Glial tumors are clinically classified in 4 groups according to their malignancy level. Glial tumors belonging to the IV group are called Glioblastoma Multiforme (GBM) and they are among the most aggressive brain tumors. In the recent years the mechanical phenotype of cells has been recognized as a valuable marker of their malignancy level [1-3]. Here we studied by AFM the mechanical behavior of U87mg cells when exposed to a drug which interferes with their cytoskeleton affecting also their migration ability. We found that U87mg cells exposed to the tested drug presented a decreased migration potential which is correlated with an increased stiffness of the cells and with a loss of polarity. By exploiting AFM Dynamic Mechanical Analysis we also characterized the behavior of the cells for different probing frequencies. By exploiting immunofluorescence microscopy we also investigated the effect of the tested drug on the reorganization of the cell cytoskeleton finding a strong increase of the presence of stress fibers.
AFM investigation of mechanical properties of glioblastoma multiforme cells and their relation to motility / Mescola, A; Alessandrini, Andrea; Corsi, Lorenzo. - (2017). (Intervento presentato al convegno AFM, Biomed Conference tenutosi a Krakow nel 4-8 september 2017).
AFM investigation of mechanical properties of glioblastoma multiforme cells and their relation to motility
ALESSANDRINI, Andrea;CORSI, Lorenzo
2017
Abstract
Glial tumors are clinically classified in 4 groups according to their malignancy level. Glial tumors belonging to the IV group are called Glioblastoma Multiforme (GBM) and they are among the most aggressive brain tumors. In the recent years the mechanical phenotype of cells has been recognized as a valuable marker of their malignancy level [1-3]. Here we studied by AFM the mechanical behavior of U87mg cells when exposed to a drug which interferes with their cytoskeleton affecting also their migration ability. We found that U87mg cells exposed to the tested drug presented a decreased migration potential which is correlated with an increased stiffness of the cells and with a loss of polarity. By exploiting AFM Dynamic Mechanical Analysis we also characterized the behavior of the cells for different probing frequencies. By exploiting immunofluorescence microscopy we also investigated the effect of the tested drug on the reorganization of the cell cytoskeleton finding a strong increase of the presence of stress fibers.File | Dimensione | Formato | |
---|---|---|---|
abstract_Alessandrini_Krakow 2017.docx
Accesso riservato
Tipologia:
Abstract
Dimensione
603.06 kB
Formato
Microsoft Word XML
|
603.06 kB | Microsoft Word XML | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris