apache HTTP Server the name and the port
of the started container, so it may begin reverse-proxying secure
requests incoming from the NAME.domain.example subdomain. Fi-
nally, Sophon lets the users know the URL where their notebook is
available at, allowing them to begin editing.



Sophon PEARC ’22, July 10–14, 2022, Boston, MA, USA

Figure 2: The entities of Sophon and the relations among them. Entities represented with dashed lines are planned, but have
not been implemented yet.

3.3 Interactions between modules
The interaction between the Sophon modules is shown in Figure 1.
The user mainly interacts with Sophon through the frontend mod-
ule, a React single-page application that sends HTTP requests to the
proxy module. The proxy module inspects those requests, and uses
their Origin HTTP header to forward them to either the backend
module or one of the created Jupyter environments. The backend
module responds to the requests it receives by returning data to
the frontend and optionally by performing technical operations,
such as starting and stopping Jupyter containers.

3.4 Simultaneous Jupyter editing
The Jupyter Docker images included with Sophon enable by de-
fault the experimental Real Time Collaboration [14] Jupyter feature,
which allows multiple users to work simultaneously on the same
notebook file. With the RTC feature enabled, edits on a cell by
an user are automatically synchronized to all others, instead of
prompting everyone to reload the file, allowing for a smoother
collaboration experience.

3.5 Groups and projects
Sophon organizes its Jupyter notebooks in research projects, col-
lections of items related to a specific research. Users are instead
organized in research groups, collections of users working together
on certain projects. Each project belongs to a research group, and
has its own title, rich text description, and a visibility setting of
either public, visible only to registered internal Sophon users, or
private and visible only to the members of its group. Like projects,
groups have their own title and description, and can be set to either
allow any registered user to join the group, or to restrict access only
to specific users chosen by the group creator. This structure is used
by many similar "hub" websites, such as GitLab and GitHub, and
should provide sufficient versatility for most of the users’ use-cases,
since it is similar to how academic groups operate in Italy: each
department (30-100 people) has its own computing infrastructure,

which is shared between small groups (2-20 people) formed by re-
searchers which focus on a single specific field. Figure 2 illustrates
how users, groups, projects and notebooks interact with each other.

3.6 Notebook security
To prevent harmful data leaks, Sophon forbids unauthorized access
to Jupyter notebooks. Every time a Jupyter Docker image is run,
Sophon securely generates a random token, which is passed to
the created Docker container as the JUPYTER_TOKEN environment
variable, and to the user interface of authorized users via an API re-
sponse. When the JUPYTER_TOKEN variable is set, Jupyter prevents
access to anybody who does not know its value, thus allowing only
access to authorized users; additionally, the user interface automat-
ically performs the authentication step on the Jupyter notebook
on behalf of the user by making use of the ?token= query string
parameter.

3.7 Extensibility
Sophon was developed from the start to be easily configurable and
extensible, so that the system administrators can tweak it based on
their and their department’s needs.

Environment variables. By adding functionality to Django’s set-
tings system, we were able to allow configuration of the backend
via environment variables, so that they can be easily set when
running Sophon via Docker. Configurable options include select-
ing the HTTP origins from which authenticated API requests can
come from, choosing a database engine from the ones supported by
Django, changing the default authentication system, and tweaking
how Sophon uses Docker.

Django apps. Sophon’s functionality can be changed via Django’s
pluggable apps system: the abstractions of groups, projects and
notebooks can be used and modified by external apps which may
provide new features based on them. Additionally, the builtin apps
can be selectively disabled, in case an administrator intends to use



PEARC ’22, July 10–14, 2022, Boston, MA, USA Pigozzi, et al.

only certain features, such as the group-project structure without
enabling the Jupyter notebooks.

Docker images. Sophon can be modified to allow starting different
Docker images of applications providing a web interface, effectively
providing Docker-containers-as-a-service. Currently, all images
require for their web service to be exposed on port 8888, and for
authentication to be verified via the previously mentioned token
system.

3.8 Future ambitions
Our ambition is to disseminate the platform beyond our immediate
collaborators. To this aim, we will use Sophon in multidisciplinary
groups, in the context of national and international projects and of
university doctorate programmes. Moreover, we plan to develop
some Sophon extensions; in this subsection we describe the planned
features and the benefits the users would gain.

Documents. A new abstraction, called document, could be created,
which would allow users to attach long-form text posts to their
groups or projects and make them available to the public or to a
superset of Sophon users. This would provide a secure channel
for official communication from research groups to their audience,
sponsors or fellow researchers. Additionally, a comment system
could be implemented on top of these documents, allowing for
two-way communication and gathering of immediate feedback.
Depending on the features implemented on these documents, this
might range from trivial to quite challenging to design and im-
plement. Figure 2 shows the hypothetical relationship between
documents ("doc") and the rest of Sophon’s entities.

Full Text Search. A full text search system could be implemented
on top of all abstractions and on top of the notebook’s contents,
allowing users to find to easier find the resource they were looking
for. Accessing the contents of a notebook for indexing could be a
challenge, as they are located on a Docker volume that is separate
and isolated from the one of the Django backend.

Audit log. Audit logging could be setup on a platform or on an
abstraction level, tracing all actions executed on the platform or
abstraction respectively. This would allow users to identify those
responsible of destructive operations, such as project deletions,
or the leaking of sensitive data. A pre-made Django app could be
used for this purpose, or a new one could be created specifically,
depending on how fine-grained the control on the log should be.
Figure 2 makes an example of how logs would interact with the
other entities in Sophon.

Federation. Sophon instances could be configured to federate with
each other, allowing for controlled interactions between users of
separate Sophon installations. Since cross-website federation is a
relatively new concept, it may be a complicated feature to design,
however, its benefits would be significant to all users, especially if
Sophon was to gain some popularity.

4 CONCLUSIONS
JupyterLab has emerged as the actual standard notebook for data
scientists. It offers many functions, successfully supporting re-
searchers in communicating their research output. This paper fo-
cused on our project of extending its functionality and usability via

an integration with Django. The integration provided the ability
to fit JupyterLab in the pre-existent research workflow, handling
authentication, research groups collaboration, and research project
related information, and additionally the extensibility provided by
Django’s modularity. All the code related to the project is pub-
lished on the code-sharing platform GitHub to create a community
able to provide new suggestions and eventually contribute to the
project development. It is worth to underline that the implemen-
tation presented in this paper and the code made available is just
a first step towards the design and the implementation of flexible
and complete platform for collaborative research: as described in
the previous section, several technical improvements may be added
to the project.

REFERENCES
[1] Marcus Christie, Suresh Marru, Eroma Abeysinghe, Dimuthu Upeksha, Sudhakar

Pamidighantam, Stephen Paul Adithela, Eldho Mathulla, Aarushi Bisht, Shivam
Rastogi, and Marlon Pierce. 2020. An Extensible Django-Based Web Portal for
Apache Airavata. Association for Computing Machinery, New York, NY, USA,
160–167.

[2] Django Software Foundation. 2022. Django Project. Retrieved May 26, 2022 from
https://web.archive.org/web/20220526005242/https://www.djangoproject.com/

[3] Docker Inc. 2022. Home - Docker. Retrieved May 27, 2022 from https://web.
archive.org/web/20220527151152/https://www.docker.com/

[4] Encode OSS Ltd. 2022. Django REST Framework. Retrieved May 26,
2022 from https://web.archive.org/web/20220526005411/https://www.django-
rest-framework.org/

[5] Joe Stubbs et al. 2020. Integrating Jupyter into Research Computing Ecosystems:
Challenges and Successes in Architecting JupyterHub for Collaborative Research
Computing Ecosystems. Association for Computing Machinery, New York, NY,
USA, 91–98.

[6] Francesco Faenza, Claudia Canali, and Antonella Carbonaro. 2021. ICT Extra-
curricular Activities: The “Digital Girls” Case Study for the Development of
Human Capital. In Research and Innovation Forum 2021, Anna Visvizi, Orlando
Troisi, and Kawther Saeedi (Eds.). Springer International Publishing, Cham, 193–
205.

[7] Francesco Faenza, Claudia Canali, Michele Colajanni, and Antonella Carbonaro.
2021. The Digital Girls Response to Pandemic: Impacts of in Presence and Online
Extracurricular Activities on Girls Future Academic Choices. Education Sciences
11, 11 (2021). https://doi.org/10.3390/educsci11110715

[8] Björn A. Grüning, Eric Rasche, Boris Rebolledo-Jaramillo, Carl Eberhard, Torsten
Houwaart, John Chilton, Nate Coraor, Rolf Backofen, James Taylor, and Anton
Nekrutenko. 2017. Jupyter and Galaxy: Easing entry barriers into complex data
analyses for biomedical researchers. PLOS Computational Biology 13, 5 (05 2017),
1–10.

[9] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Perez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout,
Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. 2016.
Jupyter Notebooks – a publishing format for reproducible computational work-
flows.

[10] Meta Platforms Inc. 2022. A JavaScript library for building user interfaces. Re-
trieved May 26, 2022 from https://web.archive.org/web/20220526005901/https:
//reactjs.org/

[11] Jeffrey M. Perkel. 2018. Why Jupyter is data scientists’ computational notebook
of choice. Nature 563 (November 2018), 145–146. 7732.

[12] Project Jupyter. 2022. Jupyter Lab Documentation. Retrieved May
26, 2022 from https://web.archive.org/web/20220526005009/https://jupyterlab.
readthedocs.io/en/stable/

[13] Project Jupyter. 2022. JupyterHub. Retrieved May 27, 2022 from https://web.
archive.org/web/20220527150340/https://jupyter.org/hub

[14] Project Jupyter. 2022. Real Time Collaboration. Retrieved May
26, 2022 from https://web.archive.org/web/20220526010155/https://jupyterlab.
readthedocs.io/en/stable/user/rtc.html

[15] Jiawei Wang, Li Li, and Andreas Zeller. 2020. Better Code, Better Sharing: On
the Need of Analyzing Jupyter Notebooks. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: New Ideas and Emerging Results
(Seoul, South Korea) (ICSE-NIER ’20). Association for Computing Machinery, New
York, NY, USA, 53–56.

https://web.archive.org/web/20220526005242/https://www.djangoproject.com/
https://web.archive.org/web/20220527151152/https://www.docker.com/
https://web.archive.org/web/20220527151152/https://www.docker.com/
https://web.archive.org/web/20220526005411/https://www.django-rest-framework.org/
https://web.archive.org/web/20220526005411/https://www.django-rest-framework.org/
https://doi.org/10.3390/educsci11110715
https://web.archive.org/web/20220526005901/https://reactjs.org/
https://web.archive.org/web/20220526005901/https://reactjs.org/
https://web.archive.org/web/20220526005009/https://jupyterlab.readthedocs.io/en/stable/
https://web.archive.org/web/20220526005009/https://jupyterlab.readthedocs.io/en/stable/
https://web.archive.org/web/20220527150340/https://jupyter.org/hub
https://web.archive.org/web/20220527150340/https://jupyter.org/hub
https://web.archive.org/web/20220526010155/https://jupyterlab.readthedocs.io/en/stable/user/rtc.html
https://web.archive.org/web/20220526010155/https://jupyterlab.readthedocs.io/en/stable/user/rtc.html

	Abstract
	1 Introduction
	2 Related Work
	3 The Sophon Platform
	3.1 Client-server Architecture
	3.2 Jupyter Host
	3.3 Interactions between modules
	3.4 Simultaneous Jupyter editing
	3.5 Groups and projects
	3.6 Notebook security
	3.7 Extensibility
	3.8 Future ambitions

	4 Conclusions
	References

