This work aimed at investigating the adsorption of Cr6+ in water by exfoliated vermiculite. The adsorbant tested in this experiment was a vermiculite (from China) which has been subjected to heating at 1000 °C for 1 minute, resulting in an exfoliated vermiculite. Three effects were studied: 1) contact time; 2) initial concentracion of Cr6+; 3) adsorbent mass. Samples were analysed by X Ray Fluorescence (XRF), X Ray Diffraction (XRD) and the solutions with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify the adsorbed Cr6+ by the vermiculite. Results from XRD diffraction showed a conversion of vermiculite into flogopite after heating at 1000°C for 1 minute because of: 1) high content of potassium, 2) dehydration and 3) structural re-ordering; after the contact of vermiculite with Cr6+, the mineral structure did not change. The adsorption of Cr6+ was studied by Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. DKR model, indicative of a cooperative process, described adsorption equilibrium better than the other two models and the maximum adsorption capacity obtained was of 2.81 mol/g. Kinetic was studied using pseudo-first and pseudo-second order kinetic models, with a better description of the process by pseudo-second order model with correlation coefficient almost unitary (R2=0.9984; other kinetic parameters were k2=0.0015 and the absorption initial rate of 0.2x10-8 mg g-1 h-1). The present study demonstrates the effectiveness of modified vermiculite adsorbents for the treatment of hexavalent chromium-contaminated waters and that its adsorption depends on the experimental conditions (such as contact time, initial concentracion of Cr6+ and adsorbent mass).

Cr6+ adsorption by modified vermiculite / Medoro, Valeria; Marcos Pascual, Celia; Ferretti, Giacomo; Galamini, Giulio; Coltorti, Massimo. - (2020), pp. 1394-1394. (Intervento presentato al convegno EGU General Assembly 2020 tenutosi a WIEN nel 3-8 may 2020) [10.5194/egusphere-egu2020-1394].

Cr6+ adsorption by modified vermiculite

Giulio Galamini;
2020

Abstract

This work aimed at investigating the adsorption of Cr6+ in water by exfoliated vermiculite. The adsorbant tested in this experiment was a vermiculite (from China) which has been subjected to heating at 1000 °C for 1 minute, resulting in an exfoliated vermiculite. Three effects were studied: 1) contact time; 2) initial concentracion of Cr6+; 3) adsorbent mass. Samples were analysed by X Ray Fluorescence (XRF), X Ray Diffraction (XRD) and the solutions with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify the adsorbed Cr6+ by the vermiculite. Results from XRD diffraction showed a conversion of vermiculite into flogopite after heating at 1000°C for 1 minute because of: 1) high content of potassium, 2) dehydration and 3) structural re-ordering; after the contact of vermiculite with Cr6+, the mineral structure did not change. The adsorption of Cr6+ was studied by Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. DKR model, indicative of a cooperative process, described adsorption equilibrium better than the other two models and the maximum adsorption capacity obtained was of 2.81 mol/g. Kinetic was studied using pseudo-first and pseudo-second order kinetic models, with a better description of the process by pseudo-second order model with correlation coefficient almost unitary (R2=0.9984; other kinetic parameters were k2=0.0015 and the absorption initial rate of 0.2x10-8 mg g-1 h-1). The present study demonstrates the effectiveness of modified vermiculite adsorbents for the treatment of hexavalent chromium-contaminated waters and that its adsorption depends on the experimental conditions (such as contact time, initial concentracion of Cr6+ and adsorbent mass).
2020
EGU General Assembly 2020
WIEN
3-8 may 2020
Medoro, Valeria; Marcos Pascual, Celia; Ferretti, Giacomo; Galamini, Giulio; Coltorti, Massimo
Cr6+ adsorption by modified vermiculite / Medoro, Valeria; Marcos Pascual, Celia; Ferretti, Giacomo; Galamini, Giulio; Coltorti, Massimo. - (2020), pp. 1394-1394. (Intervento presentato al convegno EGU General Assembly 2020 tenutosi a WIEN nel 3-8 may 2020) [10.5194/egusphere-egu2020-1394].
File in questo prodotto:
File Dimensione Formato  
EGU2020-1394-print.pdf

Accesso riservato

Dimensione 292.23 kB
Formato Adobe PDF
292.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1307729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact