Glassy carbon (GC) surfaces can be functionalized exploiting the electrochemical reduction of iodonium salts of general formula [RIR’]+ [1]. The overall mechanism could be roughly sketched as: IR’ bond cleavage:[RIR’]+ + e + GC  R’GC + IR Route (1) IR bond cleavage:[RIR’]+ + e + GC  RGC + IR’ Route (2) Upon electroreduction the I-R or the I-R’ bond dissociate, leading to a neutral closed shell organic iodide and an open shell radical, the latter reacts with the GC electrode (grafting). Several factors can influence the R/R’ ratio grafted on the GC surface. In fact, different amounts of the R and R’ radicals can be formed depending on the electronic structure of the neutral open shell [R-I-R’] • radical. Moreover, the different radicals can exhibit different reactivity toward the carbon surface, as well as different electrochemical stabilities (the radical itself could be reduced to a negative closed shell form). To clarify the interplay of the various factors affecting the final surface functionalization, a number of iodoniums has been considered and experimental evidences (electrochemical and XPS) are compared with theoretical results calculated at the DFT level of the theory (electron affinities, potential energy surfaces of competitive reaction pathways).

On the Electroreduction Mechanism of Iodonium Salts on Glassy Carbon Electrodes" / K., Daasbjerg; S. U., Pedersen; Florini, Nicola; Parenti, Francesca; Bortolotti, Carlo Augusto; Vanossi, Davide; Fontanesi, Claudio. - STAMPA. - unico:(2010), pp. O11-O11. ((Intervento presentato al convegno 6th ECHEMS Meeting tenutosi a Sandbjerg (Danimarca) nel 20-23 giugno 2010.

On the Electroreduction Mechanism of Iodonium Salts on Glassy Carbon Electrodes"

FLORINI, Nicola;PARENTI, Francesca;BORTOLOTTI, Carlo Augusto;VANOSSI, Davide;FONTANESI, Claudio
2010

Abstract

Glassy carbon (GC) surfaces can be functionalized exploiting the electrochemical reduction of iodonium salts of general formula [RIR’]+ [1]. The overall mechanism could be roughly sketched as: IR’ bond cleavage:[RIR’]+ + e + GC  R’GC + IR Route (1) IR bond cleavage:[RIR’]+ + e + GC  RGC + IR’ Route (2) Upon electroreduction the I-R or the I-R’ bond dissociate, leading to a neutral closed shell organic iodide and an open shell radical, the latter reacts with the GC electrode (grafting). Several factors can influence the R/R’ ratio grafted on the GC surface. In fact, different amounts of the R and R’ radicals can be formed depending on the electronic structure of the neutral open shell [R-I-R’] • radical. Moreover, the different radicals can exhibit different reactivity toward the carbon surface, as well as different electrochemical stabilities (the radical itself could be reduced to a negative closed shell form). To clarify the interplay of the various factors affecting the final surface functionalization, a number of iodoniums has been considered and experimental evidences (electrochemical and XPS) are compared with theoretical results calculated at the DFT level of the theory (electron affinities, potential energy surfaces of competitive reaction pathways).
6th ECHEMS Meeting
Sandbjerg (Danimarca)
20-23 giugno 2010
K., Daasbjerg; S. U., Pedersen; Florini, Nicola; Parenti, Francesca; Bortolotti, Carlo Augusto; Vanossi, Davide; Fontanesi, Claudio
On the Electroreduction Mechanism of Iodonium Salts on Glassy Carbon Electrodes" / K., Daasbjerg; S. U., Pedersen; Florini, Nicola; Parenti, Francesca; Bortolotti, Carlo Augusto; Vanossi, Davide; Fontanesi, Claudio. - STAMPA. - unico:(2010), pp. O11-O11. ((Intervento presentato al convegno 6th ECHEMS Meeting tenutosi a Sandbjerg (Danimarca) nel 20-23 giugno 2010.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/669851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact