15th European Congress of Endocrinology
27 April – 1 May 2013

EDITORS
The abstracts were marked by the Abstract marking Panel selected by the programme Organising Committee

ECE 2013 Programme Organising Committee
Justo Castaño Chair

Members
Paolo Beck-Peccoz
Philippe Bouchard
Thierry Brue
Mark Cooper
Ivanthia Diamanti-Kandarakis
Carlos Dieguez
Sevim Gallu
Ilpo Huhtaniemi
László Hunyady
Dragan D Micic
Kjell Öberg
Mariana Pfeifer
Paola Soares
Anna Spada
A J van der Lely
Antonio Vidal-Puig
Maria C Zatelli

Abstract Marking Panel
B Abrahamsen Denmark
S Ali UK
B Altun Turkey
A Aranda Spain
G Ayvaz Turkey
P Beck-Peccoz Italy
N Biernat NL
J Boren Sweden
H Boztepe Turkey
T Brue France
C Buchanen UK
M J Bugallia Portugal
J M Cameselle Spain
P Carrilho Portugal
D Carvalho Portugal
J Christianesen Denmark
P Clayton UK
M Cooper Australia
S R Cuenca Spain
O Deynelli Turkey
E Diamanti-Kandarakis Greece
C Dieguez Spain
S Djamjnovic Serbia
R Dullaart NL
T Erbas Turkey
M Erdogan Turkey
A Faggiano Italy
J-M Fernandez-Real Spain
C Follin Sweden
C Forsblom Finland
F Gatto Italy
N Gittoes UK
D Gogas Turkey
L Gomes Portugal
F Gracia-Navarro Spain
A Garlek Turkey
A Garsoy Turkey
N Hamdy NL
T Hansen Denmark
A Hermus NL
S Herzig Germany
M Hewison USA
L Hofbauer Germany
E Hommel Denmark
I Huhtaniemi UK
J Jacomine de Castro Portugal
J O Jorgensen Denmark
A Juul Denmark
N Karavitiaki UK
M Keil USA
F Kesterimur Turkey
M Korbonits UK
R Laque Spain
P Lear UK
C Lemos Portugal
S Llahama UK
J Loma Portugal
J-M Lopes Portugal
M Lopez Spain
G Ivery UK
M Malagon Spain
M Melo Portugal
D Micic Serbia
J Mittag Sweden
M Monteiro Portugal
C Neves Portugal
E Nieschlag Germany
P Nilsson Sweden
K Noergaard Denmark
R Nogueiras Spain
A Norhammer Sweden
K Oberg Sweden
I Paiva Portugal
M Pfeifer Slovakia
D Pignatelli Italy
M Reincle Germany
L Rejnmark Denmark
S Rhodes USA
F Rodrigues Portugal
E Rodrigues Portugal
J Romijn NL
P Roosting Denmark
M Sahin Turkey
L Savendahl Sweden
L Sechi Italy
J Silva Nunes
P Soares Portugal
A Spada Italy
M R Simmons UK
A Tabarri France
M Teixeira-Sempere Spain
M Thedoropoulou Germany
M Tichomirowa Russia
J Tomlinson UK
J Toppari Finland
N B Tatsunca Turkey
K Unluhanarc Turkey
A J van der Lely NL
J van Eck NL
A Vidal-Puig UK
T Vilboeck Denmark
S Virtue UK
J Visser NL
J-M Wil NL
P Yeoh UK
M Zatelli Italy
C Zillikens NL
SPONSORS
The ESE would like to thank the ECE 2013 sponsors

Gold Sponsors:
Ipsen
Novartis
Novo Nordisk
Pfizer

Bronze Sponsors:
Bayer Healthcare
Otsuka

ESE Office
Euro House
22 Apex Court
Woodlands
Bradley Stoke
Bristol BS32 4JT, UK
Contact: Andrea Davis
Tel: +44 (0)1454 642247
Fax: +44 (0)1454 642222
E-mail: info@euro-endo.org
Web site: www.ese-hormones.org

ECE 2013 Secretariat
BioScientifica Ltd
Euro House, 22 Apex Court
Woodlands
Bradley Stoke
Bristol BS32 4JT, UK
Tel: +44 (0)1454 642240
Fax: +44 (0)1454 642222
E-mail: ece2013@endocrinology.org
Website: http://www.ece2013.org
CONTENTS

15th European Congress of Endocrinology 2013

PRIZE LECTURES AND BIOGRAPHICAL NOTES

The European Journal of Endocrinology Prize Lecture .. EJE1
The Geoffrey Harris Prize Lecture .. GH1

PLENARY LECTURES

Nutrient-sensing pathways in ageing ... PL1
NET Management .. PL2
Changing character of thyroid cancer ... PL3
Fondation IPSEN 2013 Endocrine Regulations Prize .. PL4
Preventing vascular complications of diabetes .. PL5
The Ubiquitin System .. PL6
Aldosterone. Mineralocorticoid Receptors and Cardiovascular Risk: What’s New? PL7
New genes and functions in reproduction .. PL8
Human Brown Fat is on Fire ... PL9

SYMPOSIA

Metabolic surgery .. S1.1–S1.3
Cushing’s Disease with negative pituitary imaging ... S2.1–S2.3
Female reproduction .. S3.1–S3.3
New advances in GPCRs in endocrinology ... S4.1–S4.3
A guide through the labyrinth of neuroendocrine tumours ... S5.1–S5.3
What’s new in type 2 diabetes? .. S6.1–S6.3
Translational aspects from comparative to clinical endocrinology .. S7.1–S7.3
Action of glucocorticoids on bone ... S8.1–S8.3
New data treatment of hyperglycaemia .. S9.1–S9.3
Salt-water balance ... S10.1–S10.3
New mechanisms in SST analogue response .. S11.1–S11.3
Male reproductive endocrinology .. S12.1–S12.3
Hormonal treatment in transition of patients with rare diseases (Supported by the European Journal of Endocrinology) ... S13.1–S13.3
Clinical care of the pheochromocytoma patient ... S14.1–S14.3
The Frail Male ... S15.1–S15.3
Oncogenic signals in thyroid cancer - therapeutic prospects .. S16.1–S16.3
Medical treatment of endocrine malignancies - an update .. S17.1–S17.3
PCOS .. S18.1–S18.3
Recent advances in the molecular study of endocrine tumours: microRNAs and more S19.1–S19.3
New mechanisms of energy balance .. S20.1–S20.3
Multi-centre pituitary studies .. S21.1–S21.3
Improving diagnosis of primary aldosteronism ... S22.1–S22.3
Endocrine disruptors (Supported by Endocrine Connections) .. S23.1–S23.3
Redefining our understanding of the causes of obesity ... S24.1–S24.3
Rare metabolic bone disease ... S25.1–S25.3
Novel technologies and inspiring ideas: From basic endocrine research to clinical practice (European Young Endocrine Scientists (EYES) Symposium) ... S26.1–S26.3
Steroids in obesity and metabolism ... S27.1–S27.3
Autoimmune endocrine disease - Old and new players .. S28.1–S28.3
Management of thyroid nodules .. S29.1–S29.3
Energy Status and pituitary function .. S30.1–S30.3
Clinical impact of rare mutations in endocrinology S31.1–S31.3
Is diabetes a lipid disease? ... S32.1–S32.3

MEET THE EXPERT SESSIONS .. MTE1–MTE16

JOE/JME PRIZE PRESENTATION Sponsored by Journal of Molecular Endocrinology
Enhancing radioiodine uptake in thyroid cancer ... JP1

ENDOCRINE NURSING SYMPOSIUM .. EN1.1–EN3.5

ORAL COMMUNICATIONS
Pituitary & Molecular Endocrinology .. OC1.1–OC1.6
Bone & Calcium ... OC2.1–OC2.6
Thyroid .. OC3.1–OC3.6
Adrenal .. OC4.1–OC4.6
Reproduction .. OC5.1–OC5.6
Diabetes & Obesity ... OC6.1–OC6.6

NURSE POSTERS ... N1–N5

POSTER PRESENTATIONS
Adrenal cortex .. P1–P64
Adrenal Medulla .. P65–P69
Bone and Osteoporosis .. P70–P110
Calcium and Vitamin D metabolism ... P111–P171.1
Cardiovascular Endocrinology & Lipid Metabolism P172–P212
Clinical case reports - Pituitary/Adrenal .. P213–P269
Clinical case reports - Thyroid/Others ... P270–P331
Developmental Endocrinology .. P332–P345
Diabetes ... P346–P496
Endocrine disruptors .. P497–P507
Endocrine tumours and neoplasia .. P508–P573
Female reproduction ... P574–P620
Growth hormone IGF axis - basic .. P621–P636
Male reproduction .. P637–P677
Neuroendocrinology .. P678–P718.1
Nuclear receptors and signal transduction P719–P725
Obesity ... P726–P790
Paediatric endocrinology ... P791–P822
Pituitary - Basic (Generously supported by IPSEN) P823–P839
Pituitary - Clinical (Generously supported by IPSEN) P840–P967
Steroid metabolism and action .. P968–P976
Thyroid (non-cancer) .. P977–P1076
Thyroid cancer ... P1077–P1140

INDEX OF AUTHORS
P1005
TSH-deficiency is associated with a lower thyroid gland volume in hypopituitary patients compared to healthy volunteers: a cross-sectional study

Daniele Santi1, Giulia Brigante1,2; Valentina Gnarni1,2; Bruno Madeo1,2; Sara De Vincentis1;2; Cesare Carani1,2; Marco Faustini-Fusini1, Antonio Balestrieri1 & Vincenzo Rochira1,2
1 Chair and Unit of Endocrinology and Metabolism, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; 2 Integrated Department of Medicine, Endocrinology and Metabolism, Geriatrics, Azienda USL of Modena, NOCSAE of Baggiovara, Modena, Italy; 3 Endocrine unit, Department of Medicine, Bellaria Hospital, Bologna, Italy; 4 Endocrine and Metabolism Unit, Department of medicine, Ospecale ‘M. Bufalini’, Asl of Cesena, Cesena, Italy.

Introduction
Thyroid volume (TV) depends on age, gender, anthropometry, smoking and isode status. IGF1 plays a role on thyroid growth, as demonstrated in acromegaly and GH-deficiency. Finally, TSH is a well recognised permissive factor for thyroid tissue growth. The aim of the study is to evaluate the long-term effect of TSH-deficiency on TV in hypopituitary patients compared with healthy volunteers.

Methods
We performed a cross-sectional, controlled study on 58 hypopituitary patients (36 males, 22 females) with multiple hormonal deficiency (confirmed diagnosis of central hypothyroidism was the main inclusion criteria) (60.0 ± 13.9 years), and 244 volunteers (75 males, 171 females) (47.7 ± 11.63 years). All subjects underwent thyroid ultrasonography (Siemens Acuson Antares, Philadelphia, USA) performed by the same operator. TV was calculated as the sum of TV of the two lobes, each estimated as: length (cm)×width (cm)×depth (cm)×0.52.

Results
Age, weight, BMI and body surface area (BSA) were greater in hypopituitaric patients compared to healthy volunteers. TV and weight were also greater in hypopituitaric patients with goiter (9.62 ± 3.702 ml, 81.8 ± 3.497 ml vs 9.69 ± 3.702 ml, 81.2 ± 3.27 ml, P < 0.001). These differences were held even after correction of TV for BSA, BMI and age. Finally, TV was lower in hypopituitaric patients without goiter (4.73 ± 3.27 ml) than in those with goiter (9.62 ± 7.18 ml; P = 0.003). These differences were held even after correction of TV for BSA, BMI and age.

Discussion
TV is significantly lower in hypopituitaric patients than in healthy subjects, but the prevalence of thyroid nodules seems to be similar. The reduction of TV in hypopituitaric patients seems to occur only in thyroid glands without nodules. The chronic lack of TSH, as in hypopituitarism, seems to be responsible in vivo for a reduction of TV, but this effect seems to involve mainly the normal thyroid tissue rather than the hyperplastic nodular tissue.

DOI: 10.1530/endoabs.32.P1005

P1006
Prevalence of GH deficiency in Turkish patients with Hashimoto’s thyroiditis: a single center experience

Safak Akin1, Kadiyre Aydin1 & Alper Gurlek2
1 Saffak Akin, Ankara, Turkey; 2 Kadiyre Aydin, Ankara, Turkey; 3 Alper Gurlek, Ankara, Turkey.

Background and Aim
Prevalence of Hashimoto’s thyroiditis is increasing in Turkey. GH deficiency has been reported to associate with this disorder in several different ethnic population. The aim of this study was to evaluate GH deficiency in the population with Hashimoto’s thyroiditis.

Materials and methods
Euthyroid Hashimoto’s thyroiditis patients, who admitted to the Department of Endocrinology and Metabolism of Hacettepe University, were included to the study. Demographic and laboratory data of patients were recorded.

Results
One hundred ninety three patients with Hashimoto’s thyroiditis were evaluated (117 males, 176 females (8.8 vs 91.2%)). Mean age was 39.94 ± 11.02 (min: 18 years, max: 64 years). There were no co-morbid conditions in any patients. One hundred and eleven of them were using medications containing f-thyroxine (57.5%). IGF1 levels of 179 patients (92.8%) were normal. Fourteen patients had low levels of IGF1. Glucagon stimulation testing in 14 subjects revealed GH deficiency (<3 μg/l) in only one subject. This subject had no response to insulin tolerance test either and she was put GH replacement therapy. Our data reveals the prevalence of GH deficiency in this particular group of Turkish Hashimoto’s thyroiditis patients was 0.5%.

Conclusion
We conclude that isolated GH deficiency is rarely observed in Hashimoto’s thyroiditis patients. There were diverse outcomes of different studies about GH deficiency in Hashimoto’s patients from different ethnic backgrounds (0.4–5%). This preliminary study on this issue demonstrated that GH deficiency is 0.5% in this particular group of Turkish Hashimoto’s thyroiditis patients.

DOI: 10.1530/endoabs.32.P1006

P1007
Insulin resistance in patients with thyroid dysfunction and hepatosteatosis

Sakir Ozgur Keskek, Sinan Kirim, Ramazan Kaya, Dilek Tuzun, Gulay Ortolug & Tayyibe Saler
Numune Education and Research Hospital, Adana, Turkey.

Introduction
Hepatosteatosis is one of the results of insulin resistance. Thyroid dysfunctions effect on insulin sensitivity. The aim of this study was to evaluate insulin resistance in patients with hepatosteatosis and either hypothyroidism or hyperthyroidism.

Design
A total of 407 patients with hepatosteatosis were included. These patients were further divided into two study subgroups and a control group: 102 subjects with hypothyroidism, 103 with hyperthyroidism and 202 with normal thyroid function in the control group. The institution review board of hospital approved the study. Serum TSH, free T4, free T3 concentrations, blood glucose, and insulin levels, serum lipid levels, hepatic transaminases and homestasis model assessment of insulin resistance (HOMA-IR) were measured. Insulin resistance was calculated according to HOMA-index and compared between the groups. IBM Statistics 20.0 for Windows was used for statistical analysis. χ² and ANOVA tests were used for comparing groups.

Results
Average age was 50.8 ± 14.1 years. Male:female ratio was 141:266. Frequencies of insulin resistance in patients with hepatosteatosis and either hypothyroidism, hyperthyroidism, or normal thyroid function were 43, 40, and 48% (P, nonsignificant), respectively. HOMA-IR indices were not statistically different between different groups (P = 0.104).

Conclusions
Hypothyroidism and hyperthyroidism are not correlated to insulin resistance in patients with hepatosteatosis. We decided that patients with hepatosteatosis already have insulin resistance despite different associated comorbidities. Similar studies in literature did not emphasize on hepatosteatosis in such cases.

Key words
Insulin resistance, hepatosteatosis, hypothyroidism, hyperthyroidism.

DOI: 10.1530/endoabs.32.P1007

P1008
Vitamin D status in autoimmune hypothyroidism

Sunil Kumar Kota1,2; Lalit Kumar Meher1,2; Sruti Jammula1,3 & Kirtikumar D Modi1,2
1 Medwin Hospital, Hyderabad, Andhrapradesh, India; 2MKCG Medical College, Berhampur, Orissa, India; 3Roland Institute of Pharmaceutical Sciences, Berhampur, Orissa, India.

Objective
To investigate vitamin D status in patients with autoimmune hypothyroidism.

Methods
The study group consisted of 100 patients with newly diagnosed Hashimoto’s thyroiditis and 100 subjects as the control group. Parameters of calcium metabolism, thyroid function tests and 25(OH) vitamin D levels were measured. Results or case presentation

Mean age of the study groups was 33.4 ± 4.8 years with female:male, 72:28. Vitamin D insufficiency/deficiency (25(OH)D < 30 ng/ml) rate was significantly higher in the Hashimoto’s group compared with the control subjects (75 vs 20%, P < 0.0001). In the Hashimoto group, mean 25(OH) vitamin D levels were significantly lower compared with the control group (12.5 ± 7.0 vs 22.3 ± 7.9 ng/ml, P < 0.001). The study group revealed

DOI: 10.1530/endoabs.32.P1008

Endocrine Abstracts (2013) Vol 32
Author Index

Ágústa Sigurjónsdóttir, H P37
Álvarez, Á P292
Álvarez-Escolá, C P868
Álvarez-Escolá, C P712
Ásman, P P1010
Aşık, M P263, P308 & P309
Abarca, J P908
Abasolo, EU P1127
Abbondonoza, C P524
Abd El Baki, R P626
Abdel Aziz, M P626
Abdelbaki, R P385
Abdelrahman, O P643
Abdelrazeek, S P981
Abdelsalam, M P385
Abderahmane, SA P1034
Abdesselem, H P590 & P949
Abdo, R P507 & P769
Abdoli, S N3
Abdo, R P507 & P769
Abdoli, S N3
Abdurakhmanova, A P822
Abel, CW P252
Abereke, J P760
Abraeos, P N1 & P35
Abreu, A P381
Abreu, C P755
Abreu, S P235
Abrosimov, A P1110 & P832
Abrosimov, AY P1105
Abu-Asab, M P534
Abylayuly, Z P1024
Acar, BC P219
Acconcia, F P720 & P721
Ach, K P61 & P628
Achir, S P1077 & P960
Acibucu, F P120 & P959
Ackermann, C P931
Acs, B P137, P158 & P353
Acs, O P137, P158 & P353
Adam, G P259
Adams, C P987
Adamek, D P836
Adaminidou, F P107, P208 & P92
Adamska, A P296, P346, P351 & P735
Adamska, E P360
Adana, MRd P463, P489 & P490
Adel, C P626
Adelina, T P1037
Adolf, C P10
Adorini, L P738
Adrian, D P898
Afro, S P505
Afiame, M P1137
Afloen, ED P825
Afonso, A P837
Afonso, LP P568
Afzal, N P337
Agapitou, A P107
Agapito, A P300
Agostino Sinisi, A P659, P675 & P678
Ahualiva, R P72 & P73
Ahmad, A P441
Ahmad, L P441
Ahmadi, J P596
Ahmed Naseem, A P44
Ahmed, A P322
Ahmed, D P496
Ahmed, S P1124
Ahmed-Ali, L P1134 & P1135
Ahmeti, I P253, P247, P559 & P955
Ahn, HY P376, P742 & P762
Aiglesreiter, A P201
Alaimarett, G P467, P473, P301 & P307
Aissa, NB P138, P166 & P167
Ajduk, M P785
Ajdzianovic, V P385 & P385
Ajlouni, K P640
Akaishi, J P536
Akalin, NS P919
Akbal, E P259, P263, P308 & P309
Akbag, E P916
Akca, S P1023
Akciçek, F P1053 & P506
Akhtar, P P852
Akhtar, S P174
Akin, F P618, P619, P935, P940, P946 & P962
Akin, KO P406
Akin, S P1006, P369, P593 & P62
Akkache, L P212, P237, P571, P621, P63, P933, P945, P957 & P958
Akkurt, A P1086, P1090, P226, P451, P471 & P674
Akmam, U P593
Ako, Z P406
Akrakam, M P42, P44 & P832
Akglaiede, L OC5.5, P794 & P799
Aksoy, D P581
Aktürk, D P1086 & P1090
Aktas, C P446
Akturk, M P1128
Akulevich, N P776
Al Tailan, A P11 & P544
Al Yafei, F P992
Al-Deen, AS P441
Al-Gelany, S P441
Al-Massadi, O P681
Al-Naime, L P992
Al-Sagheer, G P441
Alagol, F P135
Alali, M P813
Alamed, C P431
Alayev, D P149
Albano, A P21 & P917
Alber, F P649
Albert, B P898
Albert, K P250
Albert, T P989
Albertelli, M P514
Albertini, S P124
Alberto Gómez, L P777
Alborg, VC P377
Alcantara, V P19
Alcantara, VA P1111
Alcuc, M P546
Alcuc, S P546
Alevizaki, M P1085, P1121, P187 & P32
Alexandrescu, D P805
Alexandrout, A P187 & P207
Alexiou, F P801, P805 & P811
Algún, E P257, P277 & P51
Alhumaidi, N P813
Ali, A P1102
Aliiev, A P998
Aliiev, D P718
Alkahh, H P465
Alimukhamedov, G P718
Alina, S P1037
Aligolu, B P1016
Aller, J P96 & P868
Allo, G P356
Allochis, G P467 & P473
Allolio, B O4.2, P516 & P702
Almahfouda, F OC6.6 & P683
Almanza, MR P377, P564 & P651
Almaraz, MC P133
Almarri, N P992
Almeida, R P890 & P948
Almind, D P984 & P986
Almustrup, KOC5.5 & P666
Alonso Merino, E P719
Alonso-Merino, E P722
Aloumanis, K P815
Altieri, B P23
Altindag, K P62
Altindag, T P386
Altinova, A P1128
Altunrende, B P426
Altuntas, Y P108, P111, P258, P286, P305, P328 & P983
Alvarez Coca, M P714
Alvarez, C P1084 & P880
Alvarez, ED OC3.4
Alves de Santana, A P746
Alves, M P101, P267, P40 & P563
Alviggi, C P586
Amado, JA P417
Amaral, B P276
Amaral, C P733
Amaral, D P806
Amao, AA P498
Ambekar, S P419
Ambrosi, B P4 & P876
Ambrosio, MR P519, P540 & P907
Ambrozak, U P18 & P592
Amini, M N3
Amini, R P1113
Amirou, AL P810
Amirou, L P1135
Amokrane, L P1137