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Abstract

Background

The notion of DNA motif is a mathematical abstraction used to model regions of the DNA
(known as Transcription Factor Binding Sites, or TFBSs) that are bound by a given
Transcription Factor to regulate gene expression or repression. In turn, DNA structured
motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the
gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is
composed of an ordered set of isolated (or simple) motifs, separated by a variable, but
somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a
set of DNA sequences is a computationally hard problem that has been addressed by a
number of authors using either a direct approach, or via the preliminary identification and
successive combination of simple motifs.

Results

We describe a computational tool, named SISMA, for the de-novo discovery of structured
motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that
it finds all the motifs conforming to the specifications. It does so in two stages: first it
discovers all the possible component simple motifs, then combines them in a way that
respects the given constraints. We developed SISMA mainly with the aim of understanding



the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage
software was available for the general problem of structured motif discovery, but only a few
tools that solved restricted versions of the problem. We evaluated SISMA against other
published tools on a comprehensive benchmark made of both synthetic and real biological
datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting
a good performance also in most of the cases in which it was inferior.

Conclusions

A reflection on the results obtained lead us to conclude that a 2-stage approach can be
implemented with many advantages over direct approaches. Some of these have to do with
greater modularity, ease of parallelization, and the possibility to perform adaptive searches
of structured motifs. As another consideration, we noted that most hard instances for
SISMA were easy to detect in advance. In these cases one may initially opt for a direct
method; or, as a viable alternative in most laboratories, one could run both direct and
2-stage tools in parallel, halting the computations when the first halts.
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Background

Understanding the complex mechanisms that regulate gene expression is a pivotal problem in
molecular biology. Gene transcription [1] starts when one or more regulatory proteins bind
DNA regulatory elements, which are mostly located in the promoter region nearby the
transcription start site (TSS) of genes, or also further apart in eukaryotic organisms (e.g.
enhancers, silencers). In eukaryotes, DNA binding proteins are called transcription factors
(TFs) and regulatory elements, to which they bind, are known as transcription factor binding
sites (TFBSs). In lower eukaryotes TFBSs

In lower eukaryotes TFBSs are usually short DNA strings (5-25 base pairs long) bound by a
single TF, that frequently appear, with possibly some mutations, upstream of the TSS in the
proximal promoter region of co-regulated genes.

In higher eukaryotic organisms, transcription regulation is more complex and TFBSs are more
difficult to characterize [2]. There may be multiple binding sites for a single TF in a single
gene’s promoter region; there can be great variability in the binding sites of a single TF; the
regulatory elements may be located also several kilobases away from the TSS, either upstream
or downstream or in the introns of the genes that they regulate [3], and in this case they are
often organized in functional groups (called cis-regulatory modules) [2] bound by several
interacting TFs in a cooperative or antagonistic way.



Being able to identify TFBSs is crucial to our understanding of the mechanisms that regulate
gene expression (e.g., chronology and cell-specificity of transcription [4]), and of the
functions of individual genes regulated by newly discovered TFBSs [2]. Also, mutations in
TFBS underlie several degenerative human diseases (e.g., all forms of cancer) and constitute a
substantial component of the phenotypic variability within and across species [5].

Structural and functional information on mechanisms of interaction between TFs and their
binding sites are provided by experimental techniques, which are costly and time-consuming.

TFBS discovery as an algorithmic problem

The identification of (possible) functional sites can be formulated as an algorithmic problem,
provided a mathematical abstraction is given to model TFBSs. Two of the most popular such
models are Position Specific Score Matrices (PSSM) and Hamming distance (HD) models
(see, e.g., [6, 7]). Here we will adopt the HD model, which we now briefly recall.

In the HD model, a simple motif Mw is given by a word w (over the DNA alphabet),
sometimes called the consensus, together with an integer e, 0 ≤ e < |w|. The occurrences of
Mw are those words v whose Hamming distance from the consensus is bounded by e, i.e.,
dH(w, v) ≤ e. Note that e > 0 accounts for possible mutations (here only nucleotide
substitutions) in functional sites relative to the same TF. Figure 1(a) shows examples of simple
motifs and simple motif occurrences.

Figure 1 Simple and structured motifs. Part (a): some DNA sequences with instances of the
two simple motifs GATAAG (one base substitution tolerated) and TATAAAA (up two base
substitutions tolerated), highlighted in blue and red, respectively. Part (b): three instances of a
structured motif (6, 1)−[ 2, 4] −(6, 1)−[ 3, 5] −(7, 2)

Computational motif discovery (or motif finding) can be defined as the task of inferring the
mathematical abstractions subject to the identification of the occurrences (i.e., the potential
binding sites) in the input sequences. The typical input to a motif discovery program under the
HD model includes a pair (ℓ, e), which describes the length of the consensus and the
maximum substitutions allowed in the occurrences, respectively.

Motif discovery is a very difficult problem [8], since the space of possible occurrences may be
huge. The inverse problem, i.e., finding the occurrences given a motif definition, is called
motif search and is instead comparatively much easier than discovery.

Simple motifs are typically used to represent TFBSs in lower eukaryotes. When more than
one binding site is involved in gene regulation, as in higher eukaryotes, their collective formal
description is more elaborate. Here, we are interested in formal models of so-called structured
motifs, which can be simply defined as sets of simple motifs, often called boxes, whose
occurrences, in the input DNA fragments, must satisfy given order and distance constraints.
The input to a structured motif finder can be succinctly described using template strings:



(ℓ1, e1)−[ d1, D1] −(ℓ2, e2) − . . .

−(ℓb−1, eb−1)−[ db−1, Db−1] −(ℓb, eb)

where, for all admissible j and k, ℓj and ej constrain the motifs that can occur as box j
according to the HD model, while dk and Dk are lower and upper bounds on the number of
nucleotides between box k and box k + 1. Figure 1(b) illustrates the concept in case of b = 3.

Focus of the paper

There is an already huge literature on motif discovery (see, e.g., [6, 8–19] and also the
references contained in the survey papers [20, 21]). However, for our purposes the proposed
algorithmic solutions fall into two classes: (1) optimization algorithms (either deterministic or
probabilistic), and (2) enumerative, exact algorithms. Algorithms of the first class seek motifs
that optimize a certain scoring function, usually exploring only a limited portion of the space
of all possible motif candidates (see [6, 9, 10, 22] for influential works). On the other hand,
enumerative algorithms exhaustively search the motif spacea [12, 14, 16, 23, 24].

A fundamental component of exact methods is what we can term the enumeration engine, i.e.,
the algorithm adopted to generate all the possible candidate motifs to be later evaluated on
some statistical basis (for another example, see [25]). Actually, some exact motif finding tools
have been proposed which are just enumeration engines, simply returning all the motifs that
satisfy the input constraints [7,26–28]. Clearly, an appraisal of any such engine depends on its
computational efficiency only.

The availability of enumeration tools is useful both because they can be taken as building
blocks for more sophisticated finders and because they inspired (and still inspire) research in
the whole field of exact methods. In this respect, it is worth observing that the tool which best
behaved in the now famous assessment by Tompa et el. [29], namely Weeder, borrows its
enumeration engines from [7].

In this paper we concentrate our attention on enumerative algorithms for structured motif
discovery in a set of input DNA fragments. In particular, we focus on enumeration engines
and base our analysis on running time and (to a lesser extent) memory consumption. We pay
no attention to the “quality” of the results, simply because the output only depends on the
input constraints posed to the motifs being sought. Running time is instead especially critical
since faster enumeration leaves more room for post processing (i.e., picking the motifs
deemed more likely to represent functional sites).

Before describing the contribution of our work, we analyze in more details the results
presented in the literature that deal with enumeration engines for structured motif discovery.

Related work

Existing algorithms are essentially based on one of two possible approaches: (1) directly
explore the search space of structured motifs, or (2) first extract the simple motifs that may



occur as boxes (using any available simple motif finder) and then “assemble” them into
structured motifs that satisfy box order and distance constraints. We shall refer to the latter as
to the 2-stage approach.

A well-known potential advantage of directly exploring the space of structured motifs is that
the combined boxes, together with the distance constraints, may be strong enough to quickly
emerge, possibly together with few others spurious structures, even though each single box is
a weak signal (see, e.g., [15]). We point out that the most efficient direct approach algorithms
makes use of the (generalized) suffix tree data structure [30, 31].

The 2-stage approach was first mentioned by Marsan and Sagot [32], who nonetheless deemed
it impractical due to the high resource consumption. Recently, however, it was re-considered
by Zhou et al. [28], who provided much tighter theoretical upper bounds on the runtime and
space complexity. They designed the ECOMP algorithm and showed it to be more efficient
than more sophisticated exact methods in their experimental settings.

Some available exact motif finders require that at least one instance of the motif be exact, i.e.,
that it actually appears in one of the input sequences. This leads to a reduction of the motif
search space with ensuing time and space savings. This simplified version of the problem is
called Frequent (Structured) Motif Discovery problem [26].

SMILE, RISO and RISOTTO

SMILE [32] is a family of algorithms designed to solve slightly different variants of the
structured motif discovery problem on set of input sequences. SMILE extends to structured
motifs the algorithmic ideas on simple motif enumeration presented in [7]b. To explore the
space of possible structured motifs, SMILE uses a generalized suffix tree of the input
sequences together with a (virtual) lexicographic tree of all possible simple motifs.
Improvements to SMILE are presented by Carvalho et al. [33]. Their RISO algorithm exhibits
an exponential time and space gain over SMILE in the worst case. RISO works on a variation
of the generalized suffix tree (called generalized factor tree) [34], built only up to the box
length level, with some extra information used for fast update of the tree. RISO’s
computational complexity is exponential with respect to the number of boxes and their
lengths, but it does not depend on inter-box distances, thanks to the use of box links.

A further improvement is achieved by RISOTTO [27], although only on the average, thanks to
it’s ability to quickly detect dead ends (i.e., words that cannot possibly be extended to a valid
motif). In practice, RISOTTO is more than twice faster than RISO and, to the best of our
knowledge, also the most efficient algorithm for exact enumeration of structured motifs
composed of any number of boxes. For this reason, we will take RISOTTO as our primary
competitor in the experimental tests.

ECOMP

ECOMP is a general, 2-stage algorithm that uses Mitra-count [15] to find all simple motifs and
the starting positions of all their occurrencesc. In the second step, the algorithm looks for



dyads by checking all pairs of occurrences of simple motifs, keeping and counting only those
satisfying the distance constraint. At the end, ECOMP outputs only the dyads satisfying the
quorum constraint.

Unfortunately, ECOMP is fully described and tested only for dyads and source code is
apparently not available.

ExMotif

The 2-stage approach is also used by EXMOTIF [26] to solve the frequent structured motif
extraction problem. EXMOTIF’s main data structures are lists that store the positions of
patterns appearing in the sequences. These lists are repeatedly intersected in order to find
motifs that satisfy the input constraints. The output produced by EXMOTIF includes the
structured motifs satisfying the quorum constraint and only the positions of their exact
occurrences. The computational cost of EXMOTIF, as reported in [26], is exponential with
respect to the number and the length of boxes.

Results

Our contribution is twofold. We present a novel 2-stage algorithm, called SISMA, that
enumerates all the structured motifs conforming to the input specifications. More precisely,
we describe two different software tools that implement SISMA’s ideas. The first version,
called SISMA_SMILE, solve the “unconstrained” enumeration problem, while the second
one, named SISMA_SPELLER, addresses the frequent structured motif discovery problem.
We compare the performances of SISMA_SMILE (resp., SISMA_SPELLER) against those of
RISOTTO (resp. EXMOTIF) on a comprehensive dataset composed of both synthetic and real
biological data. The experimental results show that our tools are competitive in enumerating
spaces of structured motif candidates.

We also try to go one step further and reflect on the relative merits of direct vs 2-stage
approaches for structured motifs finding. The latter enjoy some potential design advantages,
such as modularity and ease of parallelization (see the concluding section for more on these
aspects). However, the argument of computational inefficiency has often been used to
discourage their active use. From our experiments here we can not devise strong arguments in
favor of any of the two approaches. It is true that, in some circumstances, direct methods can
explore spaces which are beyond the capabilities of a 2-stage algorithm. However, in other
cases our 2-stage approach software results much faster than the competitor direct tool. In the
concluding section we will give some guidelines (depending on parameter sets) to possibly
assist the users to choose the most suitable tool for the problem instances at hand.

Methods

In this section we describe the implementation of SISMA (“Successive Intersection of Simple
Motifs Apart”), a structured motif finder based on the 2-stage approach.



SISMA is an exact algorithm which takes in input the following set of parameters:

1. the set of sequences, in Fasta format, where the motifs must be found;

2. the number b ≥ 2 of boxes (simple motifs) which the structured motifs will be made of;

3. an ordered set of b pairs of integers: (ℓi, ei), i = 1, . . . , b, such that ℓi is the length of the
ith box and ei the corresponding number of admissible errors;

4. for each pair of consecutive boxes, say the ith and i + 1th ones, a pair of integers (di, Di)

that specify the minimum and maximum number of bases, respectively, that may
separate the two boxes, i = 1, . . . , b − 1.

5. a value q ∈ (0, 1] (the so-called quorum) that specifies the minimum fraction of input
sequences that must contain an instance for the structured motif to be considered valid.

The output of the algorithm is made of all the possible structured motifs that conform to input
specifications.

SISMA is implemented in C++ and its source code is available for download from
http://algo.ing.unimo.it/mf/

Basic implementation

SISMA stores simple and structured motifs using vector data structures that make it possible
to perform list intersections and filtering operations (i.e., the distance and quorum checks
described below) in a very efficient way (technical details can be found in Additional file 1).

In current implementations, SISMA comes in two versions, which will be referred to as
SISMA_SMILE and SISMA_SPELLER, solving the structured and the frequent motif
discovery problems, respectively.

Stage 1

SISMA_SMILE first calls SMILE [32] for simple motif discovery. To the best of our
knowledge, SMILE is the only tool available for download which is exact and that returns the
positions of all the occurrences of found motifsd.

SISMA_SPELLER uses our implementation of the SPELLER [7] algorithm, which returns
simple motifs with at least one exact match in the input sequences, together with all their
occurrences. We decided for a new SPELLER implementation because, apparently, there is no
available tool with these characteristicse.

Independently of the simple motif finder adopted, the output of the first stage is a set of simple
motifs with associated position lists of their occurrences, each one ordered by increasing



sequence indexes and increasing positions within the sequence. Logically, motifs returned by
stage 1 are classified into b subsets, denoted by Ki, i = 1, . . . , b, such that m ∈ Ki if and only
if m can be the ith box of one of the structured motifs being sought. Each set Ki is maintained
as a vector data structure, each cell of which in turns stores a pointer to a vector containing all
occurrences of exactly one m ∈ Ki, ordered by increasing input sequence index and increasing
position in each sequence.

Observe that there is no filtering process of simple motifs found in this stage, because there is
apparently no relations between significance of simple motifs and significance (or mere
existence) of structured motif, as clearly stated in [35] (p. 3 of the full paper). In particular,
structured motifs might exist (and reach quorum) only because they contain weak simple
motifs.

Stage 2

For i = 0, . . . , b, we will use the term i-prefix to denote any structured motif made of i boxes
that could possibly be extended to a full structured motif conforming to the problem
specification.

In the second stage, which is divided in b steps, SISMA builds prefixes of increasing length,
starting from the empty prefix in step 1 and ending with b-prefixes (i.e., full structured motifs)
in step b. Basically, at generic step i, SISMA considers all (i − 1)-prefixes p and all motifs
m ∈ Ki to assemble possible i-prefixes r = p − (di, Di) − m. The computed i-prefixes are
stored in a vector data structure, analogously to what is done with simple motifs.

During a prefix assembly step, SISMA checks distance and quorum constraints, in order to
discard, as early as possible, prefixes that could not possibly be extended to full structured
motifs.

Distance check: for each potential i-prefix r being built, r = p − (di, Di) − m, and any
sequence s, SISMA performs a binary search on the sorted occurrences of m in s in order to
find the first occurrence that satisfies the minimum distance constraint. Then, all the
subsequent occurrences of m are considered, until one is found that violates the maximum
distance constraint. In this way, SISMA builds all occurrences of r.

Quorum check: the i-prefix r is discarded if its occurrences appear in less than q input
sequences. In fact, it is obvious that prefix extension can only reduce the eventual motif
quorum.

Options

The basic implementation has been enhanced with some options that might be used to have
even more efficient second stage runs, under some circumstances. Implementation details can
be found in Additional file 1.



Box index selection option

When this option is selected, SISMA builds structured motifs by considering boxes of
increasing total number of occurrences and not by increasing index order. In more pictorial
terms, the full (final) structured motifs are not determined by assembling longer and longer
prefixes but rather longer and longer structured motif “subsequences”.

When using this option, before starting the b steps of stage 2, SISMA computes the total
number of simple motif occurrences in each set Ki, i = 1, . . . , b:

Bi =
∑

t:mt∈Ki

|occi,t|, (1)

where occi,t is the set of occurrences of motif mt ∈ Ki, t = 1, . . . , |Ki|. SISMA then sorts the
sets {Bi}i=1,...,b and forms a list L with the corresponding box indexes, i.e., if Li = j and
Li+1 = k, then Bj ≤ Bk, i = 1, . . . , b − 1. Then, it uses the list L in stage 2 to determine the
order with which to add the boxes to the structured motifs being built.

This option allows to limit the number of useless intermediate structured motifs (i-prefixes)
that are generated (i.e., those that eventually would be discarded, because they either could not
be extended to full b-boxes or would not satisfy the quorum constraint). This is particularly
effective when the expected number of structured motifs in the output is not large, which is
likely to happen, e.g., when the box length is large and a small number of errors are admitted,
or simply when the number of boxes is large. There is a trade off between the slowdown
introduced to store and handle extra information needed to implement this option and the
speedup obtained by reducing the number of useless intermediate structured motifs. If the
output is large, the slowdown is predominant; in contrast, if the output is small, speedup is
predominant.

In practice, this option helped SISMA to drastically reduce the out-of-memory failures,
especially on synthetic data.

Space-saving option

Sometimes the output to be generated is very large. This happens, e.g., when the first stage has
returned a huge number of simple motifs occurrences. In turns, this can be a consequence of
the particular values of the input parameters, such as very short motif lengths and/or relatively
small difference between length and number of available errors. Under these circumstances,
SISMA basic implementation, which keeps all the intermediate motifs (including the simple
ones) in main memory, may fail due to memory shortage.

To cope with this situation, especially on low memory PCs, SISMA can be run with a specific
option that produces the output in distinct slices, and that requires less main memory to
produce the output of each slice. Given an integer v as the value of the space-saving option
parameter, for i = 1, . . . , b, each set of motifs Ki is partitioned into ⌈|Ki|/v⌉ subsets



Ki = {Ki,1, Ki,2, . . . , Ki,⌈|Ki|/v⌉}, each one containing at most v distinct motifs. The second
stage is then run once for each possible element in the Cartesian product K1 × K2 × · · · × Kb.
In this way SISMA drastically reduces the number of intermediate structured motifs
generated and usually avoid out-of-memory failures at the price of a moderate slowdown (see
the Computational Cost section).

The only cases that this variant of SISMA is not able to handle are those in which the
memory shortage is due to stage 1, i.e., when the number of simple motifs (and their
occurrences) is simply too large to fit in memory (we will see that this happens in few very
difficult instances on synthetic data).

Occurrence print option

SISMA might be instructed to output the starting positions of all occurrences of the
discovered structured motifs.

Not using this option allows a fair comparison with tools that do not print all motif
occurrences, but just the motif definitions.

Computational cost

The time computational cost of SISMA is given by the cost of simple motif extraction plus
that of occurrence list intersections. Here we will first refer to the basic version of SISMA,
with only briefly mentioning the various options at the end of the section.

With the current implementation, the simple motif extraction tool must be run once for each
different single box template (i.e., for all different (ℓ, e) pairs). Both SMILE and our modified
version of SPELLER have worst-case time complexity in O(Ntℓν(e, ℓ)), where tℓ is the number
of suffix tree nodes at depth ℓ, N is the number of input sequences, and ν(e, ℓ) is the number
of words of length ℓ that differ in at most e letters from a word m of length ℓ. It holds that
ν(e, ℓ) ≤ ℓe|6|e. Hence, the time complexity is linear in the input size, but possibly
exponential in the number e of substitutions. Thus, as we are working with the DNA alphabet,
the first stage takes O(N ·∑b

i=1 tℓiℓ
ei
i 4ei).

Let Bi be the total number of occurrences of simple motifs found for the ith box in the first
phase (see Equation 1), for i = 1, . . . , b, and let Sj be the total number of j-prefixes
occurrences found during the jth step of the second stage, for j = 2, . . . , b − 1. The cost of the
occurrence list intersection phase is upper bounded by:

B1 · B2 + S2 · B3 + · · ·

· · · + Sb−1 · Bb =
b−1∑
i=1

Si · Bi+1

where equality holds since S1 = B1. Hence, the computational cost of SISMA is



O

(
N

b∑
i=1

tℓiℓ
ei
i |6|ei +

b−1∑
i=1

Si · Bi+1

)
. (2)

Equation (2) clearly shows that the running time of the second stage depends essentially on
the number of occurrences of simple motifs and that of intermediate structured motifs. Note,
however, that if there is a large number of simple motifs the cost of first stage is high as well.
Low cost of first stage and high cost of second stage are possible only if there are relatively
few simple motifs but many intermediate structured motifs. This is in principle possible, but
in practice it hardly happens due to order and distance constraints, as the computational
experiments clearly indicate. In practice, thus, the cost of extracting structured motifs is
comparable with that of simple motif finding, at least when the starting positions of all the
occurrences are required. As for the memory space used, it is not difficult to see that this is the
maximum between: (1) SMILE space complexity needed to generate all the motifs occurrences
for each box, and (2) the space needed to generate j-prefixes occurrences, i.e.,
O(maxj∈[2..b−1]{Sj + Bj+1}).

We now briefly consider options. As for index selection, it can be easily seen that the handling
of more complex data structures in main memory introduces, in the worst case, time and
memory penalties linear with the number b of boxes. In practice, however, non-worst case
instances might run much faster with this option activated (see Options section). For what
concerns the space saving option, it can be proved that the slowdown is constant, although the
exact figures depend on low level implementation issues. On the machine used to perform the
experiments, the running times with space saving activated were almost four times higher. We
must point out, however, that the intended use of this option is just to avoid out-of-memory
failures, and these can be regarded as infinite time computations. Then, in these cases the
option can be thought to provide (sometimes) “unbounded” speedups. In this case, space
requirement is dominated only by SMILE space requirement. Finally, SISMA actually
generates all occurrences during computation, and hence printing them takes only linear time
in the number of occurrences.

Results

We have performed a series of computational experiments on both synthetic and real
biological data with a twofold goal: (1) compare the direct and 2-stage approaches using the
best available algorithm (RISOTTO) for the former and our SISMA_SMILE code for the
latter; (2) compare SISMA_SPELLER with EXMOTIF [26], the only exact tool for the
frequent structured motif extraction problem which adopts the 2-stage approach and whose
code is available (see the Related Works section)f.

We performed all the experiments on an uniprocessor AMD Athlon 64 3200+ with 1GB of
RAM, forcing a timeout of twelve hours for the execution of each tool.



Tests on synthetic data

In this section we report the results of tests performed on synthetic data, which are often used
to validate the effectiveness of existing methods in a fully controlled experimental setting, and
to experimentally evaluate their scalability properties. In particular, we generated synthetic
data sets according to the so called Planted Motif Problem (PMP) [36] in the following way:

Sequence generation: we randomly generated the sequences of the input set S, assuming the
characters of each sequence be i.i.d. and with equal probability (0.25) assigned to each
symbol. According to [36], the data sets contain 20 sequences of 600 characters each.

Structured motif planting: we selected the number b of boxes and the b pairs (ℓi, ei) using
different rules, which we will specify when describing the experiments. We generated
distance constraints at random, making sure that the total maximum distance between
the first and last box fit into the sequences. For each pair (ℓi, ei), defining the template
for a simple motif mi, i = 1, . . . , b, we first selected a random word wi (the “exact”
instance of mi) and then generated |S| occurrences of mi, at Hamming distance ≤ ei
from wi, by substituting ei characters of wi with characters from 6 chosen uniformly at
random. Finally, we planted the occurrences, one per sequence, by respecting box order
and distance constraints (but otherwise at random). When generating a dataset to be
tested using EXMOTIF, we planted at least one exact structured motif occurrence.

The parameters used to built the dataset where then used to run the motif finding tools
on that dataset. The quorum is set to q = 1.0 in all tests.

The data set generating process outlined above produces boxes that are instances of the
PMP. There is a wide literature on the PMP, especially for single motif extraction (see,
e.g. [12, 37, 38]). Preliminary results relative to the structured motif extraction settings
can be found in [39] and, limited to dyads, in [15, 28]. Using a simple model [37], we
can estimate the number E(ℓ, e) of simple motifs that one expects to find in a randomly
generated sequence, depending on the length of the motif and on the number of allowed
errors. Expectation of pairs makes some instances easier to solve than others. When
talking about “difficult” instances we will refer to ones in which the expected number of
randomly found motifs is high.

Experimental settings: Here we present results concerning a set of tests in which we planted
boxes with variable lengths and number of allowed substitutions, randomly chosen
among those with expectation close to one (i.e. for which the planted motif and a little
number of other random motifs can be expected), over the following pairs: (9, 2),
(10, 2), (11, 2), (11, 3), (12, 3), (13, 3), (14, 1), (14, 2), (14, 3), (14, 4), (15, 1), (15, 2),
(15, 3), (15, 4), (15, 5).

We varied the number b of boxes between 2 and 10 and ran the algorithms 20 times on
different datasets. We ran SISMA with the box index selection option, which resulted
very effective in this set of experiments.

Further results on synthetic data are briefly reported at the end of this section and, in
details, in Additional file 2.

Results and discussion: To compare pairs of tools, we used two different measures: (1)
win-count, i.e., given a common value of b, the number of times one tool outperformed



the other; (2) running times: we report best, worst and average running times, as well as
standard deviations, for each value of b usedg (we computed means and standard
deviations omitting the best and worst time runs). Moreover, we separately computed
the above measures by considering either all runs, or only runs where both tools ended
computations.

SISMA_SMILE vs RISOTTO

Figure 2.a reports win-counts, while Figure 2.b reports the number of times each tool fails for
particular values of b.

Figure 2 Risotto vs SISMA_Smile on synthetic datasets (a) Number of iterations in which
SISMA_SMILE outperforms RISOTTO or vice versa, and (b) number of tools failures. Notice
that when one tool fails, the other might end computation, hence, failures might not sum up to
the total number of runs

From Figure 2.a we can see that no tool is definitely better than the other. RISOTTO is usually
more competitive for small number of boxes (up to six), but turns significantly less
competitive as the number of boxes increases. Moreover, RISOTTO failed on few runs even
with relatively few (i.e., six or more) boxes, usually when the first boxes are hard instances of
the PMP.

On the other hand, SISMA_SMILE was almost as good as RISOTTO for small number of
boxes while it handled larger problem instances definitively better. In the majority of tests,
SISMA_SMILE ended computation before RISOTTO and it failed only once due to memory
shortage in the first stage (because of too many simple motif occurrences).

Figure 3 reports running times. Note that, since RISOTTO is the tool which failed more
frequentlyh, its charts show a greater difference in running times compared to
SISMA_SMILE’s. This means that the runs that were somehow difficult for RISOTTO were
not particularly hard for SISMA_SMILE. It also means, on the contrary, that
SISMA_SMILE’s failures occurred quite early during the computation (essentially as early as
the length of a typical successful computation).

Figure 3 Risotto’s and SISMA_Smile’s running times on synthetic datasets. Worst and
average run times and standard deviations (in seconds) for SISMA_SMILE and RISOTTO.
Average runtime and standard deviations have been computed omitting best and worst runs.
(a) (b) (c) Running times of all runs are considered. (a’) (b’) (c’) Only running times of runs
in which both tools end computation are considered. Notice that the scale on Y-axes is not the
same for all charts

The best case was almost always favorable to RISOTTO, and there was no difference for what
concerns best case when considering all runs or only those without failures. In the best case,
RISOTTO ended computation in less than 10 seconds (with the exception of ten boxes, where
the best run took 24 secs), while SISMA ended computation in less than 6 seconds for b ≤ 5
and in about 30 seconds for b > 5, never exceeding 35 seconds.



Looking at Figure 3, we observe what follows:

(a) In the worst case, SISMA_SMILE is much faster than RISOTTO: the longer run for
SISMA_SMILE took less than 74 min, while for RISOTTO some runs took more than
10 h, even for relatively small number of boxes and excluding failures. Hence, even
when RISOTTO defeated SISMA_SMILE, the latter was still relatively fast. The
opposite was not always true.

(b) Although average running times should be analyzed with care, RISOTTO showed
average running times much worse than SISMA_SMILE’s, even without considering
failures. For instance, in case of ten boxes RISOTTO’s average runtime was around 1h
and a half, while SISMA_SMILE took less than 25 min.

(c) RISOTTO showed a greater variance across all these data.

We further investigated the structure of the instances in which one tool outperformed the other
in order to better understand advantages and disadvantages that may be typical of the direct
and 2-stage approaches (see an example in Figure 4). We anticipate that the key factor is the
first stage of SISMA_SMILE.

• SISMA_SMILE outperforms RISOTTO when SISMA_SMILE first stage is fast. This
happens mainly for two reasons (that might happen simultaneously): (i) there is a small
total number of simple motifs and SMILE running time is low. (ii) Boxes are
characterized by the same pair (length, errors), and hence SMILE is run only once for
each pair.

• RISOTTO outperforms SISMA_SMILE when the first stage of simple motif extraction
is slow due to boxes producing a large number of simple motifs. This situation might
also affect SISMA_SMILE second stage: a large number of intermediate structured
motifs means a time consuming occurrence list intersection stage. In some cases the
phenomenon is almost completely eliminated using the box index selection option.

Finally, a closer inspection on RISOTTO’s behavior shows that its running time may be highly
affected by the positions of boxes with large search spaces, e.g., box (14, 4). We performed a
set of experiments in which we searched for planted long structured motifs characterized by
the same boxes (number and positions), with just one “floating” (14, 4) box, which we moved
from first to last position. While the details can be found in Additional file 2, we observe here
that RISOTTO’s performance degraded considerably, while SISMA_SMILE’s behavior was
essentially unaffected by the (14, 4) box position.

Figure 4 Examples: SISMA_Smile vs Risotto. Running times of RISOTTO,
SISMA_SMILE’s stages 1 and 2, and of all SISMA_SMILE’s list intersection step (during
stage 2). A 0s time for list intersection means that the corresponding step took time smaller
than timer resolution. The box index selection order during stage 2 is shown. In example (a)
SISMA_SMILE outperforms RISOTTO. Observe that SMILE is called once on the (10, 2) pair,



so that the time reported for the 6th box is 0. In this example RISOTTO is 473 times slower
than SISMA. In example (b) RISOTTO outperforms SISMA_SMILE because the stage 1
performed by SMILE is slow due to the presence of a box for which a large number of simple
motifs is found. In this case SISMA_SMILE is 28 times slower than RISOTTO. In particular,
the most time consuming task is the extraction of the (15, 4) box (about 91.7% of total
execution time), for which 21631 simple motifs are found

SISMA_SPELLER vs EXMOTIF

We have no results for the comparison of SISMA_SPELLER and EXMOTIF, because the
latter never ended computation within this experimental settings.

We explain this negative behavior observing that the set of pairs (ℓ, e) among which we chose
the boxes of planted structured motifs contained several pairs characterized by large values of
ℓ and e, which EXMOTIF is apparently not able to address.

On the other hand, SISMA_SPELLER never failed within this experimental setting, exhibiting
low running times. The worst case run (even for ten boxes) was never above three minutes
while the best case runs lasted around three seconds for two boxes and about 33 seconds in
case of ten boxes.

Results for other synthetic experiments

we conclude this section by mentioning the results obtained for two other synthetic data sets
(the details can be found in Additional file 2).

• We tested the tools on “presumably” (i.e., à priori) easy instances for SISMA, where
the structured motifs sought were composed by boxes of the same type (i.e., same
length and number of errors). Indeed SISMA_SMILE always outperformed RISOTTO

when both tools ended computation, while EXMOTIF outperformed SISMA_SPELLER

on input instances with very small values of ℓ, e, and b. For larger values, however,
EXMOTIF did not end computations, while SISMA_SPELLER failed only when boxes
were any of the known very hard PMP instances.

• The other data set was composed of presumably very hard instances, according to the
PMP classification. We observed a relatively large number of failures, both of
SISMA_SMILE and RISOTTO. The reasons were essentially those already observed,
but interestingly enough, the two tools did not (usually) fail on the same instances,
meaning that a difficult instance for one tool might not be so difficult for the other.
EXMOTIF did end computation only on a limited number of instances and only in very
few cases it outperformed SISMA_SPELLER.

Tests on real biological data

In this section we report the results of experiments performed on three different datasets
composed of upstream regions of co-regulated genes of the Saccharomyces cerevisiae in order
to extract motifs representing transcription factor binding sites.



UASH-URS1-10 dataset

The dataset was drawn from [13]. It contains the upstream sequences of 11 meiotic genes of
the Saccharomyces cerevisiae which are cooperatively regulated by the transcription factors
URS1H and UASH involved in the meiotic expression during sporulation.

These 11 genes are listed in SCPD [40]. In 10 out of the 11 genes, the URS1H binding site
appears downstream from UASH site and both sites are located within the upstream region
-300 to -1. We included these ten regions in the dataset. We do not included a sequence for the
remaining gene (HOP1) since there the binding sites are reversed and the URS1H site is
placed much further upstream compared to all the other genes in the set.

We designed the same experimental settings as in [26], except for the distance gap between
the two sites. We chose a larger gap range with respect to [26] in order to approach the
problem in a more realistic way, in which information about the binding site being sought may
not be known. We look for structured motifs of the form
(3, 1)−[ 1, 1] −(5, 2)−[ 1, 200] −(9, 1). We required that structured motifs occurred in at least
7 sequences (quorum q = 70%). SISMA was run with the space-saving option.

UASH-URS1-5 dataset

In the 10 genes dataset discussed above, the two binding sites occur within at most 200 bases.
However, as GuhaThakurta and Stormo suggest in [13], that gene sequences can be equally
divided in two groups based on the average distance between UASH and URS1H sites.
According to this, we obtained a group of 5 genes in which the binding sites are within 50
bases of each other.

We reproduced the experimental setup defined in [28]: we analyzed the five sequences in
UASH-URS1-5 and looked for dyad motifs of the form (7, 1)−[ 1, 50] −(10, 2) (again, we
actually used a larger distance gap with respect to [28] in order to approach the problem in a
more realistic way). Quorum was set to 80%, i.e., at least 4 sequences.

KAR4P dataset

This dataset contains 23 genes of the Saccharomyces cerevisiae which are co-regulated by the
KAR4p transcription factor required for gene regulation in response to pheromones. We
obtained the list of 23 co-regulated genes from the YEASTRACT database [41] and the
upstream regions of those genes using the RSAT [42] retrieve sequence tool.

We deduced the characteristics of the KAR4p binding site from the consensus given in
YEASTRACT and we looked for structured motifs of the form
(3, 1)−[ 2, 2] −(4, 1)−[ 2, 2] −(3, 1)−[ 1, 1] −(2, 1) occurring in at least 68% of the input
sequences, i.e., in at least 16 sequences.



Discussion

Figure 5 reports the running times (in seconds) for all the four tools, while Table 1 reports the
number of simple and structured motifs found for each dataset and the average number of
occurrences. We can make the following general observations:

• EXMOTIF terminated computations in all the experiments, contrary to what happened
on synthetic datasets. Here, structured motifs are composed of few boxes with few
substitutions allowed, experimental conditions extremely favorable to EXMOTIF.

• Stage 2 is predominant on SISMA’s running time (see Table 1), in contrast with what
we observed on the synthetic datasets, because here (except for UASH-URS1-5) there is
a large number of occurrences for each box, making occurrence lists intersection a
demanding task.

• SISMA’s stage 2 is characterized by running times which increase with the number of
boxes and with the total number of occurrences, coherently with the theoretical bound
(see the Methods section).

The tools under consideration exhibited very different behaviors on the three datasets, so that
there is not a clear “overall” winner.

Figure 5 Running times on biological datasets. Running times (in seconds) of (a)
SISMA_SMILE and RISOTTO (b) SISMA_SPELLER and EXMOTIF on biological datasets,
when using an uniprocessor machine with 1GB of RAM



Table 1 Number of simple and structured motifs on biological datasets
UASH-URS1_5

SISMA_SMILE SISMA_SPELLER

Box (7, 1) 1,452 (∼ 10) 420 (∼ 10)
Box (10, 2) 5,472 (∼ 5) 92(∼ 5)

Structured Motif
(7, 1)−[ 1, 50] −(10, 2) 16,662 (∼ 5) 14 (∼ 5)

UASH-URS1_10
SISMA_SMILE SISMA_SPELLER

Box (3, 1) 64 (∼ 1000) 64(∼ 1000)
Box (5, 2) 1,024 (∼ 1000) 942 (∼ 1000)
Box (9, 1) 103 (∼ 10) 55 (∼ 10)

Structured Motif
(3, 1)−[ 1, 1] −(5, 2)−[ 1, 200] −(9, 1) 2,309,173 (∼ 70) 7,241 ( ∼ 70 )

KAR4P
SISMA_SMILE SISMA_SPELLER

Box (3, 1) 64 (∼ 2000) 64 (∼ 2000)
Box (4, 1) 256 (∼ 1000) 256 (∼ 1000)
Box (2, 1) 16 (∼ 6000) 16 (∼ 6000)

Structured Motif
(3, 1)−[ 2, 2] −(4, 1)−[ 2, 2] −(3, 1)−[ 1, 1] −(2, 1) 101,750 (∼ 50) 858 (∼ 50)

The table is divided in three (sub)tables, one for each dataset. The following information apply
to each sub-table. There is a row corresponding to each box type involved and one more row
corresponding to the type of structured motifs to be found. Also, there is a column for each
of the two versions of our SISMA algorithm (SISMA_SMILE and SISMA_SPELLER). Each
cell reports two pieces of information: (1) the number of simple/structured motifs in the input
sequences that conform to the given specifications, and (2) the corresponding (approximate)
average number of occurrences of each simple/structured motif found.

UASH-URS1-5

SISMA_SMILE outperformed RISOTTO and SISMA_SPELLER outperformed EXMOTIF.
Running times and differences in running times are really small, meaning that this instance of
the problem is not really challenging for any of the tools: SISMA deals with a small number
of simple/structured motifs; RISOTTO drastically reduce the search space starting form the
second box on; EXMOTIF deals with a small number of boxes and allowed substitutions.

UASH-URS1-10

On this dataset SISMA_SPELLER outperformed EXMOTIF, while SISMA_SMILE without
the space-saving option ran out of memory. The reported results refer to SISMA_SMILE with
the option activated (each set Ki is partitioned in at least five subsets). SISMA_SMILE

outperformed RISOTTO i.

This dataset results to be the worst for RISOTTO, being more affected by the search space size
of boxes and the by total number of structured motifs, than by the number of simple motif
occurrences.



KAR4P

RISOTTO and EXMOTIF outperformed SISMA_SMILE and SISMA_SPELLER, respectively.

SISMA pays a very slow second stage, due to the presence of several thousands of simple
motifs occurrences in the input sequences (see Table 2), while RISOTTO takes advantage from
the fact that the occurrence-paths on the suffix tree were significantly less than actual motif
occurrences, and search spaces of boxes quite small. Finally, here EXMOTIF is fast in the
phase of neighbor generation, as in this datasets boxes allow at most one error.

Table 2 SISMA’s running times on biological datasets
SISMA_SMILE SISMA_SPELLER

1st Stage 2nd Stage 1st Stage 2nd Stage
UASH-URS1_5 0.60 sec 23.28 sec 3.00 sec 0.24 sec
UASH-URS1_10 0.61 sec 358.43 sec 5.83 sec 26.70 sec

KAR4P 0.18 sec 663.04 sec 6.20 sec 114.64 sec
Running times (in seconds) taken by stage 1 and 2 of SISMA_SMILE and SISMA_SPELLER

on biological datasets, when using an uniprocessor machine with 1GB of RAM. With one
exception, stage 2 is always (much) slower than stage 1.

Conclusions

Our conclusion is that the 2-stage approach cannot be turned down without due reflection. In
this section we present arguments in support of this thesis and some guidelines that may help
the user to choose the most efficient approach, depending on the problem instance s/he has to
solve. Finally, we discuss possible improvements of SISMA.

Direct vs 2-stage approaches

While implementing and working on SISMA we had the opportunity to reason on the
advantages and disadvantages of the two approaches, besides running time.

• Modularity. The 2-stage approach is clearly more modular, being made of two (possibly
completely) distinct software components. This makes implementation and
maintenance easier. Possible optimizations and new variants can be implemented on
both stages independently. Stage 1 might be optimized with new, more efficient simple
motif extraction tools at negligible costs. The tool might be also easily adapted to
extract simple motifs using different algorithms (not only exact), obtaining versions of
the tool that tackle slightly different problems. Even more, the tool might be enhanced
with the possibility for the user to choose the particular software to run in stage 1.

Optimizations and variants might not be equally easy to implement under the direct
approach, even though any conclusion to this end strictly depends on the particular
software under consideration.



• Parallelization. SISMA might be easily adapted to efficiently run on a multiprocessor
machine. For stage 1 there may be the availability of a parallel version of the tool
adopted (such as PSMILE [43]), but otherwise simple motif space enumeration could be
easily partitioned and mapped on distinct processors. Stage 2 (lists intersection) might
be performed simultaneously on distinct processors as well, by using a technique
analogous to the space saving option (with distinct processors accessing to distinct
portions of data structures to avoid memory collisions).

As before, the design of a fast parallel version of a direct enumeration algorithm cannot
be guaranteed without taking the algorithm itself (and its logic) into consideration.

• Exploratory search of structured motifs. The 2-stage approach seems to better adapt to
an “exploratory search” utilization for structured motif finding (e.g., through a Web
interface). The user might be given the possibility to independently execute the two
stages (or even upload the simple motifs occurrences); given the results of the first
stage, s/he then might run the second stage several times with different input parameters
(say, box orders and distance constraints). This feature might be crucial in real
applications, where input parameters are difficult to determine with care.

This adaptive use of the tool seems really harder to make in case of direct approach
without paying a high price in terms of execution times.

• Search space reduction. As already pointed out in the paper, since the direct approach
looks at the structured motifs as whole, it is able to better handle instances characterized
by large size search spaces of some boxes.

Direct tool comparison

The following observations might be used to guide the user toward the use of one
approach/tool or the other.

• SISMA vs RISOTTO.
The tests performed show that, when RISOTTO is faster than SISMA, one or both of the
following conditions occur: (1) boxes have small size search spaces and a small number
of simple motifs, (2) boxes with large size search spaces occur near the end (large box
index) of the structured motifs. Usually, in all the other cases SISMA is faster. This is
particularly evident when the structured motifs being found are composed of just one
type (or few types) of boxes.

RISOTTO fails for time-out (in our tests, 12 hours), SISMA fails for out-of-memory
mainly because of the first stage. Hence, according to the available hardware
appropriate decisions on which tool to use can be made.

RISOTTO does not output occurrence positions, but only their number.

• SISMA vs EXMOTIF.
EXMOTIF terminates computation only for a small number of boxes and, under this
circumstance, it is faster than SISMA only when boxes have small length and/or small
number of admitted substitutions. It fails in any other more complex situation, making
SISMA_SPELLER the only available tool for the frequent structured motif discovery
problem.



SISMA implementation and improvements

We designed and developed a tool for exact structured motif discovery, based on the 2-stage
approach. Incorporating simple algorithmic ideas and data structures, SISMA is accurately
crafted software which proved to compete very well with other published tools for the same
problem. On a comprehensive benchmark (composed of both synthetic and real biological
datasets) SISMA exhibited more than acceptable performances, even on a very limited power
and memory machine. Running times never exceeded the imposed deadline of 12 hours and
altogether the tool failed only on few very difficult problem instances (always due to memory
shortage).

We can improve SISMA in some respects. As the experiments clearly show, a crucial issue is
the possibly high memory consumption during stage 1, which may cause SISMA to fail. The
positive side is that memory critical inputs can in general be detected and appropriate actions
be taken. One such action consists simply of automatically activating the space saving option.
Another option amounts to interleaving simple motif extraction and list intersection. Also, we
plan to implement some simple algorithmic improvements that will help to reduce (to some
extent) the search space of simple motifs. For instance, we can eliminate proper prefixes of
sequences when extracting specific boxes; more precisely, given box i, we may cut prefixes
that are as long as the sum of the lengths of previous boxes, plus the sum of the minimum
distances between previous boxes.

Endnotes

aSearch time is sometimes reduced by further constraining the motif definition, as in
Weeder [14].

bHere we will refer the tool presented in [7] as SPELLER.

cActually, ECOMP uses an implementation of MITRA-count made by the authors of ECOMP,
since MITRA-count itself was, and still is, not available.

dActually, SMILE is a suffix tree-based tool designed to find structured motifs; however it can
be used also for simple motif extraction (as a structured motif finder SMILE is outperformed
by RISOTTO).

eWe discarded the option of implementing a post-processing filter of SMILE output for
efficiency reasons, and the option of modifying SMILE code as a more complicated one.

f We always have run SISMA with the print option off since RISOTTO and EXMOTIF have no
possibility to output the starting positions of all occurrences. To be fair, EXMOTIF actually
prints the positions of the exact occurrences.

gObserve that direct comparison on average running times might be of little significance, as
they might vary considerably on input the same value of b (even resulting in charts that might



show a non monotonic behavior).

hFor RISOTTO failure always means “runs beyond the deadline.”

iOn machines with more main memory the gap between the running times would have been
even more favorable to SISMA_SMILE.
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Additional files

Additional_file_1 as PDF
Additional file 1: Implementation details. Additional file 1 (in pdf format) contains details
on the basic implementation of SISMA_SMILE and the index box selection variant.

Additional_file_2 as PDF
Additional file 2: More experiments on synthetic dataset. Additional file 2 (in pdf format)
includes the results obtained on two more synthetic datasets: one designed as an easier
benchmark, one as a particularly hard benchmark for all the tools. Moreover, results are
shown for a specific test designed for RISOTTO, in order to investigate how its performance
varies according to boxes order.



...AAATAAGCAAGGATAAGATGTATAAAGCGATTAGGGTTTGATTATAATAC...

...CCATATAAGGCGATAATTACCGATAAGGAGGATTAGAAGCGTATAGTAAC...

...CTTAAATAAGGGCGGAAAAGATGATATAGAACCTACCTATAAGGTCGATT...

(a)

(b) ...AAATAAGCAAGGATAAGATGTATAAAGCGATTAGGGTTTGATTATAATAC...

...CCATATAAGGCGATAATTACCGATAAGGAGGATTAGAAGCGTATAGTAAC...

...CTTAAATAAGGGCGGAAAAGATGATATAGAACCTACCTATAAGGTCGATT...
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Figure 3



(a)

(9,2)     (10,2)     (11,3)     (12,3)     (15,1)     (10,2)     (14,1)         boxes

 478         356         5673       4883          1            356           3               simple motifs

1.88s      1.41s       25.79s     25.74s     0.05s          -            0.02s          1st phase (SMILE): 54.89 s

0s

1 2-box motifs

2st phase (SISMA): 0.72 s

SISMA_SMILE time: 55.61 s 

RISOTTO time: 26306.91 s

0.02s

1 3-box motifs

0.02s

1 4-box motifs

0.04s

1 5-box motifs

0.26s

1 6-box motifs

0.38s

1 7-box motifs

(b)

(13,2)     (15,1)     (10,2)     (9,2)     (15,4)     (13,3)        boxes

 129           1            199          247       21631       2603          simple motifs

1.81s       0.03s        1.43s      1.39s     346.68s    25.73s        1st phase (SMILE): 377.07 s

0s

1 2-box motifs

2st phase (SISMA): 0.92 s

SISMA_SMILE time: 377.99 s 

RISOTTO time: 13.25 s

0.02s

1 3-box motifs

0s

1 4-box motifs

0.1s

1 5-box motifs

0.8s

1 6-box motifs

Figure 4



(a)

�
�
�
�
��
�
��
��
	
�

�
	
�


(b)

�
�
�
�
��
�
��
��
	
�

�
	
�


Figure 5
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