Protein–protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase

*Department of Pharmaceutical Sciences, via Campi 183, University of Modena and Reggio Emilia, 41126 Modena, Italy; †Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; ‡Department of Biomedical Sciences, via Campi 287, University of Modena and Reggio Emilia, 41126 Modena, Italy; †Department of Chemistry, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; †Department of Food Science, Technology and Microbiology, University of Milan, via Celoria 2, 20133 Milan, Italy; ‡Department of Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17–19, 44100 Ferrara, Italy; and †Department of Chemistry, via Campi 183, University of Modena and Reggio Emilia, 41126 Modena, Italy

Edited* by Robert M. Stroud, University of California, San Francisco, CA, and approved June 30, 2011 (received for review March 28, 2011)

Human thymidylate synthase is a homodimeric enzyme that plays a key role in DNA synthesis and is a target for several clinically important anticancer drugs that bind to its active site. We have designed peptides to specifically target its dimer interface. Here we show through X-ray diffraction, spectroscopic, kinetic, and calorimetric evidence that the peptides do indeed bind at the interface of the dimeric protein and stabilize its di-inactive form. The “LR” peptide binds at a previously unknown binding site and shows a previously undescribed mechanism for the allosteric inhibition of a homodimeric enzyme. It inhibits the intracellular enzyme in ovarian cancer cells and reduces cellular growth at low micromolar concentrations in both cisplatin-sensitive and -resistant cells without causing protein overexpression. This peptide demonstrates the potential of allosteric inhibition of hTS for overcoming platinum drug resistance in ovarian cancer.

Enzymes whose catalytic activity depends on multimeric assembly are targets for inhibitors that perturb the interactions between the protein subunits. The high diversity of protein interfaces implies opportunities for the identification of specific inhibitors (1–5). The design of peptides and peptidomimetics that mimic portions of these interfaces has been shown to be a useful approach for the discovery of inhibitors that bind at protein–protein interfaces (5–11). However, the inhibitory mechanism of such ligands is often unclear, and the binding geometry does not necessarily correspond to that mimicked.

Human thymidylate synthase (hTS) is an enzyme in the folate pathway that catalyses the reductive methylation of 2′-deoxyuridine-5′-monophosphate (dUMP) to form 2′-deoxythymidine-5′-monophosphate (dTMP). This methylation reaction is assisted by the cofactor N5, N10-methylene tetrahydrofolate (mTHF) (12). hTS is an obligate homodimer whose monomers can adopt active (A) and inactive (I) forms (13–15). The hTS dimer has two active sites, each formed by residues from both monomers. Therefore, the dimeric assembly is necessary for the catalytic activity. The hTS dimer-to-monomer dissociation constant (K_d) was recently reported to be 200 nM (16). The active and inactive forms differ in the conformation of the loop from residue 181 to residue 197, which contains the catalytic cysteine, residue 195. This residue points into the active site in the active form and toward the dimer interface in the inactive form (13–15). Active-site inhibitors of hTS are widely used in chemotherapy; the best known are raltipectin, a prodrug of the active 5-fluoro-2′-deoxyuridine-5′-monophosphate (FdUMP) (17). In addition to its catalytic role, hTS has been shown to regulate protein synthesis by interacting with its own mRNA as well as the mRNAs of several other proteins involved in the cell cycle (18–21). The regulatory function of hTS as an RNA binding protein has been shown to be maximal when the protein is ligand-free (22). This observation, together with the observation that cancer cells resistant to anti-hTS drugs showed increased levels of hTS, led to the suggestion that the overexpression of hTS is correlated with the loss of RNA regulatory capacity when the protein is bound to its inhibitors (19, 21, 23, 24). In the case of 5FU, a covalent hTS inhibitor, high hTS protein levels were attributed to both mRNA regulation and a decrease in enzyme degradation efficiency caused by inhibitor binding (15, 25).

These studies were performed on colon cancer cells, but clinical and biochemical observations suggest similar behavior occurs in other cancer types, such as ovarian cancer. The latter is a severe pathology with a high mortality rate, which is due to frequent late diagnosis and the rapid development of drug resistance (26, 27). Access to therapy has been limited by the cross-resistance of platinum drugs with classical drugs that target the folate pathway (28–30). In recent years, clinical trials have demonstrated the effectiveness of the combination of carboplatin or cisplatin (cDDP) and pemetrexed, a multitargeted antifolate drug, for the treatment of platinum-sensitive and -resistant ovarian cancers (31, 32). Although overexpression of hTS has been observed in platinum-sensitive cells, this effect is even more pronounced in platinum-resistant ones. Therefore, it is important to identify hTS inhibitors that act through new mechanisms that do not alter RNA regulation or increase protein levels. With this aim, some diphasonic acids have been proposed as allosteric inhibitors of hTS (33). The most active one is 1,3-propanediphosphonic acid (PDPA) which binds at the position where the phosphate group of dUMP binds. However, the mechanism of inhibition of these compounds has not yet been biochemically and mechanistically demonstrated; furthermore, PDPA has no cellular activity, and thus its potential as a drug is limited.

In this paper, we describe the discovery of several peptides, with sequences from the hTS dimer interface, that inhibit hTS by a mechanism that involves selective binding to a previously undescribed allosteric binding site at the dimer interface of the di-inactive form of the enzyme. The mechanism is demonstrated by X-ray diffraction, CD and fluorescence spectroscopies, kinetic
analysis, and isothermal titration calorimetry. This mechanism differs from those of protein–protein interface inhibitors reported to date (5), because it involves stabilization of an inactive form of the catalytic protein. Unlike the existing drugs targeting hTS, 5-FU and pemetrexed (34), these peptides inhibit intracellular hTS as well as cell growth without leading to hTS overexpression when administered to ovarian cancer cells. These peptides are thus promising candidates for the development of more effective anticancer therapies with reduced potential for drug resistance development.

Results and Discussion

Peptide Design and Inhibition Kinetics. LcC20 is a 20-mer peptide with a sequence that corresponds to a β-hairpin structure at the dimer interface of *Lactobacillus casei* TS (LcTS). This peptide destabilizes the protein’s dimeric assembly through an unknown mechanism and induces aggregation (11). We tested hC20 (residues 198–217) (Fig. 1A), the corresponding peptide from hTS, against hTS and measured an IC₅₀ of 30 ± 6 μM. To obtain smaller peptides better suited to the derivation of therapeutic agents, hC20 was fragmented into seven 8-mers in steps of two amino-acid residues (Fig. 1B). An additional peptide, C8, which corresponds to residues 247–254 of an adjacent β-strand, was used to probe a different interface region and does not overlap in sequence with any of the hC20 interface peptides (35) (Fig. 1A and SI Appendix).

Kinetic experiments showed that none of the octapeptides inhibited *Escherichia coli* TS (EcTS) at concentrations between 0.1 and 2 mM (the concentrations were dependent on peptide solubility). The hTS enzyme, however, was inhibited by peptides LN, LR, CG, GS, and YS, with inhibition percentages (I% at 100 μM peptide concentration) between 20 and 85% (Fig. 1B). In contrast, peptides VQ, QE, and SY were inactive at 100 μM. LR, CG, and C8 were investigated in more detail by running kinetic competition experiments with dUMP and mTHF. Dixon plots featured straight lines that intersected in the second quadrant. For experiments in which dUMP was the competitive substrate, values of Kᵢ obtained from abscissa intersections in the mixed-type inhibition model (36) were 26 ± 2, 81 ± 3, and 41 ± 3 μM for LR, CG, and C8, respectively (see Fig. 1C and SI Appendix). After comparing these results with the sequences in Fig. 1B, we concluded that the residues close to the N and C termini of hC20, rather than the residues in the hairpin turn, were important for the inhibitory activity.

Secondary structure predictions and molecular dynamics (MD) simulations indicated that all of the octapeptides are flexible and mostly unstructured in aqueous solution (Computational Studies in SI Appendix). This behavior was confirmed by their circular dichroism (CD) spectra in water. In the presence of an increasing percentage of the structure inducer, 2,2,2-trifluoroethanol (TFE), the CD spectra of the peptides that inhibited hTS (LN, LR, CG, and C8) showed a transition from unordered structures to features of secondary structure (α-helices and, for
C8, a polyproline type I helix), whereas the CD spectra of the inactive peptides (QE, SY, VO) remained almost unchanged (Fig. 1D and SI Appendix). The propensity of the eight octapeptides to assume secondary structures correlated with their inhibitory activities. Previous studies have shown entropy-mediated gains in affinity by constraining the conformational freedom of ligands (37–42). In the present study, spontaneous prestructuring of the peptide might reduce the entropic penalty associated with formation of a peptide/hTS complex.

The LR Peptide Binds at a Previously Unknown Binding Site at the Dimer Interface of hTS in the Inactive Conformation. Crystallization trials for hTS complexed with the active peptides, LN, LR, CG, and C8, resulted only in crystals suitable for X-ray crystallography experiments for the hTS-LR complex. The structure was solved (Fig. 2A and Table S3 and Methods in SI Appendix) and revealed a previously undescribed peptide binding site. The electron density corresponding to the LR peptide spans a cleft located at the interface between the two subunits, which is defined by loops 188–194 of subunit A, the β-strands 175–181 of subunit B, and loops 142–157 of both subunits (hTS 1YPV numbering). The cleft includes Cys180 and is close to the catalytic Cys195, which points toward the dimer interface (14, 15). The crystal structures determined of hTS-LR and of uncomplexed hTS were compared by least-squares superimposition (PDB ID codes 3N5E and 3N5G, respectively). The average r.m.s.d. of the Cα-atoms between the LR-complexed structure and the uncomplexed di-inactive structure was about 0.2 Å. As expected, the largest deviations for the backbone atoms (1.5–2.0 Å) occurred in the loop regions close to the LR binding site (e.g., the Cα atoms of Glu145 and Asp148). Crystallographic refinement showed that the hTS-LR crystals belonged to the P3₁ space group rather than the P3₁,21 space group found in other hTS crystal structures (13). Indeed, the binding of one LR molecule per hTS dimer destroyed the crystallographic twofold symmetry. The LR peptide was buried in the binding cleft and covered by the side chains of Met190, Ala191, and Leu192 of subunit A, which were involved in hydrophobic interactions with Phe142 and Val158 of subunit B (Fig. 2B). Thus, the formation of the hTS-LR complex likely requires breathing movements in the region involved in the binding that controls the opening and closing of the protein dimer. Superposition of the present structure with a structure of hTS in an active conformation (1HVY) shows that the crevice at the dimer interface where LR is bound does exist in the active conformation but is narrower; in the hTS-LR structure, the loop 142–159 is more open by about 5 Å and the crevice is wider (see Table 1 and SI Appendix). Furthermore, MD simulations started from an inactive-uncomplexed form of hTS, show that the interfacial peptide binding site is widened when peptide is bound: The distance between the two peptide-flanking Trp180 residues increased by approximately 3 Å in the presence of LR (see Computational Studies in SI Appendix).

A Previously Undescribed Mechanism of hTS Inhibition. The structural information above suggests that the inhibitory effects of the active octapeptides might be a result of their ability to stabilize the di-inactive form of the enzyme, thereby increasing its equilibrium concentration (14, 15). The possibility that they may act as dissociative inhibitors can be ruled out because fluorescence resonance energy transfer (FRET) experiments, performed as described in ref. 16, show that they do not promote dissociation of the hTS dimer into monomers (SI Appendix).

To test the inhibition hypothesis given above, the binding of LR to hTS was characterized by isothermal titration calorimetry (ITC) (see Fig. 3A). Several binding models were tested (Isothermal Titration Calorimetry in SI Appendix) and an excellent fit (Fig. 3A, Bottom) was achieved with a consecutive, nonidentical, two-binding-site thermodynamic model in which only one form of the protein, with an abundance of approximately 1/3 interacted with the peptide. The hTS form that was able to bind the peptide did not interconvert with other protein forms on the time scale of the experiments (minutes). The best fit values of the thermodynamic parameters show that while both the enthalpic and the entropic contributions are large for the first binding site (b1), only the entropic contribution is large for the second one (b2).

Fig. 2. X-ray crystal structure of the ht-hTS-LR complex. (A) Stereo view of the whole molecule with the LR peptide (ball and stick representation: carbon atoms are coral, nitrogen is blue, oxygen is red and sulfur is yellow) bound to the hTS dimer interface. LR is surrounded by the omit map (blue) contoured at 2.5 σ. Subunits A and B are represented as ribbons, with color ramping from green to red and from violet to blue, respectively. (B) Stereo view reporting a close up of the omit map (coral wire) contoured at 2.5 σ and superimposed to a ball and stick model of the LR peptide (ball and stick representation as above). The two independent subunits of hTS are represented as ribbons and cylinders (subunit A: magenta; subunit B: light blue).
Because of the weaker and entropic nature of the second binding, crystals of the hTS-LR complex may be difficult to obtain (43). We propose that the octapeptides bind only the di-inactive form of the protein on the basis of the following evidence: They do not inhibit EcTS, an enzyme that has never been observed in an inactive form; crystallographic results show that hTS is in the di-inactive form when bound to LR; the one-third fraction of the protein on the basis of the following evidence: They did not observe a calorimetric signal when LR was titrated into the inactive form (44) (Fig. 3). The peptide only binds the di-inactive form of the enzyme and stabilizes it. Analysis of this mechanism yields the Dixon-plot equation in Fig. 3B (see SI Appendix for a derivation). In this scheme, S is the concentration of dUMP (the variable-concentration substrate), and the protein is assumed to be presaturated with the mTHF substrate. The equation describes a family of straight lines that cross in the second quadrant and is therefore fully consistent with the inhibition pattern exhibited by LR (Fig. 1C), CG, and C8 (SI Appendix). From the intersection of the plot for LR, \(K_{d S} = 6.6 \times 10^6 \text{M}^{-1} (K_{d A} = 151 \text{nM}) \), \(\Delta H_1 = -12.3 \text{kJ/mol} \), \(T \Delta S_1 = 26.6 \text{kJ/mol} \), \(\Delta G^0 = -38.9 \text{kJ/mol} \), and \(K_{d A} = 7.8 \times 10^5 \text{M}^{-1} (K_{d A} = 1.3 \text{mM}) \), \(\Delta H_2 = -3.1 \text{kJ/mol} \), \(T \Delta S_2 = 30.5 \text{kJ/mol} \), \(\Delta G^0 = -33.6 \text{kJ/mol} \). (B) Schematic diagram of the proposed mechanism of hTS inhibition in which the dimeric protein is represented by active (light blue) and inactive (magenta) subunits that interact with the substrate \(S \equiv \text{dUMP, green} \) and the inhibitor \(L \equiv \text{peptide, orange} \). The fractions of free monomers, of di-active protein with both active sites occupied by a substrate, and of di-inactive protein with two L molecules bound are assumed to be negligible.
dUMP were carried out in the absence of mTHF. Therefore, consistency of the proposed kinetic and calorimetric models relies on the assumption that mTHF accelerates the active-inactive interconversion, making it quicker than the time scale of the kinetic experiments.

Peptides Inhibit hTS in Ovarian Cancer Cells Without Resulting in hTS Protein Overexpression. The peptides that were active in the enzymatic kinetic assays (LN, YS, LR, CG, and C8) were tested against hTS in cellular extracts from untreated cells. Although LN and CG displayed little or no inhibition of enzyme activity in the cDDP-sensitive and -resistant cell extracts (inhibition range 10–35%), YS, C8, and LR showed higher inhibitory activity against the enzyme in both cell lines (inhibition range 50–70%) comparable with the 1% against the recombinant protein that was (1% at 100 μM peptide concentration) between 20 and 85%. The peptides alone did not enter the cells. To test their effects on cell growth, we employed a delivery system that we checked did not alter cell growth itself. Administration of 5–10 μM of YS, C8, or LR (the peptides most active against hTS in cell extracts) significantly (*P < 0.05, n = 5) inhibited the growth of all cell lines by about 50% (SI Appendix). The YS and LR peptides appeared particularly active against A2780 cells.

Of these active peptides, we focused on LR because of the availability of crystallographic information on its complex with hTS. At 5 and 10 μM, LR inhibited the growth of both sensitive and resistant cell lines by approximately 50% after both 48- and 72-h exposures (Fig. 4). A higher cell death was caused by 10 μM LR for the A2780 line. With the latter cell line and its resistant counterpart, LR turned out to be more effective than 5-FU at the same concentration (Fig. 4B).

Information on the mode of action of these peptides in cells was provided by measurement of the inhibition of cellular hTS and of protein and mRNA transcript levels. Upon incubation with ovarian cancer cells, LR inhibited the intracellular enzyme activity quite markedly, though less efficiently than 5-FU; the effect was more pronounced in the sensitive cells (Fig. S4).

To verify whether an impairment of intracellular enzyme activity and of cell growth was reflected by the levels of enzyme expression (Fig. 5B) and mRNA (Fig. 5C), these were determined under the same experimental conditions. The total hTS protein level was increased by 5-FU exposure in both cell lines, which has been suggested to be due to the formation of the inactive ternary complex hTS-FdUMP-mTHF (45). In contrast, 20 μM LR decreased the total hTS protein level by about 25% in sensitive cells and did not affect the protein level in the resistant cells (Fig. 5B). The level of hTS mRNA was about the same in the presence of both LR and 5-FU in resistant cells while it was higher in sensitive cells (Fig. 5C). The overexpression of hTS mRNA in sensitive cells likely resulted from a transcriptional induction following the downstream inhibition of TS protein. LR also decreased the level of dihydrofolate reductase (DHFR), another important enzyme in the folate pathway (46), although not as markedly as 5-FU (Fig. 5B). Interestingly, LR did not inhibit the hDHFR recombinant protein. The LR-induced decrease in hDHFR levels in the cells might result from a decrease of the dihydrofolate levels due to hTS inhibition.

Conclusions and Perspectives. We have identified several octapeptides that inhibit hTS. Of these, LR binds at a previously unidentified binding site located at the interface between the two monomers of the hTS homodimer and inhibits hTS by a previously undescribed mechanism of action. Rather than acting as a dissociative inhibitor, LR stabilizes the di-inactive form of the protein. The peptides that inhibit hTS have an inducible secondary structure and inhibit the growth of both cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. In contrast to classical TS inhibitors (e.g., 5-FdUMP and pemetrexed), the peptides inhibit intracellular TS without inducing its overexpression.

The connection between the stabilization of the inactive form of hTS by LR and the cellular effects remains to be fully explored. Further steps will require optimization of the compounds by synthesis of peptidomimetics and detailed analysis of their cellular mechanism of action. To our knowledge, this is a unique demonstration of a mechanism in which a multifunctional homodimeric protein is inhibited through binding of a ligand to the dimeric face of the di-inactive conformation of the enzyme, resulting in stabilization of this form. We believe that the concepts revealed here can be exploited to provide new avenues for the development of drugs for combating severe diseases such as ovarian cancer.

Methods

Chemicals and Peptides. hC2O and LR peptides were synthesised by an automatic solid phase peptide synthesiser (Syro XP II, Multisynthec) using Fmoc/tBu chemistry (47). The peptides were cleaved from the resin using reagent B (48). Crude peptides were purified by preparative reverse-phase HPLC, and the purity grade was checked by analytical HPLC analyses and mass spectrometry (see Methods in SI Appendix). All other peptides employed in this study were purchased from GeneCust (www.genecust.com). The level of purity of peptides was >95%. The peptides were further purified before use to remove trifluoroacetic acid residues. dUMP and mTHF were purchased from Sigma-Aldrich.

Protein Cloning and Purification. hTS was purified from the E. coli BL21 strain DH5α transformed with pQE80L, which contained the complete coding sequence for the hTS tagged with a histidine tail (ht-hTS). Purification involved sequential chromatography on an Ni Sepharose 6 Fast Flow resin
Fig. 5. Effects of LR and 5-FU on hTS and DHFR protein levels, hTS mRNA levels and hTS activity in two ovarian cancer cell lines. (A) Western immunoblot analysis of hTS (above) and DHFR (below) protein levels from 2008 and C13* cells treated for 72 h with the indicated concentrations of 5-FU (blue) and LR peptide (red). The latter was administered via a peptide delivery system. The 35-kDa hTS monomer, with or without its ternary complex, and the 21-kDa DHFR monomer are reported below the bar graphs of their respective densitometric analyses. Western blot analyses were performed on cytosolic extracts from cells in the exponential phase of growth using anti-hTS and DHFR monoclonal antibodies. Each experiment was carried out three times, and a representative result is shown. An antihuman β-tubulin mouse antibody was used to verify equal protein loading in the gel. (B) RT-PCR analysis of hTS mRNA levels. hTS expression in 2008 and C13* cells extracts was determined after treatment with the LR peptide or 5-FU for 72 h. The amount of hTS mRNA was normalized by the mRNA of glyceraldehyde-3-phosphate dehydrogenase. The results shown are the means ± S.E.M. of four separate experiments performed in duplicate. (C) Inhibition of intracellular TS activity.
and the solutions were left under magnetic stirring at 4 °C. The solutions were double distilled Milli-Q water and the sample cell with 1.5 mL of hTS solution in the program GOLD (57) using the ChemScore scoring function. For details, see Methods in SI Appendix.

Experiments with Cells. The 2008 cell line was established from a patient with serous cystadenocarcinoma of the ovary. The CDP-resistant C13* subline, approximately 15 times more resistant to cDDP than a normal cell line, was derived from the parent 2008 cell line as previously reported (58). The human ovarian carcinoma A2780/CP cells were 12-fold resistant to cDDP and derived from the parent A2780 cell line. Peptides were delivered into cells via the SAINT-HPD peptide delivery system (Syrinex Therapeutics Ltd., BC, V). Cells that were used for the enzyme assay were treated according to procedures published by van Triest et al. (59). The crystal violet dye assay was performed on a cell monolayer (60). Western blot analysis on TS and DHFR proteins was conducted as previously described (61). Reverse transcription was performed with 2 μg of total RNA, and RT-PCR was performed with 10 ng of cDNA using the Power SYBR® Green PCR Master Mix (Applied Biosystems). This was followed by a dissociation curve analysis and agarose gel electrophoresis to confirm the amplification (62). Statistical significance was estimated by a two-tailed Student’s t test using Microsoft Excel. A P value <0.05 was considered significant.

ACKNOWLEDGMENTS. We thank Yip Boum and Hannu Myllykallio for synthetic gene constructs for expressing histidine-tagged human thymidylate synthase in E. coli (Genscript: EU520473-1). This work was financially supported by the European Union (LIGHTS project: LSH-2005-2.2.0-8), the Italian Association for Cancer Research (IG 10474 to P.M.C.), the Klaus Tschira Foundation (R.C.W., S.H., O.M.H.S.-A.), and O.M.H.S.-A. also received funding from the Alexander von Humboldt Foundation, the Finnish Cultural Foundation, the Academy of Finland, and the University of Kuopio.

Computational Methods. The helical content of the peptides was predicted with the AGADIR algorithm (54). MD simulations were carried out of peptides and hTS-peptide complexes in water with the AMBER simulation package (55) using the AMBER ff03 forcefield (56). Peptides were docked to hTS with the program GOLD (57) using the ChemScore scoring function. For details, see Methods in SI Appendix.

Isothermal Titration Calorimetry. The calorimetric experiments were performed on a MicroCal (www.microcal.com) VP-ITC MicroCalorimeter. The enzyme solution was thawed on the day of experiment and its concentration was checked spectrophotometrically (Varian Cary 100) to contain comparable concentrations (typically ca. 350 nM) of each of the two probes, F and T, and of protein dimers. Emission spectra at λem = 450 nm of these solutions were recorded at different peptide concentrations on a Jobin-Yvon Fluoromax2 spectrophotofluorometer and were corrected for the instrumental spectral sensitivity.

