Endocrine Abstracts

Volume 22
April 2010

12th European Congress of Endocrinology

24–28 April 2010, Prague, Czech Republic

Abstract Book

EDITORS

The abstracts were marked by the Abstract marking Panel selected by the programme Organising Committee

ECE 2010 Programme Organising Committee
Maria Alevizaki Chair

Members

Wiebke Arelt
Sophie Christin-Maitre
Sabine Costagliola
Leo Dunkel
Gianni Forti
Lorenz Hofbauer
Barbara Jarzab
Ilze Konrade
Michal Kršek
Peter Laurberg
Josef Marek
Christoph Meier
Vera Popovíc-Brikic
Ake Sjoholm
Christian Strasburger
Manuel Tena-Sempere
Peter Trainer
Wilmari Wiersinga

Abstract Marking Panel

J Achermann
M Alevizaki
W Arelt
M Molonowski
F Borson-Chazot
E Brzeziniska
J Cap
J-C Carel
O Chabre
P Chambon
S Christin-Maitre
B Corvillain
S Costagliola
A De Leener
L Dunkel
S Ferrari
G Forti
Z Frysak
A-P Gimenez-Roqueplo
A Gomez
L Grousias
N Hanley
M Holzemberger
J Horacek
B Jarzab
R Junik
UK
Greece
UK
Poland
France
Poland
France
France
France
France
Belgium
Belgium
Belgium
Finland
Switzerland
Italy
Czech Republic
France
Spain
UK
France
Poland
Poland
Belgium
Poland
Poland
Spain

V Popovíc
B Fauza
V Kerlau
J C King
J Konrade
M Kraenzlin
J P Kroustrup
M Kroek
K Kula
K Łęcka
I Lazurova
Y Le Bouc
H Lefebvre
A Leijnies
M Lopez
A Macke-Nauman
A Mantel
J Marek
C Meier
G Melen-Mucha
A Milewicz
E Nagy
J H Nielsen
I Niki
R Nogueiras
H Peltolento
Poland
Denmark
France
Spain
F Pralong
Switzerland
Sweden
Poland
Poland
Poland
Slovakia
France
France
Latvia
Spain
Poland
France
France
Poland
Poland
Czech Republic

Serbia
France
Finland
Switzerland
Denmark
France
Sweden
France
Czech Republic

Marek Ruchala
J-P Sillero
A Sjoholm
N Skakkebaek
O Soder
C Sultan
A Tabarin
M Tena-Sempere
J Toppari
P Trainer
P Vestergaard
J Vrbikova
A Waligorska
W Wiersinga
Netherlands
France

The ESE would like to thank the ECE 2010 sponsors:

Gold Sponsors
Ipsen
Novartis
Merck Serono
Otsuka
Pfizer

Other Sponsors & Exhibitors
Amgen
BioVendor Laboratorni Medicina a.s.
Eli Lilly & Company
European Society for Paediatric Endocrinology (ESPE)
HRA Pharma
S. Karger AG
Mercodia
Nature Publishing Group
PerkinElmer Inc
Phoenix Pharmaceuticals Inc.
Research Diets Inc.
Society for Endocrinology & BioScientica Ltd
Wisepress

ESE Secretariat
Euro House
22 Apex Court
Woodlands
Bradley Stoke
Bristol BS32 4JT, UK
Contact: Andrea Davis
Tel: +44 (0)1454 642247
Fax: +44 (0)1454 642222
E-mail: info@euro-endo.org
Web site: www.euro-endo.org

ECE 2010 Secretariat
BioScientifica Ltd
Euro House
22 Apex Court
Woodlands
Bradley Stoke
Bristol BS32 4JT, UK
Tel: +44 (0)1454 642240
Fax: +44 (0)1454 642222
E-mail: ece2010@euro-endo.org
Web site: www.ece2010.com
CONTENTS

12th European Congress of Endocrinology 2010

PRIZE LECTURES AND BIOGRAPHICAL NOTES

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The European Journal of Endocrinology Prize Lecture</td>
<td>EJE1</td>
</tr>
<tr>
<td>The Geoffrey Harris Prize Lecture</td>
<td>GH1</td>
</tr>
</tbody>
</table>

PLENARY LECTURES

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twenty years’ experience with post-Chernobyl thyroid cancer</td>
<td>PL1</td>
</tr>
<tr>
<td>Testicular dysgenesis and endocrine disruptors</td>
<td>PL2</td>
</tr>
<tr>
<td>Hypothalamic regulation of gonadotrophin secretion</td>
<td>PL3</td>
</tr>
<tr>
<td>Thyronamines: beyond T₄ and T₃</td>
<td>PL4</td>
</tr>
<tr>
<td>Discovery and relevance of the incretin system</td>
<td>PL5</td>
</tr>
<tr>
<td>Sex and SOX</td>
<td>PL6</td>
</tr>
<tr>
<td>New trends in diagnosis and localisation of (neuro) endocrine tumours</td>
<td>PL7</td>
</tr>
<tr>
<td>An update on the genetics of obesity</td>
<td>PL8</td>
</tr>
</tbody>
</table>

SYMPOSIA

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>European networks</td>
<td>S1.1–S1.6</td>
</tr>
<tr>
<td>Endocrine aspects about the metabolic syndrome</td>
<td>S2.1–S2.4</td>
</tr>
<tr>
<td>Bone cell biology</td>
<td>S3.1–S3.3</td>
</tr>
<tr>
<td>The aging male</td>
<td>S4.1–S4.3</td>
</tr>
<tr>
<td>Novel targets for thyroid cancer treatment</td>
<td>S5.1–S5.3</td>
</tr>
<tr>
<td>Neuroendocrine control of reproduction</td>
<td>S6.1–S6.4</td>
</tr>
<tr>
<td>Approaches to preservation of gonadal function after cancer therapy</td>
<td>S7.1–S7.3</td>
</tr>
<tr>
<td>Endocrine tumours: new genes and association with syndromes</td>
<td>S8.1–S8.3</td>
</tr>
<tr>
<td>The role of oxidative stress in the development of the metabolic syndrome</td>
<td>S9.1–S9.3</td>
</tr>
<tr>
<td>Novel aspects in the treatment of bone disease</td>
<td>S10.1–S10.3</td>
</tr>
<tr>
<td>Premature ovarian failure</td>
<td>S11.1–S11.4</td>
</tr>
<tr>
<td>Thyroid hormone metabolism and action: new developments</td>
<td>S12.1–S12.4</td>
</tr>
<tr>
<td>The TSH reference range</td>
<td>S13.1–S13.4</td>
</tr>
<tr>
<td>Novel actions of vitamin D</td>
<td>S14.1–S14.4</td>
</tr>
<tr>
<td>Wnt signalling</td>
<td>S15.1–S15.3</td>
</tr>
<tr>
<td>Hot topics in pituitary disease</td>
<td>S16.1–S16.3</td>
</tr>
<tr>
<td>Genetic basis of infertility: clinical studies and clinical models</td>
<td>S17.1–S17.3</td>
</tr>
<tr>
<td>Diabetes in pregnancy</td>
<td>S18.1–S18.3</td>
</tr>
<tr>
<td>Fetal microchimerism as an explanation of disease</td>
<td>S19.1–S19.3</td>
</tr>
<tr>
<td>The endocrine incidentaloma</td>
<td>S20.1–S20.3</td>
</tr>
<tr>
<td>The cardiometabolic interface</td>
<td>S21.1–S21.3</td>
</tr>
<tr>
<td>MicroRNAs in endocrinology</td>
<td>S22.1–S22.3</td>
</tr>
<tr>
<td>Obesity: clinical manifestations and therapeutic intervention</td>
<td>S23.1–S23.3</td>
</tr>
<tr>
<td>Diagnosis and treatment of endocrine malignancies</td>
<td>S24.1–S24.3</td>
</tr>
<tr>
<td>Non-classical responses to hormones</td>
<td>S25.1–S25.4</td>
</tr>
<tr>
<td>Adverse effects of drugs on thyroid</td>
<td>S26.1–S26.3</td>
</tr>
<tr>
<td>Multifaceted aspects of neuroprotection</td>
<td>S27.1–S27.4</td>
</tr>
<tr>
<td>Hypothalamic networks and energy homeostasis</td>
<td>S28.1–S28.3</td>
</tr>
</tbody>
</table>
HIGHLIGHTS
Oral Communications Highlights 1 ... H1.1–H1.5
Oral Communications Highlights 2 ... H2.1–H2.5

ORAL COMMUNICATIONS
Diabetes and obesity .. OC1.1–OC1.6
Thyroid ... OC2.1–OC2.6
Pituitary .. OC3.1–OC3.6
Adrenals .. OC4.1–OC4.6
Reproduction & Thyroid .. OC5.1–OC5.6
Bone ... OC6.1–OC6.6

POSTER PRESENTATIONS
Adrenal ... P1–P66
Bone/Calcium .. P67–P122
Cardiovascular endocrinology and lipid metabolism .. P123–P170
Clinical case reports and clinical practice .. P171–P250
Comparative endocrinology .. P251–P255
Developmental endocrinology .. P256–P266
Diabetes .. P267–P316
Endocrine Disruptors .. P370–P375
Endocrine tumours & neoplasia (Generously supported by Novartis) P376–P457
Female reproduction .. P458–P501
Growth factors ... P502–P516
Male reproduction ... P517–P544
Neuroendocrinology and Pituitary (Generously supported by Novartis) P545–P669
Obesity ... P670–P719
Signal transduction ... P720–P725
Steroid metabolism & action ... P726–P744
Thyroid .. P745–P866

INDEX OF AUTHORS

Novartis have kindly sponsored the publication of this abstract book. They were not involved with the marking and selection of abstracts.
examine G894T SNP eNOS genotype frequencies and its potential role with sperm motility in infertile men. Through this prospective controlled study in the Andrology Unit, we have enrolled infertile (n = 70) and healthy (n = 60) men. Sperm motion kinetics assessed by computer assisted semen analysis (CASA), and allele-specific polymerase chain reaction (PCR-RFLP) to investigate the frequency of guanine (G) thymine (T) at position −894 within exon 7 of the eNOS gene.

Finding(s)

An increased frequency of the G894T eNOS (T) allele observed in asthenozoospermic patients (P = 0.02). In asthenozoospermic men, homozygotes eNOS (TT) genotype showed low percentages of rapid motile sperm (a+b) compared to wild-type eNOS (GG) (P = 0.02) or heterozygotes eNOS (GT) genotype (P = 0.01). In fertile men, wild-type eNOS showed high percentages of rapid motile sperm (a+b) compared to eNOS (TT) (P = 0.03) or eNOS (GT) genotype (P = 0.04).

Conclusion(s)

Our findings suggest that the T allele, encoding for aspartic acid, of the eNOS (Glu298Asp) gene may play a role with low sperm motility.

PS29

Infertility and low gonadotropin levels as the first sign of testicular seminoma: a case report

Vladislav Volek1, Martin Hrivnák2 & Dalibor Ondrus3

1University Hospital of F. D. Roosevelt, Banska Bystrica, Slovakia; 2Hospital Košice-Saca, Košice-Saca, Slovakia; 3Medical Faculty, Komenský University, Bratislava, Slovakia.

The case report describes a case of a 31 years old patient referred to our outpatient endocrinology clinic for suspicion for central hypogonadism. He had undergone a first line examination at a urology outpatient clinic for infertility. His semen analysis showed azoospermia, palpation of the testicles did not reveal any abnormalities. Sex hormone levels were obtained where low gonadotropin LH and FSH levels with total testosterone level within normal range were noted. Central hypogonadism as the possible reason for azoospermia and infertility was suspected.

On clinical examination the patient appeared well vitilised, gynecomastia was not noticeable. Repeated blood samples confirmed low LH and FSH levels with total testosterone level close to the upper limit of the normal range. Free testosterone level was within normal range and so were the other pituitary hormones. Our conclusion was that the patient did not have central hypogonadism and that the low gonadotropins were a normal variant. The patient was referred back to the urology outpatient clinic to search for the testicular reason for azoospermia. Ultrasound examination revealed a small tumor mass (1 cm in diameter) and high hBCG plasma levels were obtained. The patient underwent surgical removal of the right testicle. Histology revealed a seminoma of the testis.

LH and FSH levels increased slightly above the upper normal limit shortly after the surgery as levels of the HCG dropped. That is why we assume that paraneoplastic HCG acted as the dominant gonadotropin hormone in the patient and decreased the pituitary gonadotropin levels, while the testosterone level remained unchanged.

Conclusion

Is it very important to consider testicular tumors in young patients with low LH and FSH levels, infertility and missing clinical sings of hypotestosteronism.

PS31

Prevalence and characterization of hypogonadism among men with human immunodeficiency virus infection: preliminary results

Vincenzo Rochera1, Giulia Brigante1, Daniele Santi1, Lucia Zirilli1, Chiara Duzza1, Gabriella Orlando2, Cesare Carani3 & Giovanni Guaraldi4

1Department of Medicine, Endocrinology and Metabolism and Geriatrics, University of Modena and Reggio Emilia, Modena, Italy; 2Medical Clinic, Infectious and Tropical Disease Unit, Department of Medicine, University of Modena and Reggio Emilia, Modena, Italy.

Introduction

Among various comorbidities of human immunodeficiency virus-1 (HIV-1) infection, male hypogonadism is very frequent with a prevalence of 19% in patients treated with highly active anti-retroviral therapy. However, literature data are still lacking and achieved by studies with <300 subjects each.

Aim of the study

Prevalence and clinical characterization of hypogonadism among a large number of men with HIV-1.

Methods

Measurement of serum total testosterone, LH and FSH in 950 outpatients aged 20-69 years (mean age 45.5 years) attending the metabolic clinic of infectious and tropical disease between 2005 and 2009.

Results

Mean serum total testosterone was 470.0 ± 205.5 ng/dl. Considering Endocrine Society thresholds for hypogonadism, 15.7% of patients was hypogonadic (T < 300 ng/dl); 8% hypogonadotrophic, 77.2% normogonadotrophic and 14.8% hypergonadotrophic. According to thresholds proposed by the International Society for the Study of the Aging Male (ISSAM) 23.7% of subjects resulted hypogonadic (T <346 ng/dl) of which 5.8% was hypogonadotrophic, 80% normogonadotrophic and 14.2% hypergonadotrophic.

Conclusions

The prevalence of hypogonadism in HIV patients is comparable to that of older healthy subjects (19.3% of hypogonadism in patients with mean age 58.7 years; Schneider, Clin Endocrinol 2009) and is higher than in the general population. Normogonadotrophic predominance in subjects with hypotestosteronemia suggests also a possible involvement of a pituitary dysfunction and/or dysregulation as the underlying cause responsible for the development of hypogonadism.

N Rajsic P557
M Rakhmetova P576
V Rakov P229 & P264
S Ralston P192
R Ramalho P775, P824 & P826
I Ramazanogullari P287
M Ramezani P349
J Ramm-Pettersen P639
J Ramos P775, P824 & P826
A Ramos P400
E Ramos-Lopez P26 & P381
V Ramundo P405 & P406
M Randazzo P27
P Rantakari P258
P Rao-Balakrishna P300
L Raposo P566
Z Rasic-Milutinovic P126 & P756
I Rasika P121
S Rastegary P86
B Rathkob OC4.2
L Ratner P485 & P605
A Ravaglia P638
V Raverdy P404
G Raverot P383, P398 & P634
P Ravni P463
V Rea P782
A Realdi P18
O Rebolo P552
C Recarti P50
S Reddy P297
D Reddy P62
A Rees P525
C Reichfeld P261
H Reiche P57
G Reimondo OC5.1, P618 & P620
M Reinecke OC4.1 & P646
M Reiter OC3.1 & P717
R Renard OC4.5
S Renouf P51
G Rentzou P841
A Repaci P40
I Repede P210
A Resman P156
E Resmini P621
M Reus P23
J Reviriego P321
I Revollo P292
H Rey P134
R Reyes garcia P115
P Rezek P819
M Rho P750
C Ribeiro P101, P185, P413, P552, P760 & P804
M Ricciatto P422
N Richard OC6.3
E Richer P634
M Reidl P714
J Riedlova P716
M Riestra Fernandez P44
F Riganti OC2.6
H Riha P159
A Ring P292
G Ringstad P639
G Rini P356
R Ripani P426
C Ripoll S25.2
P Ristic P705
M Rito P552
R Ritumnano P483
E Ritz OC4.6
A Rivero-Muller H1.4
M Rizk-Rabin P37
D Rizos P150, P461, P735, P738 & P773
N Rizvanoli P769
M Rizzo P154 & P356
J Ros P592
R Robeva P459 & P460
S Robles P359
E Robu P85
M Rocha P227
B Roche P85
L Rocher OC4.5
V Rochira P531 & P788
P Rodien S26.1
W Rodl OC2.2
P Rodrigues P227 & P228
E Rodrigues P244 & P862
F Rodrigues P835
F Rodriguez P359
A Rodriguez P321
V Rodriguez P688
P Rodriguez P221
J Rodriguez Molina P136 & P474
G Roef P744
F Roelfsema OC3.3
J Roemmiller P547
F Rogowski P58, P585 & P859
F Rodg Lj P356
I Roieter P796
H Rolhi P273
J Rolles P624
S Romagnoli P3
E Roman P18
S Roman P788
L Romanova P576
M Romero Munoz P336
J Romijn H2.3, OC3.3 & P554
C Ronchi OC3.4, OC3.6 & P632
A Ropero S25.2
R Rorato P603
S Ros P358
R Rosca P489, P674 & P741
E Roslonowska P19
R Rossetti S11.4
S Rossi P521 & P522
R Rossi OC2.3 & P789
G Rossi P18, P50 & P606
M Rossi P789
V Rossi P451 & P661
L Rostomyan P452
W Rostworowski P856
M Roszkowska-Ganczarz P350 & P653
F Rota P405
C Rotta P422
C Rotella P151
E Roti P789
M Rotondi P626
P Roussaki P548
S Rovere P668
I Rozhinskaya P452, P599 & P652
H Rubinfeld P584
M Rubinstein P688
M Ruchala P837 & P839
N Rudoni P421
M Rudovich P142 & P713
M Ruffin P645
S Ruginisk P604
T Ruiz-Azu P828
F Ruiz-Pino P592
S Rulli P485, P506 & P605
J Rump OC4.1
J Ruocco P5
M Rusaklenko P103 & P304
Z Rusuway P840
T Russo P476
O Rymar P170
A Ryska P427
F Saad P198, P313, P523, P524, P681 & P682
F Saavedra Faiero P75
S Saber P747
C Sabrina P782
E Sadiku P284
W Saeger P248
S Safarova P572, P573, P581 & P719
U Safer P327
C Sagan P395
C Sagert P63
N Saghafi P747
F Saglam P477
R Sahay P177
M Sahin P277
K Sahra P488
R Sahreian P46
K Sainio P258
B Sainz Vera P132 & P138
R Saito P516
D Sakellariou P356
N Salakhova P576 & P581
I Salata P458
A Salati P46
A Salcuni P7 & P21
S Salenave OC4.4, OC4.5, P383 & P530
Z Salamon Monte P180
K Salitk P127, P478 & P841
A Salvatori P641
M Salvi P816
M Salwan P432
M Sami P421
M Sambo P221 & P328
O Samnia P488
R Samolla P56
B Samuel P160
S Sansak P410
R Sanchez P301
C Sanchez P412 & P414
J Sanchez Paya P533
P Sanchez Pellicer P533 & P602
C Sanchez Ragnarsson P44
P Sanchez Sobrino P316, P365 & P630
P Sanchez Sobrino P425
C Sanchez-Martin P361
R Sanchez-Ortiga P532,
P565, P597 & P602
L Sanchez-Tejada P597
J Sandahl Christiansen P509
S Sangova-Grigoriadis P34
J Santamaria P828
R Santen P624
D Santi P531
R Santiago-Mora P116
J Santos P90, P185, P217, P413, P552, P588, P760 & P804
A Santos P621, P827, P829 & S1.6
E Santos P494
D Santos Pinto P120
M Sanz P361