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ABSTRACT 

One of the major challenges in complex systems biology 

is that of providing a general theoretical framework to 

describe the phenomena involved in cell differentiation, 

i.e. the process whereby stem cells, which can develop 

into different types, become progressively more special-

ized. The aim of this work is that of describing a dynam-

ical model of cell differentiation which is able to cover a 

broad spectrum of experimentally observed phenomena. 

1. INTRODUCTION 

Our aim is that of proposing a dynamical model of cell 

differentiation, i.e. the process whereby stem cells, which 

can develop into different types, become more and more 

specialized. The model is an abstract one (it does not 

refer to a specific organism or cell type) and it aims at 

reproducing the most relevant features of the process: (i) 

different degrees of differentiation, that span from totipo-

tent stem cells to fully differentiated cells; (ii) stochastic 

differentiation, where populations of identical multipo-

tent cells stochastically generate different cell types; (iii) 

deterministic differentiation, where signals trigger the 

progress of multipotent cells into more differentiated 

types, in well defined lineages; (iv) limited reversibility: 

differentiation is almost always irreversible, but there are 

limited exceptions under the action of appropriate sig-

nals; (v) induced pluripotency: fully differentiated cells 

can come back to a pluripotent state by modifying the 

expression of some genes and (vi) induced change of cell 

type: modification of the expression of few genes can 

directly convert one differentiated cell type into another. 

This work is a part of a series of articles [2][12][22] 

aiming to develop a single model able to describe all 

these phenomena, whereas till now specialized model of 

some specific processes have been proposed. Typically 

these models make use of continuous descriptions and 

take into account the contributions of only few genes 

[19][21][8]. 

Here we hypothesize that the differentiation process 

is rather an emerging property due to the interactions of 

very many genes: its main features therefore should be 

shared by a variety of different organisms. To check this 

hypothesis we make use of a noisy version of a well-

know model of gene networks, that is, the Random Bool-

ean Network (RBN) model. RBNs in fact, in spite of 

their discrete approach, have been proven to describe 

important experimental facts concerning gene expression 

[3][4][5], allowing at the same time simulations of large 

networks [5]. We find that the introduction of noise in 

this framework (noisy RBN, or briefly NRBN) [1][2] 

allows one to effectively describe all the just listed is-

sues. 

In this work we present the main features of the mod-

el (section 2), and we will focus on some stochastic (sec-

tion 3) and deterministic (section 4) aspects; finally we 

derive some conclusions (section 5). 

2. THE MODEL 

2.1. Noisy random Boolean network 

A classical RBN is a dynamical system, based on a di-

rected graph with N nodes (genes), which can assume 

binary values 0 or 1 (inactive/active); time is discrete, 

with synchronous updating of all the node values. Each 

node has exactly k input connections chosen randomly 

with uniform probability among the remaining N-1 

nodes. To each node a Boolean function is associated, 

which determines its value at time t from the values of its 

inputs at the previous time step. The Boolean functions 

are chosen at random for every node, by assigning to 

each set of input values the outcome 1 with probability p. 

Within the quenched strategy, both the topology and the 

Boolean function associated to each node do not change 

in time. We concentrate our study on so-called critical 

networks with k=2 and p=1/2 [6]. 

The network dynamics is discrete and synchronous, 

so fixed points and cycles are the only possible asymptot-

ic states in finite networks; typically a single RBN owns 

more than one attractors. Note nevertheless that attrac-

tors of RBNs are unstable with respect to noise even at 

low levels, as for example transient flips of randomly 

chosen nodes. In fact, even if the flips last for a single 

time step one sometimes observes transitions from that 

attractor to another one. Therefore, by flipping all the 

states belonging to the attractors of a RBN, it is possible 

to create a complete map of the transitions among the 

RBNs’ attractors (the attractors’ landscape shown in Fig-

ure 1a)
1
. In these conditions, and because noise is known 

to play a role in key cellular processes[7][12], single 

attractors can no longer be associated to cell types, as 

proposed in the past[10][11]. Ribeiro and Kauffman [1] 

                                                           
1
 We assume that the noise level is small enough to allow 

the system to relax to an attractor before a new flip oc-

curs; also, we are not considering multiple flips [1] 



observed that it is possible to identify in the attractors’ 

landscape subsets of attractors, which they called Er-

godic Sets, which entrap the system in the long time lim-

it, so the system continues to jump between attractors 

which belong to the set. Unfortunately it turns out that 

most NRBNs have just one such set: this observation 

rules out the possibility to associate them to cell types.  

        
(a)                                         (b) 

Figure 1. Attractor transition graph in a RBN. Cir-

cles represent attractors; arrows represent transitions 

among attractors induced by single spin flips. The 

numbers on each arrow are the probability that, by 

flipping at random the state of a node in an attractor, 

that transition takes place. (a) the complete attractor 

transition graph; (b) the same graph, where links 

overpassing the threshold θ=0.02 are removed 

A possible solution to this problem was proposed in 

[2][12], where the authors observe that flips are a kind of 

noise fairly intense, as they amount to silencing an ex-

pressed gene or to express a gene which would otherwise 

be inactive: this may well be an event too rare to happen 

with significant probability in the cell lifetime. It is pos-

sible therefore to introduce a threshold θ, and neglect all 

the transitions whose occurrence probability is lower 

than it (Figure 1b).  In such a way, the notion of Ergodic 

Set has to be modified in that of Threshold Ergodic Set 

(briefly, TES or, when the value of the threshold is con-

sidered, TESθ), a set of attractors linked only by jumps 

having a probability higher than θ, that entrap the system 

in the long time limit. A TESθ is therefore a subset of 

attractors which are each other directly or indirectly θ-

reachable (reachable by means of transition whose prob-

ability exceeds the threshold θ), and from which no tran-

sition can allow escaping. The threshold clearly is related 

to the level of noise in the cell, and scales with its recip-

rocal (the frequency of flips) [2]. 

An ergodic set can be described therefore as a TESθ 

with �=0; interesting is the fact that this structure, by 

increasing the threshold, breaks into more and more 

TESs, till all attractors are also independent TESs (i.e. 

they cannot be abandoned – see also Figure 2). Statistics 

on the increasing of the ratio between the total number of 

TESs and the total number of attractors vs. the increasing 

of the threshold are shown elsewhere [2]: in any case, 

when � exceeds a network dependent value all the attrac-

tors become TESs. 

In [2][12] we propose to associate cell types to TESs, 

that represent coherent stable ways of functioning of the 

same genome even in the presence of noise. According to 

this framework NRBNs can host more than one TESs, 

avoiding in such a way the problem that hampered the 

straightforward association of cell types to Ergodic Sets. 

3. STOCHASTIC CELL DIFFERENTIATION 

Several authors, on theoretical and experimental ba-

ses, associate different levels of noise to different levels 

of differentiation [9][14][15]; in particular the degree of 

differentiation is supposed to be related to the possibility 

for an undifferentiated cell to wander in a portion of 

phase space greater than the corresponding portions cov-

ered by more differentiated cells. This fact is reflected in 

the presence of higher noise levels in undifferentiated 

cells, with respect to more differentiated forms [16] 

[17][18].  

In our framework, a convenient proxy for the availa-

ble portion of phase space could be the number of attrac-

tors belonging to the TES. A TES0 (i.e. the one found 

when θ=0), implying a wonder through a large number of 

attractors, could therefore be associated to a totipotent 

cell, while as the threshold is increased smaller TESs 

appear, corresponding to more differentiated biological 

forms (Figure 2). At high enough threshold values all the 

attractors are TESs (the fully differentiated cells). The 

increase of the threshold would correspond to a decrease 

of noise level: as other authors, we hypothesize that this 

effect could be related to an improvement in the mecha-

nisms whereby fluctuations are kept under control 

[13][22]. This association of differentiation to changes in 

the noise level represents the most stringent outcome of 

the model, and could be amenable to experimental test. 

This hypothesis explains in a straightforward way the 

fact that there are different degrees of differentiation (i.e. 

property i), corresponding to different threshold values in 

elaborating the attractors’ landscape. It is then easy to 

describe stochastic differentiation [16] [19]: in this vi-

sion the fate of a cell depends on the particular attractor 

it is passing through when the systems experiences a 

change in the noise level and on the specific flip which 

occurs. The new cell type will be that corresponding to 

the new TESθ to which the attractor belongs at the new 

threshold level (see Figure 2). 

4. DETERMINISTIC CELL FATE 

There exist indeed several processes, e.g. during the 

embryogenesis, in which cell differentiation is not sto-

chastic but it is driven towards precise, repeatable types 

by specific chemical signals, which activate or silence 

some genes. In our model we can simulate these process 

by permanently fixing to 1 or 0 the state of some nodes. 

However, in our framework this single action doesn’t 

influence the level of noise, and therefore doesn’t enable 

differentiation processes: in order to have deterministic 

differentiation, we need the existence of particular genes, 

called switch genes, whose permanent perturbation, cou-

pled with noise (which by itself would lead to the sto-



chastic differentiation - see Figure 2) always leads the 

system through the same differentiation pathway. In oth-

er words, nodes that uniquely determine to which TES 

the system will evolve. 

 

Figure 2. TESs and stochastic differentiation. As the 

threshold is increased the single TES0 breaks into 

smaller disjoint TESs, corresponding to more differ-

entiated cells, until eventually final cell types are 

reached. Examples of stochastic transitions are 

shown by dotted lines. 

The existence of switch nodes has actually been veri-

fied to be a common property (found in about 1/3 of the 

nets), thereby proving the effectiveness of the model. 

In Figure 3 one can see an example of differentiation, 

from a multi-TES0 to a set of single-TESs. This case rep-

resents just one possible diagram obtained from simula-

tions; the system shows indeed a very rich and complex 

landscape of possible behaviors, as in biological differ-

entiation. 

Please note that the model is actually able to describe 

also property iv concerning the existence of limited (in 

number and in completeness) exceptions to the irreversi-

bility of cell differentiation (see figure 3 and [12] for a 

more detailed presentation). 

In other works – [2][12] - we have shown that this 

model is able also to simulate induced pluripotency 

(property v), where the overexpression of few nodes 

(without changing the noise level) can allow the system 

to “come back" to a less differentiated state (see [20] for 

an experimental counterpart), and jumps between two 

completely differentiated cell types (property vi – [24] 

for the experimental counterpart) , in the last part of this 

work we’ll focus our attention to the action of permanent 

perturbations on the attractors associated to the RBN 

system, in order to better characterize the TESs the sys-

tem is reaching. What we wish to highlight is the fact that 

these TES are not simply subsets of the original and less 

differentiated one (as it happens in the case of stochastic 

differentiation, as for example in Figure 2): in fact, the 

permanent perturbation change in a enduring manner the 

original RBN, blocking the perturbed node, fixing to 1 

(or to 0) the inputs of some other nodes (the nodes di-

rectly downstream the perturbed node) and congestioning 

and/or changing the information flow among a part of the 

other ones. This action could change the attractors ex-

pressed by the perturbed network, that under several as-

pects could be seen as a new RBN. 

 

Figure 3. A case of deterministic differentiation. Box 

represent TESs and circles represent attractors. Ar-

rows indicate possible different path differentiation 

and labels on arrow indicate the switch nodes are 

acting: it is reported the number of the node (A are 

switched-on nodes, and S switched-off nodes); every 

arrow implicates an increase of the threshold. Note 

that the switching-off of node 11 leads to a TES 

from which the subsequent switching-on of the same 

gene causes a return to (a subset of) the original 

TES0. In other diagrams (not shown) the reversibility 

of the path could be induced by different genes, and 

could lead to ampler subsets of the original TESs 

In order to observe these aspects we analyzed two 

groups of networks having N=10 and N=100 nodes, each 

composed by 100 networks. To find the RBNs’ attractors 

we exhaustively checked all the possible initial condi-

tions for the nets with N=10, and performed a random 

sampling for the nets with N=100. For the nets with 

N=10 we perturbed all the nodes by starting in all the 

phases, whereas for the nets with N=100 we perturbed 

the 20% of the total possibilities; the main results are 

shown in Figure 4. 

   
(a) 

    
(b) 

Figure 4. Consequences of permanent perturbation 

on RBNs’ attractors. Graphs in row (a) are refer-

ring to nets with N=10 nodes, whereas graphs in 

row (b) are referring to nets with N=100 nodes. 

See text for a detailed explanation 

The first column show the sensitivity, defined as the 

fraction of experiments where the RBN, initially on the 

attractor A, when a permanent perturbation is applied, 

goes toward an attractor A’ not equivalent to A (we de-

fine equivalent two attractors that are equal in all the 



nodes, with the exception of the perturbed one). The se-

cond column shows that, from all the cases where A’ is 

not equivalent to A, the largest part of A’ attractors are 

not equivalent to any attractor of the original RBN (they 

are totally new attractors). The third column refers only 

to the “new attractors” A’, and describe what happens 

when the perturbation is released and the system is al-

lowed to relax toward the attractors of the original not 

perturbed net. The graph shows how many times the final 

attractors B coincide with the original attractors A, and 

how many times B differs from A (B≠A). Note that in a 

limited number of cases (with N=100) is was not possi-

ble to individuate the attractors because of computational 

vincula. The main consideration we can derive from the-

se simulations are: 

1. the sensitivity (as before defined) seems to be not 

influenced by the net size  

2. on the contrary, the bias toward already know A’ 

attractors decreases with the net size 

3. the perturbed nets can exhibit attractors different 

from those of the original nets, so allowing the 

formation of TES qualitatively different from the-

se obtained from a mere change of threshold  

4. the permanent perturbations have significant con-

sequences also after the perturbation release, 

when in more than the 20% of the cases the final 

attractors B are different from the original ones A 

5. CONCLUSIONS 

We presented a single model, that can describe all the 

main features of differentiation; the explanation of dif-

ferentiation makes use of the global properties of a ge-

neric dynamical system, without resorting to detailed 

hypotheses concerning very specific control circuits.  

We think that the picture of a cell as a dynamical sys-

tem and the idea that differentiated cells are more con-

strained in their wandering in phase space are general 

schemas, that could be applied also to other models of 

gene and cell dynamics [21]. 
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