Gamma-class_4dim is a program yielding, from any given list X of crystallizations of 4-dimensional PL-manifolds, the automatic partition of the elements of X into equivalence classes, such that each class contains only crystallizations representing the same PL-manifold. Moreover, the program attempts the identification of the represented 4-manifolds by means of comparison of the representatives of each class with known catalogues of crystallizations and/or by means of splitting into connected sums. Gamma-class_4dim is based on the existence of elementary combinatorial moves available for crystallizations of PL-manifolds of any dimension (i.e. the well-known "dipole moves", together with the so called "blobs" and "flips", introduced in [S. Lins - M. Mulazzani, Blobs and flips on gems, Journal of Knot Theory and its Ramifications 15 (2006), 1001-1035]. The program has already been tested for known catalogues of crystallizations of 4-manifolds, by making use of a fixed admissible sequence of the above moves; further applications are in progress.
Gamma-class_4dim: A program to subdivide a set of rigid crystallizations of closed 4-manifolds into equivalence classes, whose elements represent PL-homeomorphic manifolds / Casali, Maria Rita; Cristofori, Paola. - ELETTRONICO. - (2013).
Gamma-class_4dim: A program to subdivide a set of rigid crystallizations of closed 4-manifolds into equivalence classes, whose elements represent PL-homeomorphic manifolds.
CASALI, Maria Rita;CRISTOFORI, Paola
2013
Abstract
Gamma-class_4dim is a program yielding, from any given list X of crystallizations of 4-dimensional PL-manifolds, the automatic partition of the elements of X into equivalence classes, such that each class contains only crystallizations representing the same PL-manifold. Moreover, the program attempts the identification of the represented 4-manifolds by means of comparison of the representatives of each class with known catalogues of crystallizations and/or by means of splitting into connected sums. Gamma-class_4dim is based on the existence of elementary combinatorial moves available for crystallizations of PL-manifolds of any dimension (i.e. the well-known "dipole moves", together with the so called "blobs" and "flips", introduced in [S. Lins - M. Mulazzani, Blobs and flips on gems, Journal of Knot Theory and its Ramifications 15 (2006), 1001-1035]. The program has already been tested for known catalogues of crystallizations of 4-manifolds, by making use of a fixed admissible sequence of the above moves; further applications are in progress.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris