PURPOSE: The anterior cingulate cortex (ACC)--which plays a role in pain, emotions and behavior--can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region. METHODS: We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation. RESULTS: Bath-application of the convulsant 4-aminopyridine (4AP, 50 microM) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N-methyl-D-aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application. CONCLUSIONS: Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC.

Opioid-mediated modulation of anterior cingulated cortex networks / Panuccio, G; Curia, Giulia; Colosimo, A; Avoli, M.. - (2008). (Intervento presentato al convegno Canadian Association for Neuroscience and Institute of Neurosciences, Mental Health and Addiction of the Canadian Institutes of Health Research tenutosi a Montreal, Quebec, Canada nel May 25-28, 2008).

Opioid-mediated modulation of anterior cingulated cortex networks

CURIA, GIULIA;
2008

Abstract

PURPOSE: The anterior cingulate cortex (ACC)--which plays a role in pain, emotions and behavior--can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region. METHODS: We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation. RESULTS: Bath-application of the convulsant 4-aminopyridine (4AP, 50 microM) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N-methyl-D-aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application. CONCLUSIONS: Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC.
2008
Canadian Association for Neuroscience and Institute of Neurosciences, Mental Health and Addiction of the Canadian Institutes of Health Research
Montreal, Quebec, Canada
May 25-28, 2008
Panuccio, G; Curia, Giulia; Colosimo, A; Avoli, M.
Opioid-mediated modulation of anterior cingulated cortex networks / Panuccio, G; Curia, Giulia; Colosimo, A; Avoli, M.. - (2008). (Intervento presentato al convegno Canadian Association for Neuroscience and Institute of Neurosciences, Mental Health and Addiction of the Canadian Institutes of Health Research tenutosi a Montreal, Quebec, Canada nel May 25-28, 2008).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1124737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact