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Abstract 
 

This paper presents a proposal for evaluating real options. The current options-based 
models have provided new insights into capital-budgeting decisions. Unfortunately they are 
not widely used by corporate managers and practitioners as they are formally complex, rather 
difficult to understand and rest on strong implicit assumptions which considerably limit their 
scope of application. We propose a possible alternative by using a fuzzy expert system. We 
draw up a decision tree with multiple uncertain variables affecting the values of a compound 
option, consisting of a defer option, a growth option, an abandonment option. Some 
simulations test the economic soundness of the model as well as its consistency with the 
current models in the literature. The `vagueness’ of the model enables us to raise the 
complexity in the situation treated while reducing at the same time the formal difficulties. A 
rather refined study can be accomplished by showing how inputs and outputs of the model 
interrelate one another. 
 
 
Introduction 
 

This paper presents a proposal of real option evaluations through fuzzy logic. We draw 
up a fuzzy expert system which automatically provides the value of an option to invest. In 
particular, we aim at showing that fuzzy logic seems to be a favourable framework for 
decision processes in capital budgeting. Further, many of the drawbacks implicit in the use of 
contingent claims methods and dynamic programming can be overwhelmed, to a certain 
extent, by a more `vague' approach. 

In recent years a wide number of contributions have been published about real options. 
Since the eighties investment opportunities have been conceptually likened to financial 
options so that the use of Black-Scholes analysis seemed a better evaluation tool than the 
traditional NPV. The latter is not able to handle cases in which the decision maker has some 
flexibility on the project. The now-or-never investment the NPV rule subsumes is not always 
what the decision maker is dealing with. Sometimes decisions can be deferred, and even in a 
now-or-never context the investor may have the opportunity to abandon the investment or 
suspend operations for a while; she may sometimes contract or conversely expand the scale of 
the business or has some other kind of flexibility. Treating these cases as financial options 
induces the use of the Black-Scholes equation. This implies that the risk of the project can be 
spanned by existing assets in the economy. When this is not the case some problems arise, but 
then stochastic dynamic programming can provide as well analogous results (see [Dixit, 
Pindyck, 1994] for an exhaustive explanation and for references). Unfortunately, despite the 
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formal elegance and the theoretical soundness of these methods, their applicability is rather 
difficult, due to formal complexity and to assumptions being not always realistic.  

The success they have encountered in the literature in the last twenty years is not 
coupled by their practical use by corporate managers and practitioners. Using contingent 
claims analysis (henceforth CCA) or stochastic dynamic programming (henceforth SDP) 
requires advanced knowledge of mathematics, which most managers do not have. Further, 
CCA or SDP are not so appealing since they are not intuitive nor easily understood. We aim 
at constructing a model apt to overwhelm these difficulties. In particular, the model does not 
assume any particular stochastic process for the variable on which the project value and the 
option value are dependent. Neither we do any assumption about completeness of the market 
(CCA is bound to this strong assumption). We also show that, unlike CCA and SPD, the 
proposed expert system is able to handle a set of many random (as well as certain) variables if 
they are gathered in subsets playing different roles. Competition is treated directly, not 
indirectly through an expected decrease of payoffs, and the degree of exclusivity of the option 
is also considered via different inputs.  

Another significant element is the capability of dealing with qualitative variables. In 
capital budgeting, especially in strategic investment decisions, many types of variables are 
considered in the decision process. Quantitative variables as the Net Present Value are very 
important, but they constitute only part of all variables considered. Some of them are 
inevitably linguistic variables, that is they cannot be translated in crisp values, unless 
sometimes indirectly. It is very difficult to quantify the ability of the management or the 
degree of differentiation or the intensity of rivalry in a sector or the level of entry and exit 
barriers. Even less natural is to think of them as stochastic processes following some standard 
path. The vagueness implicit in many variables is such that these variables are removed from 
CCA and SPD models, as they are impossible (or at least very difficult) to be treated. A first 
attempt to include qualitative variables in real options can be found in [Magni, 1998]. The 
latter's idea of coping with one qualitative variable is here generalized by means of the expert 
fuzzy system. The model should be rather appealing to managers as it is easily 
understandable: 
 

• it relies on a general schema and on rules which are to be drawn up with the help of 
managers themselves; 

• it does not require advanced knowledge of mathematics and it is intended to provide a 
tool which should, in principle, repeat the decision process accomplished by a panel of 
experts. 

 
The evaluation is automatically determined once fixed the value of the inputs on the 

basis of the rules selected by the evaluator. Our model is then an algorithm which embodies a 
qualitative analysis in a quantitative framework. The choice of a fuzzy expert system to 
approach this problem is due to the fact that fuzzy expert systems are effective in representing 
explicit but ambiguous common-sense knowledge. Expert systems are knowledge-based 
systems that contain expert knowledge. One way to represent inexact data and knowledge 
closer to humanlike thinking is to use fuzzy rules instead of exact rules and fuzzy numbers 
instead of classic range of inputs variability. Fuzzy rules represent in a straightforward way 
“common-sense” knowledge and skills, or knowledge that is subjective, ambiguous, vague or 
contradictory. Fuzzy numbers helps translating the truth values for a fuzzy proposition, which 
is not TRUE or FALSE, as in Boolean logic, but includes all the greyness between the two 
extreme values. The secret of the success of fuzzy systems is that they are easy to implement, 
easy to maintain, easy to understand, robust and cheap [Kasabov, 1996]. 
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1. Real Options: The Classical Approach. 
 

Evaluation of investments under uncertainty is the main goal of capital budgeting.  A 
widespread profitability index is the traditional Net Present Value, which measures how a 
project is able to increase wealth by emphasizing the role of the timing of projects’ cash flows 
and of an alternative equivalent-risk asset. The discounted cash flow model is not suited for 
situations where the investor has the ability to defer decisions or abandon a project already 
undertaken or temporarily suspend production or expand business. 

In such cases an investor is concerned with investment opportunities having some 
degree of flexibility: she is facing what is usually called a real option. A defer option is an 
option where the decision maker is allowed to postpone decision, a growth option consists of 
the option to enlarge the scale of the project, an abandonment option implies the opportunity 
to abandon the project when desired, a switch option consists of the ability to switch, and so 
on. One or more options often combine together in a single project: We have then a 
compound option. The value of a real option is function of one or more uncertain underlying 
variables that may considerably affect the project’s  cash flows. The analogy of these 
situations with financial options has been pointed out in the eighties [Kester, 1986] and this 
has led scholars and academics to apply Black-Scholes analysis  for capital budgeting 
purposes [Trigeorgis, 1986, 1996]. The value of an investment option  is then contingent  to 
the value of some random variables and its exercise value is given by the expected net present 
value of the project. The implicit assumption is made that the project can be spanned by 
existing assets in capital markets. If this assumption is not encountered, then stochastic 
dynamic programming  can be used and the decision process is shaped as an optimal stopping 
problem.  

For the sake of clarity, we briefly remind here how the classical literature of real 
options copes with the case of one single underlying variable for a defer option (the 
exposition follows [Dixit and Pindyck, op.cit.]). We will make use of the stochastic dynamic 
programming, which  can be applied  even if the project cannot be spanned by existing assets 
(this is often the case for research and development investments). 

Let V be the value of a  project and assume that it follows a geometric brownian 
motion with drift α so that 
 

VdzVdtdV σα +=    with dtdz ε=   (1.1) 
 
where ε is a standardized normal variable (dz shows a Wiener process). 

Thus, the current value of V can be observed but its future values are uncertain 
according to a lognormal distribution with a variance linearly increasing with respect to time. 
We assume that the investment opportunity never expires and that uncertainty is never 
resolved. An investor has the opportunity of investing in this project, say P, with an initial 
outlay of  I. The investor must decide whether she has to invest straight away or wait for a 
better moment (financially speaking, this is an American call option). Waiting has a positive 
value, as it brings about further knowledge about the project profitability, but has also a 
negative value, in that the investor is renouncing to earn V. At a sufficiently high value of V, 
the decision maker is prone to invest in the project. But what does ``sufficiently high’’ mean? 

Let V* be such that if V>V* the decision maker undertakes the investment, otherwise 
she waits for further information. V* is then the threshold above which exercise is convenient. 
The threshold divides the two regions of waiting and investing. As for the former we have 
that the value of the option F(V) is given by the Bellmann equation 
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where ρ is the discount rate (to be intended as the required rate of return), subjectively 
determined by the investor. (1.2) tells us that in the continuation region *VV ≤  the investor 
receives the expected continuation payoff E(F(V+dV)) which is discounted for the length of 
time dt. Using Ito’s Lemma we obtain 
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2
1 22 =−+ VFVVFVFV ρασ     (1.3) 

 
Conversely, in the optimal stopping region, that is V>V*, exercise is required, so that 
 

IVVF −=)(        (1.4) 
 
The boundary conditions for this problem are 
 

F(0)=0       (1.5) 
 

F(V*)=V*-I      (1.6) 
 

F’(V*)=1      (1.7) 
 
The solution is a function of the form 
 

21
21)( κκ VAVAVF +=      (1.8) 

 
where k1 and k2 are, respectively, the positive and negative solution of the following quadratic 
equation: 
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>1 the value of waiting is such that the decision maker is not induced to invest if 

V reaches I, as the Net Present Value rule says, but only if it reaches a higher level. This is 
due to risk, which persuades investors to wait for a safer level of V. If the stochastic variations 
of V can be spanned by existing assets in the economy then we can use Black-Scholes 
assumptions: we will reach as well equation (1.3). 
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2. A New Model. 
 

We aim at evaluating a compound real option consisting of a defer option, an 
abandonment option and a growth option. The latter two are contingent to the first one. The 
schema we draw up is general enough to be applied to a wide varieties of similar cases. It is 
also flexible as many variables can be easily substituted or added. In the classical literature of 
real options stochastic dynamic programming or contingent claims analysis is usually used 
with one single variable. This variable follows a particular random path such as geometric 
brownian motion or a Poisson jump process and influences the NPV of the project. 
Unfortunately real situations are more sophisticated and the idea of a diffusion process for a 
random variable is only sometimes acceptable. And then, which diffusion process should be 
preferred? Other difficulties arise when more than one random variable is involved in the 
evaluation process. For example, the option can be exclusive or shared, but the degree of 
exclusivity can vary with time depending on isolating devices owned by the investor and by 
the expected retaliation from competitors. Further, in strategic investments a qualitative 
analysis is often implemented: some factors are difficult to quantify but they may strongly 
influence the success of the investment. Moreover, our abandonment and growth options 
depend on random variables like exit barriers (the abandonment option) and the additional 
investment cost (the growth option). Obviously, only the second one is quantifiable with crisp 
values. 

Traditionally, an investment analysis is based on the computation of the NPV. In 
strategic options, where so many and so qualitatively different variables are at work, it can be 
difficult to directly estimate the expected cash flows, sometimes it is even impossible to link 
qualitative variables to cash flows. Moreover, the decision maker has multiple objectives only 
some of which can be adequately captured in the computation of an NPV. So we propose a 
model where the NPV is only one of many indexes and cooperates with other drivers to 
determine the exercise value (ExV) of the option to invest. The expected cash flows are then 
to be intended just as those cash flows that the investor expects from the project regardless of 
any other consideration about competition and other qualitative factors. The investment value 
relies then on the NPV as well as on other drivers as we will see. In this complex situations, it 
is no surprise that traditional and modern capital budgeting techniques are forced to leave the 
ground. It is actually recognized [Lander, Pinches (1998)] that current real options models are 
not widely used in practice and an option-based analysis inevitably limits the scope of 
application simplifying for mathematical tractability. We intend to follow the suggestion of 
Lander and Pinches, who assert that ``the focus of the analysis should be on the initial 
decision to be made or the optimal strategy to implement, and not the exact valuation 
obtained’’ (p.552, italics ours). They propose decision trees or influence diagrams to 
circumvent the difficulties of option-based models. This paper shows that fuzzy logic can be a 
valid alternative for modeling real options. 
 
 
3. Fuzzy Set Theory  
 

Fuzzy set theory was originally proposed as a means for representing indeterminacy 
and formalizing qualitative concepts that have no precise boundaries. In many situations, it is 
difficult to describe phenomena simply in terms of black and white distinctions. Language, 
our primary means of communication, is anything but precise. In fact, fuzzy set theory 
supports reasoning about these kinds of situations. It is based on gradation instead of sharp 
distinction. It is a method of reasoning that allows for partial or “fuzzy” description of reality. 

Consider a classical (crisp) set A contained in a universe X. A fuzzy set A is defined by 
a set of ordered pairs, 
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where )(xAµ  is called Membership function of the set A. 
The height of a fuzzy set is the maximum value that its membership function realises. 
A fuzzy set is called normal if its height is 1.  
If the fuzzy set is not normal, it is always possible to normalise it, changing )(xAµ  with: 
 
 

 )(~ xAµ =
)(max

)(
x

x

AAx

A

µ
µ

∈

 

 
 
The domain of a fuzzy set A  is the domain of. )(xAµ . 
The support of a fuzzy set A  is the subset of X in which the membership function is positive. 
A fuzzy set A  is a Convex fuzzy set, if 
 ]1,0[∈∀λ  and Axx ∈∀ 21,  
 

[ ] { })(),(min)1( 2121 xxxx AAA µµλλµ ≥−+  
 
A fuzzy number is a fuzzy set defined on the universe R, which is convex and normalised. A 
great variety of membership functions have been proposed in the scientific literature. The 
more common types of membership functions are the piece-linear or spline shapes. In this 
paper we use triangular, trapezoidal types called “Standard Membership Function”.  
 
 
3.1. A Fuzzy Expert System  
 

An expert system is an intelligent machine that uses knowledge and inference 
procedures to solve problems that are difficult enough to require significant human expertise 
for their solutions. The knowledge of an expert system consists of facts and heuristics. The 
facts usually constitute a body of information that is widely shared, publicly available, and 
generally agreed upon by experts in the field. Heuristics concerns mostly private information 
and rules of good judgement that characterise expert-level decision making in the field. A 
fuzzy expert system is an expert system that utilises fuzzy sets and fuzzy logic to overcome 
some of the problems which occur when the data provided by the user are vague or 
incomplete. The power of fuzzy set theory comes from the ability to describe linguistically a 
particular phenomenon or process, and then to represent that description with a small number 
of very flexible rules. In a fuzzy system, the knowledge is contained both in its rules and in 
fuzzy sets, which hold general description of the properties of the phenomenon under 
consideration. One of the major differences between a fuzzy expert system and another expert 
system is that the first can infer multiple conclusions. In fact it provides all possible solutions 
whose truth is above a certain threshold, and the user or the application program can then 
choose the appropriate solution depending on the particular situation. This fact adds flexibility 
to the system and makes it more powerful. Fuzzy expert systems use fuzzy data, fuzzy rules, 
and fuzzy inference, in addition to the standard ones implemented in the ordinary expert 
systems. 

Functionally a fuzzy system can be described as a function approximator. More 
specifically it aims at performing an approximate implementation of an unknown mapping 
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mn RRA →⊂:φ where A is a compact of nR . By means of variable knowledge relevant to 
the unknown mapping [Kosko, 1992] and [Wang, 1992] independently proved that fuzzy 
systems are dense in the space of continuous functions on a compact domain and therefore 
can approximate arbitrarily well any continuous function on a compact domain. The 
following are the main phases of a fuzzy system design: 

 
1. Identification of the problem and choice of the type of fuzzy system which best suits 

the problem requirement. A modular system can be designed consisting of several 
fuzzy modules linked together. A modular approach, if applicable, may greatly 
simplify the design of the whole system, dramatically reducing its complexity and 
making it more comprehensible. 

2. Definition of input and output variables, their linguistic attributes (fuzzy values) and 
their membership function (fuzzification of input and output). 

3. Definition of the set of heuristic fuzzy rules. (IF-THEN rules). 
4. Choice of the fuzzy inference method (selection of aggregation operators for 

precondition and conclusion). 
5. Translation of the fuzzy output in a crisp value (defuzzification methods). 
6. Test of the fuzzy system prototype, drawing of the goal function between input and 

output fuzzy variables, change of membership functions and fuzzy rules if necessary, 
tuning of the fuzzy system, validation of results. 
 
In building fuzzy expert systems, the crucial steps are the fuzzification and the 

construction of blocks of fuzzy rules. These steps can be handled in two different ways. The 
first is accomplished by using information obtained through interviews to the experts of the 
problem. The second is accomplished by using methods of machine-learning, neural networks 
and genetic algorithms to learn membership functions and fuzzy rules. The two approaches 
are quite different. The first does not use the past history of the problem, but it relies on the 
experience of experts who have worked in the field for years. The second is based only on 
past data and project into the future the same structure of the past. The first approach seems 
preferable for our purpose, for our main goals are: 

 
• constructing  a general framework able to handle many infinite cases of investment 

opportunities; 
• verifying the theoretical soundness and robustness of the model through sensitivity 

analysis, in order to assure that actual applicability is not biased; 
• comparing our simulations with the traditional ones found in the literature of real 

options; 
• presenting a completely new approach, which replace CCA and SDP with a fuzzy 

expert system, and showing how it can be immediately applied to real situations. 
 
We can formalize the steps in the following manner. For each linguistic variable, input xi 

(i=1…m) and output y, we have to fix its own range of variability Ui and V.  
∀ i, (i=1…m), if in is the number of the linguistic attribute of the variable xi and  

n̂  = imi
n

],1[
max
∈

 , we define the set 
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where ∀ ij ∈[1, in ], ∀ in  ∈[1, n̂ ] i

ji
A are the fuzzy numbers describing the linguistic 

attributes of the input variable xi. In the same way we define the set 
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where ],1[ rk ∈∀  kB are the fuzzy numbers describing the linguistic attributes of the output 
variable y. 

 At every elements of iA and B a membership function is associated such that 
 

  
]1,0[:)( →iA Uxi

ij
µ

  
and  ]1,0[: →V

kBµ  

 
The elements of iA and B overlap in some “grey” zone which cannot be characterised 

precisely. Many phenomena in the world do not fall clearly into one crisp category or another. 
Experts that use abstraction as a way of simplifying the problem can contribute to identify 
these “grey” zones.  
 The choice of the slopes of the elements of iA and B is a mathematical translation of 
what the experts think about the single terms.  
The second step is the block-rules construction. 

We define the set of L fuzzy rules, where L ∏≤
m

in
1

, ∀ ij ∈[1, in ], ∀ in  ∈[1, n̂ ] ],1[ rk ∈∀  

 
 

IF (x1 is 1
1j

A ) ⊗  (x2 is. 2
2jA ) ⊗ … ⊗  (xm is m

jm
A )   (3.1-1) 

THEN (y is Bk),       (3.1-2) 
 
 

The relation (3.1-1) is called “precondition” and the symbol ⊗ represents one of the 
possible aggregation operators. In practical applications, the MIN and MAX operators, or a 
convex combination of them, are widely used and so a “negative” or “positive” compensation 
will occur for different values of γ . 
 

MAXMIN )1( γγ −+     with ]1,0[∈γ  
 

Instead of Min and Max, it is also possible to use other t-norms or conorms, which 
represent different ways of linking the “and” with the “or”.  

More generally, indicating with BA∩µ  a general membership of the intersection and 
with BA∪µ  a general membership of the union, we can define as membership of the 
aggregated set BAΘ  
 

γγ µµµ BABABA ∪
−
∩Θ = *1                         with ]1,0[∈γ  

 
 This is not, in general, a t-norm or a t-conorm. In particular, if we use the algebraic 
product and sum as intersection and union, we obtain the Gamma operator [Zimmerman, 
1997]. 
 

γγ

µµµ 




 −−





= ∏∏

− n

i

n

i
1

)1(

1
)1(1*  

 
The parameter γ  denotes the degree of compensation. As it is shown in some recent 
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work, this aggregator concept can represent the human decision process more accurately than 
others [Zimmerman, 1980]. The relation (3.1-2) is called conclusion. The aggregation of 
precondition and conclusion can be made in several ways. The most used are the MAX and 
the BSUM methods. The choice depends on the type of application. The MAX has the 
meaning of keeping as “winner” the strongest rule, in the sense that if a rule is “firing” 
(activated) more than one time, the result is the maximum level of firing. In the BSUM case, 
all the firing degree is considered and the final result is the sum of the different level of 
activation (not over one). In any case, the two methods produce a fuzzy set, which has 
membership function )(yaggµ . 

Now we have a result of the fuzzy inference system, which is a fuzzy replay. We need 
to return to a “crisp” value, and this step is called “defuzzification”. This operation produces a 
“crisp” action y  that adequately represents the membership function )(yaggµ . There is no 
unique way to perform this operation. To select the proper method, it is necessary to 
understand the linguistic meaning that underlies the defuzzification process. Two of these 
different linguistic meanings are of practical importance: the “best compromise” and the 
“most plausible result”. A method of the first type is the Centre of Area (CoA) that produces 
the abscissa of the centre of gravity of the fuzzy output set  
 
 

     
∫
∫

=

V
agg

V
agg

dyy

dyyy
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 A method of the second type is the “Mean of Maximum” (MoM). Rather then 
balancing out the different inference results, this method selects the typical value of the terms 
that is most valid [Von Altrock, 1997]. 
 
 
4. The fuzzy model 
 

Our model is a decision tree in which many variables (inputs), quantitative as well 
qualitative are taken into account. We call these variables value drivers, since they determine 
the exercise value of the option. The result, the exercise value ExV (output) is a number in 
[0,1]. The higher ExV, the higher the propensity to invest immediately rather than waiting. If 
ExV=0, then waiting is absolutely suggested, if ExV=1 then investing immediately is 
suggested. Any intermediate value gives us a degree of the investor’s propensity to invest at 
once. On the basis of this degree, the investor herself will select which strategy to follow: for 
example if ExV=0.5 two investors can follow opposite courses of action. One of them could 
regard it as a suggestion for investing, the other as a suggestion for waiting.  

The fuzzy model we carry out is an expert system. Conceptually, we can think of it as 
an index dependent on many variables. As you see in Figure 1, we deal with 15 value drivers, 
which are gathered in group of two or three giving rise to intermediate outputs by means of a 
rule block, as we will see later. The intermediate outputs are grouped as well and constitute in 
turn inputs giving rise to other intermediate outputs, and so on until the output Exercise Value 
is reached. The process of collecting the 15 value drivers in group of two or three and 
gradually aggregating facilitates our task of appraising the option. We can now describe the 
model by starting from the value drivers. 
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Figure 1 

 
 
 
 

4.1. The Fifteen Value Drivers 
 

In this chapter we specify the meaning and the role of each value driver.  
 

• (Differentiation) Differentiation. It refers to brand identification and customer 
loyalties, due to past customer service, advertising:  a product or service is 
differentiated when the customer perceives it as being unique. This driver must be 
intended as the degree of differentiation the investor is likely to obtain with the 
undertaking of the investment.  

 
• (KnowHow) Know-How. Exclusive knowledge and/or specialized skills, proprietary 

technology or patents etc. This driver is to be intended as an observable variable but is 
subjectively determined  by the evaluator.  

 
• (Reputation) Reputation.  A high reputation means that customers perceive the firm as  

highly reliable in product or service quality. It is strictly connected with the image of 
the firm. This driver is observable.   

 
• (Commitment) Commitment. If the firm is able to convince its competitors that it is 

committed to enter the business, this increases the chance that they will not retaliate. 
This driver is certain as the decision maker herself defines her own degree of 
commitment in the project. 

 
• (EntryBar) Entry Barriers. They are economic and strategic factors that deter entry in 

a business (among others, economies of scale, capital requirements, access to 
distributions channels, favorable access to raw materials, favorable location). This 
driver is observable.  

 
• (IntOfRiv)  Intensity of rivalry.  Rivalry is intense in connection with strong price 
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competition, advertising battles, increased customer service, frequent retaliations etc. 
This driver  is observable. 

 
• (ExitBar) Exit Barriers. They are economic, strategic, emotional factors that deter exit 

from a business even when the returns are low or negative (some of these include 
specialized assets, fixed costs of exit, strategic interrelationships, emotional barriers, 
legal restrictions). This driver is to be intended as the expected barriers in case of 
abandonment of the project. 

 
• (AddCost) Additional Cost. It refers to the additional investment required in case the 

investor decides to enlarge the scale of the investment previously undertaken. It must 
be intended as the expected cost to be added if the investment is to be enlarged in 
scale.  

 
• (BusRisk)  Business risk. It refers to the volatility of the project’s cash flows. This 

driver is to be intended as a degree of uncertainty. The same for the next driver. 
 

• (MarketRisk) Market Risk. It refers to the trend of the entire market, obviously 
independent from the single project. 

 
• (NPV) Net Present Value. The Expected Net Present Value is given by the algebraic 

sum of the prospective cash flows discounted at the required rate of return. The latter 
is obtained by the sum of the risk-free rate Rf and a premium for the risk. To compute 
the NPV the investor determines a prospective sequence of cash flows as, 
s=0,1,2,…,N, where N is a fixed terminal horizon. At time N the investment is 
liquidated and b is the liquidation value. The discount rate ρ is thought to be 
dependent on the risk-free rate Rf  and the risk in such a way that 

 
    )( MarketRiskBusRiskR f ++= βρ    (4.1-1) 
 

where β is subjectively determined by the investor. The NPV is then given by the sum 
 

    N

N

s
s

s ba
NPV

)1()1(0 ρρ +
+

+
= ∑

=

   (4.1-2) 

 
(for our simulations we conventionally set N=10, with no loss of generality). This 
driver is to be intended as an expected value. 

 
• (CommImpl) Communication and implementation.  Communication has to do with the 

ability of managers to involve and stimulate employees, to communicate  enthusiasm 
for the achievement of a shared goal,  and pride in their  own abilities, as well as to 
provide emotional support and encouragement. Implementation refers to potential 
strength of the entire firm to succeed in the business,  depending, among others, on 
managers’ and employees’ skills and stubbornness. It is intended as an expected value. 

 
• (Synergies) Synergies. Economies of scale, joint costs, which occur when a firm 

producing product or  service A is inherently able to provide product or service B. 
Synergies occur when positive by-products stem form entering the business; this 
means, among others, the creation of intangible assets such as brand names, know-
how, suppliers and distributors shared for more than one product or service etc. This 



 12

driver is to be intended as the expected synergies from the project.  
 

• (StratConsist) Strategic consistency. It refers to the coherence of the investment in 
hand with the investor’s goals, as well as the impact of the project on investor’s 
identity or image. This driver is observable.  

 
• (Expiration) Expiration Risk. This factor takes into consideration that the option, if 

shared with competitors, can be una tantum in the sense that it vanishes once it has 
been exercised. If no other investor exercises the option, it is assumed to last forever. 
This risk has nothing to do with Exclusivity. In fact, a real option can be a shared 
option in two different meanings: 

(a) other competitors hold similar or equal options. They have the opportunity to 
exercise their option regardless of exercise by our decision-maker. This 
implies that rivals can retaliate with analogous options once the investor 
exercises her own; 

(b) many competitors hold one single option, such that if one of them exercises 
it, it expires and cannot be exercised by any other competitor. 

Type (a) refers to Exclusivity, type (b) refers to Expiration. A high degree of 
exclusivity does not mean, in our context, that the option is not shared, it only means 
that, ceteris paribus, the investor can effectively defend against competitors the payoff 
derived by the investment undertaken (using know-how,  product or service 
differentiation, reputation. [Magni, 1996] introduces the distinction, for shared 
options, between repeatable options (case (a)) and una tantum options (case (b)), while 
studying some features of them in a dynamic programming framework. 

As an example for una tantum option the reader can think of a firm for sale: all 
competitors can buy it (the option is shared), but once it has been bought by one of 
them the option vanishes. This driver is to be intended as a degree of uncertainty. 

 
 
4.2. The Application. 
 

The fifteen aforementioned variables can be observed or forecasted periodically by the 
decision maker, so that a value can be fixed for all of them. Automatically, our expert system 
computes the Exercise Value of the option, ExV, and the decision maker can therefore select 
her preferred courses of action: investing or waiting for the next period. The decision maker 
herself fixes the value ExV* above which investment should be undertaken. Consequently, 
she will invest immediately if ExV>ExV*, wait otherwise. 

The model is an evaluation tree, which we run along from branches to trunk. We start 
then from the drivers which are gradually gathered by means of rule blocks giving rise to 
intermediate outputs. We must also specify how NPV has to be considered.  In strategic 
investments the Net Present Value is only one of many other factors that influence the 
evaluation process. We assume that the investor forecasts the cash flows as a mere starting 
point, without any consideration of the other factors. The latter are related to competitor’s 
behavior, exclusivity of the option, strategic synergies and management abilities. All these 
drivers may influence the final payoff in a way that is difficult to forecast in crisp values. 
Therefore, the cash flows as are not all the investor can get from the project. This will turn to 
be important when we shall describe some simulations we have made. 

Looking at Figure 1 you note at top left Differentiation, KnowHow and Reputation: 
They are isolating devices influencing the degree of exclusivity of the investment option. The 
higher is one of them, the higher is the degree of exclusivity (ceteris paribus). In other terms, 
the latter is a function increasing with respect to the isolating devices. The shape of this 
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function depends on the rules chosen by the decision maker herself. In Table 1 you can see 
how the rule block Exclusivity works. 
 
 

Table 1 
IF THEN 

Differentiation Know_How Reputation DoS Exclusivity 
low low low 1.00 low 
low low medium 1.00 low 
low low high 1.00 medium_low 
low medium low 1.00 low 
low medium medium 1.00 medium_low 
low medium high 1.00 medium_low 
low high low 1.00 medium_low 
low high medium 1.00 medium_low 
low high high 1.00 medium_high 
medium low low 1.00 low 
medium low medium 1.00 medium_low 
medium low high 1.00 medium_low 
medium medium low 1.00 medium_low 
medium medium medium 1.00 medium_low 
medium medium high 1.00 medium_high 
medium high low 1.00 medium_low 
medium high medium 1.00 medium_high 
medium high high 1.00 high 
high low low 1.00 medium_low 
high low medium 1.00 medium_low 
high low high 1.00 medium_high 
high medium low 1.00 medium_low 
high medium medium 1.00 medium_high 
high medium high 1.00 high 
high high low 1.00 medium_high 
high high medium 1.00 high 
high high high 1.00 high 
 
 

Commitment, EntryBar and IntofRiv have impact on what we call Expected Retaliation 
(ExpRetal). A high commitment will deter high retaliation from rivals, high entry barriers are 
set by competitors if they intend to preempt entry. The intensity of rivalry is another factor 
which directly indicates the chance the investor has to be opposed with retaliation. Analogous 
rules are selected by the decision maker to infer the value of ExpRetal. 

The risk is the result of the BusRisk and the MarketRisk. These are subjectively 
determined by the decision maker and define the investment’s Risk. The rules connecting the 
two kind of risk can be seen in Table 2. From the inspection of the table is obvious that the 
evaluator aggregates the two risks with a stronger consideration for the BusRisk. In fact, we 
have the rules 
 
 

IF (Low AND High)  THEN  (MediumLow) 
 
whereas we have 
 

IF (High AND Low)  THEN  (MediumHigh) 
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Table 2 
IF THEN 

Bus_risk Market_risk DoS Risk 
low Low 1.00 low 
low Medium 1.00 medium_low 
low high 1.00 medium_low 
medium low 1.00 medium_low 
medium medium 1.00 medium_high 
medium high 1.00 medium_high 
high low 1.00 medium_high 
high medium 1.00 medium_high 
high high 1.00 high 
 
 

CommImpl, Sinergies and StratConsist constitute what we call the Qualitative analysis 
(QualAnalysis) and the rules define it as an increasing function with respect to all three 
drivers. 

NPV is an input for more than one intermediate output. To begin with, it determines, 
along with Risk and ExitBar, the value of the abandonment option (Abandon). The latter is 
made to increase with respect to Risk and decreasing with respect to NPV and ExitBar. The 
reason is obvious: if Risk increases then the investor could be involved in a great loss if things 
go bad. The opportunity of abandoning the project has a higher value. Further, the higher the 
NPV the smaller the value of this option since it seems less probable that the investor will 
leave the business. Finally, higher ExitBar  make exit more difficult so that Abandon is small. 

Likewise, Risk, NPV and additional cost influence the growth option value (Growth): 
the latter is increasing with respect to Risk and NPV and decreasing with AddCost. In fact, a 
higher Risk  means a higher volatility of cash flows and then the opportunity to higher 
increase of earnings from the project if things go well, while maintaining the opportunity of 
resign from expanding the scale of the business if things go bad. If the NPV increases, this 
indicates that things are supposed to go well so that an expansion opportunity could be 
convenient. An increased AddCost diminishes the value of Growth. 

The intermediate outputs Exclusivity and ExpRetal give rise to Competition, which 
informs the evaluator about the role of competitors if investment is undertaken. Competition 
increases with ExpRetal while decreases with Exclusivity. 

Abandon and Growth determine the value of what we call Implicit Options 
(ImplOptions), i.e. the right to give up the project or to expand it once the investment is 
undertaken. 

QualAnalysis and NPV join in the Net Investment Value (NIV), which gives us the 
value of the opportunity of investing now, net of the value of other implicit options and the 
degree of  competition. 

NIV, ImplOptions and Competition affect the overall Investment Value (InvValue). The 
higher is  InvValue the more inclined to investing now is the decision maker. 

The rules for InvValue show some interesting features. An excerpt of this rule block is 
shown in Table 3. The last two rows (with blank spaces in the first column) tell us that 
whatever the degree of Competition, if ImplOptions is Low or Medium and NIV is VeryLow, 
then InvValue is VeryLow or Low. The two rows preceding the latter two say that whatever 
the value of Competition, if ImplOptions is VeryLow and NIV  is VeryLow or Low, then 
InvValue is also VeryLow or Low. These four rules show that when NIV has a small value 
and ImplOptions is not more than Medium, then Competition does not play any role in 
determining InvValue. 

We can also note that ImplOptions and NIV are able to more than compensate an 
extremely high Competition if one of the former two is at least Medium and the other 
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VeryHigh. In fact, we have 
 
 
 IF (VeryHigh AND Medium AND VeryHigh)  THEN  (MediumHigh) 
 
as well as 
 
 IF (VeryHigh AND VeryHigh AND Medium)  THEN  (MediumHigh) 
 
 

Table 3 
IF THEN 

Competition Impl_Options NIV DoS Inv_value 
very_high medium low 1.00 Low 
very_high medium medium 1.00 Low 
very_high medium high 1.00 medium_low 
very_high medium very_high 1.00 medium_high 
very_high high very_low 1.00 low 
very_high high low 1.00 low 
very_high high medium 1.00 medium_low 
very_high high high 1.00 medium_high 
very_high high very_high 1.00 medium_high 
very_high very_high very_low 1.00 low 
very_high very_high low 1.00 low 
very_high very_high medium 1.00 medium_high 
very_high very_high high 1.00 medium_high 
very_high very_high very_high 1.00 high 
 very_low very_low 1.00 very_low 
 very_low low 1.00 low 
 low very_low 1.00 very_low 
 medium very_low 1.00 low 
 
 

Opposed to InvValue is the value of waiting (Waiting). It is determined by 
ImplOptions, NPV, and Risk. The Risk is such as to suggest waiting in an increasing relation, 
whereas with ImplOptions and NPV the relation is reversed. In fact if the latter two increase 
than the proclivity to waiting decreases. An excerpt of this rule block is shown in Table 4 and 
Table 5. Looking at Table 4 the value of waiting is rather high or even very high if  NPV is 
NoProfit  unless ImplOptions is VeryHigh (see Table 4). Then InvValue is not very influenced 
by ImplOptions unless the latter has a very great value. The NPV is then more important, 
which certainly  makes sense (but the rules are subjective so the locution `makes sense’ 
should be considered improper in this context). 

Further our decision maker is quite averse to risk, since Waiting is no less than 
MediumHigh whenever the Risk is High, except for the two cases where  NPV is Profit and 
ImplOptions is High or VeryHigh (see Table 5). 

Moreover we have constructed these rules so that whenever the risk is Low or 
Medium-Low the value of waiting is determined by the other two inputs. If  Risk is Low or 
Medium-Low, NPV is NoProfit and ImplOptions is not VeryHigh, then the decision maker 
assigns a great value to Waiting.  In fact, in these cases, Waiting is High or MediumHigh (see 
Table 4). The propensity to waiting is not caused by Risk (which is quite low), but by an 
investment value which is not so high, as well as by a value of the other options which is not 
so high. 
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Table 4 
IF THEN 

Impl_Options NPV Risk DoS Waiting 
very_high no_profit low 1.00 medium_low 
very_high no_profit medium_low 1.00 medium_low 
high no_profit low 1.00 medium_high 
high no_profit medium_low 1.00 medium_high 
high no_profit medium_high 1.00 medium_high 
very_high no_profit medium_high 1.00 medium_high 
very_low no_profit low 1.00 high 
very_low no_profit medium_low 1.00 high 
low no_profit low 1.00 high 
low no_profit medium_low 1.00 high 
low no_profit medium_high 1.00 high 
medium no_profit low 1.00 high 
medium no_profit medium_low 1.00 high 
medium no_profit medium_high 1.00 high 
high no_profit high 1.00 high 
very_high no_profit high 1.00 high 
very_low no_profit medium_high 1.00 very_high 
very_low no_profit high 1.00 very_high 
low no_profit high 1.00 very_high 
medium no_profit high 1.00 very_high 
 
 
 
 

Table 5 
IF THEN 

Impl_Options NPV Risk DoS Waiting 
very_low no_profit high 1.00 very_high 
very_low indifferent high 1.00 very_high 
very_low profit high 1.00 high 
low no_profit high 1.00 very_high 
low indifferent high 1.00 high 
low profit high 1.00 medium_high 
medium no_profit high 1.00 very_high 
medium indifferent high 1.00 high 
medium profit high 1.00 medium_high 
high no_profit high 1.00 high 
high indifferent high 1.00 medium_high 
high profit high 1.00 medium_low 
very_high no_profit high 1.00 high 
very_high indifferent high 1.00 medium_high 
very_high profit high 1.00 medium_low 
 
 
 

One more step and we reach the tree-trunk. Waiting and InvValue compete for the 
Exercise Value (ExV), which says whether the options must be exercised or not. The higher 
ExV the higher the propensity to invest immediately. 

This final rule block is analogous to the comparison accomplished by stochastic 
dynamic programming: the continuation region is countered by the stopping region. Waiting 
is our fuzzy continuation region, InvValue is our fuzzy stopping region. But we have also 
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added another important driver: Expiration.  That is, if Waiting increases and InvValue 
decreases then ExV increases, but, ceteris paribus, the higher is the risk that the option fades 
out the higher is the propensity to exercise the option. Note that Expiration does not play any 
role if InvValue is less than MediumHigh (i.e. VeryLow, Low or MediumLow): ExV is in 
these cases VeryLow, Low, MediumLow (except one case where it is Medium). This is 
obvious: To exercise the option InvValue must be sufficiently high regardless of the value of 
Expiration. The latter indicates the risk that the investment opportunity is taken away by a 
competitor. But if this opportunity is not so good, then the investor does not care so much if 
someone else exercises it (see Table 6). 
 
 
 

Table 6 
IF THEN 

Expiration Inv_value Waiting DoS ExV 
 very_low  1.00 very_low 
Low low high 1.00 very_low 
Low low very_high 1.00 very_low 
Medium low very_high 1.00 very_low 
High low very_high 1.00 very_low 
Low low very_low 1.00 low 
Low low low 1.00 low 
low low medium_low 1.00 low 
low low medium_high 1.00 low 
medium low very_low 1.00 low 
medium low low 1.00 low 
medium low medium_low 1.00 low 
medium low medium_high 1.00 low 
medium low high 1.00 low 
high low very_low 1.00 low 
high low low 1.00 low 
high low medium_low 1.00 low 
high low medium_high 1.00 low 
high low high 1.00 low 
low medium_low very_high 1.00 very_low 
low medium_low medium_high 1.00 low 
low medium_low high 1.00 low 
medium medium_low medium_high 1.00 low 
medium medium_low high 1.00 low 
medium medium_low very_high 1.00 low 
high medium_low very_high 1.00 low 
low medium_low very_low 1.00 medium_low 
low medium_low low 1.00 medium_low 
low medium_low medium_low 1.00 medium_low 
medium medium_low very_low 1.00 medium_low 
medium medium_low low 1.00 medium_low 
medium medium_low medium_low 1.00 medium_low 
high medium_low low 1.00 medium_low 
high medium_low medium_low 1.00 medium_low 
high medium_low medium_high 1.00 medium_low 
high medium_low high 1.00 medium_low 
high medium_low very_low 1.00 medium 
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5. Sensitivity Analysis 
 

We have accomplished some simulations which are essential for testing the robustness 
and theoretical soundness of the model. Some of these are here thoroughly investigated.  As 
for the simulations of Figg.2-6 and Fig.11 we have three Tables, a large graph and twelve 
smaller graphs. The first Table shows the values selected of the inputs which determine the 
NPV (in the last row we have ρ, which is calculated as in (4.1-1)). The second Table shows 
the values selected for the Fuzzy Logic System (FLS) inputs, that is the inputs of our fuzzy 
expert system (one of them is the NPV, which is determined on the basis of the preceding 
Table). The third Table automatically shows the value of the intermediate outputs as well as 
the value of the final output ExV (whose row is always shaded). In each simulation we 
consider eleven cases, where some of the inputs (NPV inputs and/or FLS inputs) are made to 
vary, while the others are maintained constant. The rows corresponding to the varying inputs 
are shaded. The values of the outputs recorded in the third Table are graphically represented 
in the subsequent figures. They enable the reader to directly understand how the value of ExV 
is determined (while looking, at the same time, at the tree in Fig.1) and therefore allow for a 
correct justification of the final variation. The abscissa of each graph marks the different cases 
involved (case 1,2,…,11). As for Figg.7-10 only ExV  is graphically represented. 

Figure 2 is rather interesting as it shows how  ExV changes as both BusRisk and 
MarketRisk rises and AddCost decreases, while all other inputs are held constant. In the 
horizontal axis we have case 1,2,…,11 corresponding to increasing values of the inputs (see 
Figure 2.2). Inspecting Figg.2.3-2.4 we see that  ExV  is 0.87 and it is a steady line until case 
6; then it sharply decreases to 0.29 in case 11 where both risks are at a maximum level of 
1.00. The reason can be inferred by the analysis of Figg. 2.5-2.16, which show different 
effects combining together. As both types of risk increase Risk increase monotonically from 
0.00 to 1.00, as we expect. With Risk increasing the NPV decreases monotonically, due to 
(4.1-1) and (4.1-2). QualAnalysis is constant and NIV is constant at a high level until case 6, 
then it sharply declines. This is due to the fact that when the NPV is positive, i.e. NPV is 
Profit, and QualAnalysis is at least MediumLow, then NIV is no less than High.The value of 
ImplOptions also rises as both Abandon and Growth increase (as for Growth, its increase is a 
little smaller than Abandon, because the higher Risk and the lower AddCost are partly offset 
by a decreasing NPV). Further, Competition is constant. So we have a very high constant NIV, 
an increasing ImplOptions and a low constant Competition. The result is that InvValue is even 
higher than NIV until case 6. Also, Waiting does not rise so much, since even though Risk 
sharply increases, this is partly compensated by higher and higher ImplOptions and a Net 
Present Value that is always positive. So, with a very high value of  NIV  the decision maker 
is inclined to invest immediately. Waiting is then so low that the propensity to invest now is 
reinforced. Further Expiration is not so high to limit the high value of ExV, so that, at last, 
ExV is 0.87. From case 7 on things change a lot. Even if the value of ImplOptions keeps on 
rising, InvValue is increasing and Waiting tends to sharply decrease. Actually, the risk is now 
too high be overlooked and the decrease in AddCost is not so important, so that the fall of the 
NPV suggests caution. Then, ExV decreases until reaching 0.29. 

It is also worthwhile noting that the high value of ExV until case 6 is to be connected 
to an extremely high value of the Net Present Value1, which compensates for increasing risk 
(at least for a reasonable level of risk). When the NPV is not so high things change. 
 
 
 
 
                                                           
1 The range of the NPV has been fixed in such a way that below –75.000 the NPV is VeryLow with membership 
degree 1.00 and above 75.000 it is VeryHigh with membership degree 1.00. 
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Figure 2.4 
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Figure 2.11     Figure 2.12 

 
 

Figure 2.13     Figure 2.14 

 
 

Figure 2.15     Figure 2.16 

 
 
 

A similar situation is illustrated in Fig.3, where the expected cash flows are equal to 
65.000 from time 1 to time 10 and b is 10.000. You can see a different path for ExV. In fact, 
the NPV is very high for the first three cases, but from case 4 it sharply declines becoming 
negative in case 9. In such a situation Risk plays an important role even when its value is not 
high.  
 

Figure 3.1 

 



 22

Figure 3.2 
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Figure 3.5     Figure 3.6 
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Figure 3.15     Figure 3.16 

 
 
 
 
 Interesting  relations are depicted in Fig.4. Now we have that only BusRisk is made to 
rise. ExV  does not show a monotonic  trend. The reason is that the model is such that the 
relations among inputs and intermediate outputs are not simple. Note that  ExV falls from 0.62 
(case 1) to 0.43 (case 4). This is due to a slightly decreasing InvValue and an increasing 
Waiting (Fig.4.3). The latter increases for NPV is decreasing and  Risk is increasing, while 
ImplOptions does not change much (this is due in turn to the fact that Growth does not rise 
sufficiently, since the increase in Risk is almost compensated by the reduction of NPV). The 
former decreases as Competition is constant and the decrease in NIV is not compensated by 
ImplOptions, which remains almost constant. From case 5 things change. Even if NIV keeps 
on falling monotonically, the level of Risk is now such that the rise of ImplOptions 
compensates the fall so that InvValue begins to invert the trend. At the same time, Waiting 
reduces. 
 From case 7 the function decreases again until 10 where a final increases can be noted. 
The reader can justifies herself/himself these changes by inspection of Figg.4.3-4.16. 
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Figure 4.2 
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Figure 4.5     Figure 4.6 
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Figure 4.15     Figure 4.16 

 
 
 
 
 Fig.5 shows the role played by  the risk-free rate in determining ExV.  The risk-free 
rate has a remarkable impact on the Net Present Value and through it on the other outputs. 
Note that ImplOptions  does not change so much (Fig.5.7). This derives from the behavior of 
Abandon, which slightly increases, and Growth, which decreases. The two compensate, more 
or less, so InvValue is determined almost completely by NIV. The latter decreases as the NPV 
decreases (even though in a smoother way since Competition is low and the value of 
ImplOptions is medium).  Consequently, InvValue decreases. At the same time, Waiting  
increases from an initial 0.29 to the final 0.51 and this reinforces the reduction of ExV.  
Actually, if the risk-free rate is 50 percent, the NPV of the project is negative, the propensity 
to invest immediately should  be  rather small. The reader could expect an even lower level of 
ExV, since anyone would prefer to invest at such a high risk-free rate rather than invest to a 
medium-risk project with negative NPV. The fact that ExV is 0.24 in case 11 is due to a rather 
high degree of Exclusivity of the option, a low degree of Competition, and a value of the 
implicit options which is not so small. If these three factors were lower, then ExV would be 
much lower. 
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Figure 5.2 
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Figure 5.5     Figure 5.6 
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Figure 5.15     Figure 5.16 

 
 
 
 
 Fig. 6 show how sensitive is ExV to a change in b, the residual value of the project. 
We can note that the situation does not change much from  b=0  to b=50000 (Fig.6.1). This is 
quite consistent with the idea that the final flow should not be very important in determining 
the decision (unless it is abnormally high). 
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Figure 6.3 
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Figure 6.9     Figure 6.10 

 
 

Figure 6.11     Figure 6.12 

 
 

Figure 6.13     Figure 6.14 

 
 

Figure 6.15     Figure 6.16 

 
 
 

Fig. 7 shows ExV  as a function of 6 value drivers for different values of BusRisk, 
other things equal. The value drivers under considerations are: Differentiation, KnowHow, 
Reputation, CommImpl, Sinergies, StratConsist. We set BusRisk=0, 0.2, 0.4, 0.6, 0.8, 1.00 
and draw up the corresponding curves in Fig.7.4. Fig 7.2 shows only the case BusRisk=0.  For 
any fixed value of  BusRisk we have an increasing function. Note that ExV  rises from very 
low values (case 1) to very high values (case 2),  while the NPV is fixed. This means that 
qualitative drivers may have a large impact on the exercise value of the option to invest; in 
particular, even if the  NPV is held fixed to the rather high value of 48.401.  ExV  is very low 
if the six drivers are not favorable. 

The curve shifts down as BusRisk is being augmented and for fixed values of the 6 
drivers the propensity to invest immediately is being diminished (Fig.7.4). 
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Figure 7.1 
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Figure 7.4 

 
 
 
 

Fig.8 shows ExV as a function of the aforementioned value drivers but now for 
different values of the risk-free rate. We set Rf=0, 0.05, 0.1, 0.15, 0.20 and 0.25 (Fig.8.1 
shows only the case Rf =0). In this case as risk-free rate rises the curve shifts down. 
 
 
 

Figure 8.1 
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Figure 8.2 

 
 

Figure 8.3 
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Note that both in Fig.7.4 and Fig.8.4 the distance among the 6 curves is at its 
maximum in cases 5 and 6, where the value drivers considered are neither low nor  high. In 
these cases ExV is more sensible to change in BusRisk and Rf respectively.  This may be 
justified in the following way: if the 6 drivers are very low or low, then it does not matter so 
much whether the risk is low or high. If Risk is low, the investor is quite sure of her own 
NPV, but as we know NPV is calculated regardless of any consideration about all others 
qualitative factors. If these factors are not favorable at all, Risk does not play a major role (the 
latter is played by the six qualitative drivers). The same is true for very high values of Risk 
though the distance among curves is a little greater. Conversely, when the 6 drivers at hand 
are neither low nor high (case 5 and case 6) , there is a high degree of indeterminacy so that 
Risk makes things change a lot. As for Fig.8.4 when the 6 drivers are not favorable, it does not 
matter much whether Rf  is small or not, and the same is true for high values of the six drivers. 
When indeterminacy prevails in the latter, then Rf  plays a major role. 

Fig.9 shows ExV as a function of both BusRisk and MarketRisk for different values of 
a0, the initial cost. We set a0= -5000,-10000,-15000,-20000, and –25000  (Fig.9.1 shows only 
the case a0 = -5000). The curve is decreasing for higher values of risk, as we expect, and it 
shifts down as the initial cost a0 rises (Fig.9.4). Note that while ExV is decreasing 
monotonically, the reduction is not so sharp2: for a0=-5000  NIV decreases from 0.65 to 0.41 
but ImplOptions increases from 0.44 to 0.75. The effect of NIV prevails, so that InvValue does 
not reduce so much (from 0.66 to 0.44) and Waiting increases from 0.2 to 0.55, which leads to 
the reduction in ExV from 0.68 to 0.41. For the other value of a0 the behavior is analogous. 

 
 
 
 
 
 
 

Figure 9.1 

 
 
 
 
 
 
 
 

                                                           
2 Again, this is our judgment, maybe another evaluator could interpret the reduction differently. 
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Figure 9.2 
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Fig.10 shows the case where cash flows released by the project increase by α percent 
each period (included the liquidation value b). ExV is now seen as a function  of α for 
different values of BusRisk (=0, 0.2, 0.4 ,0.6, 0.8, 1). Fig.10.2 shows only the zero case. We 
have now 
 
   )1(1 α+= −ss aa  s = 2,…,10  and )1(10 α+= ab  
 

For any fixed BusRisk the function is increasing, as it is obvious (the NPV increases as 
α increases, which causes  NIV and ImplOptions to rise, which in turn cuses InvValue to rise, 
being other things equal). But each curve keeps almost constant until case 6, then begins to 
increase faster. The reason is that that the values we have selected lead to such a small NPV 
until case 6  that  InvValue remains almost unvaried. However, for BusRisk=1 there is no 
great variation in ExV from case 6 to case 11 (the risk is too high, it is better to wait, even if 
α=0.43), for BusRisk=0 the variation is much more remarkable, going from 0.17 to 0.69. 
Further, the distance among the curves is small until 6. From case 7 the distance grows larger.  
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Figure 10.3 

 
 
 
 

Figure 10.4 

 
 
 

Finally, Fig.11 points out the dependance of ExV on Expiration. The latter influences 
the former directly. As you note, ExV starts from a medium level, despite an extremely high 
NPV:  the high levels of Competition and Risk and the low level of QualAnalysis compensate 
for the high levels of NPV and ImplOptions, so that InvValue is not so high and Waiting is not 
so low as to suggest a high propensity to exercise the option (Figg.11.5-11.16). With 
Expiration increasing from 0 to 0.5 the situation remains unvaried. Only when the risk of 
expiration becomes relevant, the exercise value gradually increases. When Expiration reaches 
level 1.00 the decision maker is incurring a very high risk of losing the right to exercise the 
option, as another competitor is likely to exercise it. This leads to the higher value ExV=0.63. 
Such a degree could be reasonably regarded by the evaluator as sufficiently high and the 
investment could be undertaken even if, were it not for the high risk of expiration, the project 
would not be completely attractive. 
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Figure 11.4 
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Figure 11.11     Figure 11.12 

 
 

Figure 11.13     Figure 11.14 

 
Figure 11.15     Figure 11.16 

 
 
 
6. Conclusive Remarks 
 
 

This paper presents a model for evaluating a compound strategic option with a fuzzy 
expert system. This proposal is able to solve some problems arisen in the options-based 
classical models. The difficulties to practically implement current real option models rest on 
the complexity of the tools used and on strong and unrealistic implicit assumptions. As 
Lander and Pinches suggest, a new framework is searched for, apt to handle real situations 
without, at the same time, increasing the complexity of the model. Our model is a first step in 
this sense. The fuzzy decision tree we have constructed has several advantages, among which 
its flexibility and its immediate applicability. The actual fuzzy model we present here can be 
easily modified in order to satisfy the needs of any decision maker. The decision tree has to be 
drawn up with the help of the actual decision makers. As we have seen, it easily copes with 
situations where qualitative parameters play an important role and where the investor has 
multiple objectives. The model is very sensitive to the subjectivity and personality of the 
evaluator, which is, in our opinion, an advantage rather than a drawback. In this sense, it is 
both universal and particular, as it is applicable to any investor but can be set so as to 
adequately describe the way of thinking of each single investor (it is ad personam). We think 
it can be appreciated by practitioners for its ease of understanding and applicability. It is 
particularly suited for complex situations such as strategic investment options, where multiple 
quantitative and qualitative uncertain variables have to be considered: Our modular approach 
enables us to subdivide all variables in subsets giving rise to rule blocks for each subsets. The 
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rule blocks present intermediate outputs that are aggregated so as to draw up other 
intermediate outputs while reducing the number of total rule blocks, until the final tree-trunk 
is reached. 

The sensitivity analysis we have showed tests the robustness of our model and its 
effective application to practical situations. The result we have reached are consistent with 
those existing in the literature (see Dixit, Pindyck, op.cit.), but they are also more refined for 
three main reasons: In primis, we are able to cope with many variables without any sort of 
formal complexity, in secundis we are not bound to any assumption whatsoever about the 
path followed by the random variables (we are just bound to the subjectivity of the evaluator), 
in tertiis we can justify step by step the final value by analyzing the behavior of the 
intermediate outputs as the inputs vary. In this way, different, opposing, reinforcing effects on 
ExV can be directly seen; whenever some rule is considered not fully convincing, the 
evaluator can modify at any time the model. 

Future researches can consist of a development of a more general model, much 
powerful than the present one as well as examples from real situations. A next paper will be 
devoted to the actual implementation of this framework to a particular firm. 
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