In the evaluation and selection of a particular synthetic strategy for the preparation of desired engineered nanomaterials, careful considerations on the size and the shape of nanocrystals must accompany the conventional considerations related to the yield, reaction time and cost of the precursors. Moreover, in order for inorganic chemistry to pursue a sustainable development, green metrics assessments are becoming always more popular. Among the different soft chemistry strategies available for the synthesis of engineered nanomaterials, some of the most intriguing and effectively employed ones have been compared in this work, in terms of their environmental as well as human health assessments. Particularly sol-gel synthesis (both hydrolytic and non-hydrolytic) and solution combustion synthesis are the three synthetic strategies selected for this comparative study. Anatase TiO2 nanoparticles have been identified as the ideal material, since it is probably the most studied and applied semiconductor and photocatalyst, owing to its unique physicochemical properties. First approximated environmental evaluation from the mere chemical point of view has been performed with the software EATOS (Environmental Assessment Tool for Organic Syntheses). Subsequently complete cradle to the grave analyses have been conducted by the Life Cycle Assessment (LCA) methodology, allowing considering further fundamentals damage categories. This study represents a pioneering work for the establishment of environmental and human health impacts rankings, comprising all the possible synthetic approaches to a desired nanomaterial. Preliminary results and future perspectives related to the scaling-up of selected syntheses as well as the possibility of employing alternative heating techniques will be presented as well.
Environmental assessment of different synthetic strategies towards engineered oxide nanomaterials / Rosa, Roberto; Pini, Martina; Neri, Paolo; Ferrari, Anna Maria. - ELETTRONICO. - (2016). (Intervento presentato al convegno 3 rd International Conference on Past and Present Research Systems of Green Chemistry tenutosi a Las Vegas - Nevada (U.S.A.) nel September 19-21, 2016).
Environmental assessment of different synthetic strategies towards engineered oxide nanomaterials
ROSA, Roberto;PINI, MARTINA;FERRARI, Anna Maria
2016
Abstract
In the evaluation and selection of a particular synthetic strategy for the preparation of desired engineered nanomaterials, careful considerations on the size and the shape of nanocrystals must accompany the conventional considerations related to the yield, reaction time and cost of the precursors. Moreover, in order for inorganic chemistry to pursue a sustainable development, green metrics assessments are becoming always more popular. Among the different soft chemistry strategies available for the synthesis of engineered nanomaterials, some of the most intriguing and effectively employed ones have been compared in this work, in terms of their environmental as well as human health assessments. Particularly sol-gel synthesis (both hydrolytic and non-hydrolytic) and solution combustion synthesis are the three synthetic strategies selected for this comparative study. Anatase TiO2 nanoparticles have been identified as the ideal material, since it is probably the most studied and applied semiconductor and photocatalyst, owing to its unique physicochemical properties. First approximated environmental evaluation from the mere chemical point of view has been performed with the software EATOS (Environmental Assessment Tool for Organic Syntheses). Subsequently complete cradle to the grave analyses have been conducted by the Life Cycle Assessment (LCA) methodology, allowing considering further fundamentals damage categories. This study represents a pioneering work for the establishment of environmental and human health impacts rankings, comprising all the possible synthetic approaches to a desired nanomaterial. Preliminary results and future perspectives related to the scaling-up of selected syntheses as well as the possibility of employing alternative heating techniques will be presented as well.File | Dimensione | Formato | |
---|---|---|---|
GreenCHEM_2016.docx
Accesso riservato
Tipologia:
Abstract
Dimensione
100.56 kB
Formato
Microsoft Word XML
|
100.56 kB | Microsoft Word XML | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris