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Abstract: This paper addresses a critical security challenge in the field of automated face recognition, i.e., morphing attack. The pa-
per introduces a novel differential morphing attack detection (D-MAD) system called ACIdA, which is specifically designed to over-
come the limitations of existing D-MAD approaches. Traditional methods are effective when the morphed image and live capture are
distinct, but they falter when the morphed image closely resembles the accomplice. This is a critical gap because detecting accomplice in-
volvement in addition to the criminal one is essential for robust security. ACIdA's impact is underscored by its innovative approach,
which consists of three modules: One for classifying the type of attempt (bona fide, criminal, or accomplice verification attempt), and
two others dedicated to analyzing identity and artifacts. This multi-faceted approach enables ACIdA to excel in scenarios where the
morphed image does not equally represent both contributing subjects — a common and challenging situation in real-world applications.
The paper’s extensive cross-dataset experimental evaluation demonstrates that ACIdA achieves state-of-the-art results in detecting ac-
complices, a crucial advancement for enhancing the security of face recognition systems. Furthermore, it maintains strong performance
in identifying criminals, thereby addressing a significant vulnerability in current D-MAD methods and marking a substantial contribu-

tion to the field of facial recognition security.
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1 Introduction

The recently introduced morphing attackl!l poses a
significant security threat in face verification-based ap-
plications, systems are usually exploited for instance in
the automatic border control (ABC) gates in internation-
al airports?l. Indeed, through this attack, it is possible to
obtain a regular and legal document that presents a
morphed photo, i.e., a hybrid face image that hosts two
different identities, and that can be therefore shared
between two subjects. In this way, a criminal can bypass
official controls using the identity of an accomplice
without any criminal record(3.

In this context, the development of effective morph-
ing attack detection (MAD) systemsl4, i.e., methods able
to automatically detect the presence of morphing in in-
put images, are strongly demanded by private and public
institutions. Generally, two families of MAD approaches
are investigated in the literaturel’: Single-image MAD (S-
MAD) methods, which usually rely on the detection of
the presence of visible or invisible morphing-related arti-
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facts in the single input image, and differential MAD
methods (D-MAD), which usually compare the identity of
the two facial images — the document and the trusted live
acquisition image — received as inputl6-8l.

Generally, the evaluations reported in many works of
D-MAD literature consider morphed images created with
an equal presence of the two contributing subjects!%-13],
This choice maximizes the probability of fooling auto-
mated verification systems with both contributing sub-
jects. However, a successful morphing attack also re-
quires fooling the human examiner at the document en-
rollment stage, typically presenting a morphed photo very
similar to the document applicantl!4: 15, Therefore, the
morphed image should be created with a stronger pres-
ence of the accomplice, so that the human examiner is
less inclined to notice significant differences.

In this operational scenario, D-MAD methods based
on the comparison of identity featuresl®-® 4 lose their ef-
fectiveness. Specifically, as reported in Fig.1, the error
rate is limited when the input images are sufficiently di-
verse (e.g., the morphed image is compared with the
criminal), while the error tends to grow with the increas-
ing of the identity similarity (e.g., the morphed image is
compared with the accomplice).

Therefore, in this work, we introduce ACIdA, a novel
modular D-MAD approach designed to effectively ad-
dress accomplice verification attempts, delivering robust
MAD performance with both contributing starting sub-
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Fig.1 Performance of literature D-MAD methods across different identity similarity scores between the document and live images. On
z-axis, values close to 1 indicate a high similarity. The analysis shows that all methods are negatively influenced by increasing identity
similarity, which corresponds to a higher presence of the accomplice in the input images instead of the criminal (both percentages are
represented with dotted lines). The criminal-accomplice ratio is computed and represented with dotted lines. The analyzed D-MAD
methods include ArcFacel®l, MagFacel”l, Demorphing14, and Siamesel®l, with further details provided in the referenced section. (Colored
figures are available in the online version at https://link.springer.com/journal/11633)

jects. To evaluate the proposed system, we introduce and
explore a novel scenario where D-MAD is employed to
detect both criminal and accomplice verification at-
tempts, as visually summarized in Fig. 2.
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Fig.2 Visualization of the introduced MAD scenario: The
document image, eventually morphed, is compared with a
trusted live acquisition obtained at the gate in which the
criminal or the accomplice is passing. The proposed system,
ACIdA, is focused on document images more similar to the
accomplice. (Colored figures are available in the online version at
https://link.springer.com/journal/11633)

Successfully tackling this task would impact the MAD
task and broaden the operational context of D-MAD
methods. Firstly, D-MAD methods could be exploited at
the enrollment stage to avoid a morphed image being in-
cluded in the official document requested by the accom-
plice. Secondly, the tested scenario would allow the use of
MAD methods in ABC gate to identify not only the crim-
inal but also the accomplice, who has stained itself with a
criminal and punishable action during the document-issu-
ing procedure. It is also worth considering that since in
the morphing attack the accomplice applies for a valid
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passport, he will have to use that passport for several
years if he needs to travel, thus making of interest the de-
tection of the accomplice’s attempt. We observe this scen-
ario represents an interesting and challenging research
field, that needs to be addressed in future MAD-related
work.

From an implementation point of view, ACIdA is
based on three modules that focus on different aspects of
the introduced scenario: the attempt classification (AC)
module, responsible for the classification of the identity
verification attempt in three different classes (i.e., crimin-
al, accomplice or bona fide attempt); the identity-artifact
module (IdA), based on a combination of artifacts detec-
tion and identity analysis; the identity module (Id), that
is based only on identity features.

The rationale behind this proposal is that when the
identity information is very certain (as in the case of
bona fide or criminal attempts) the D-MAD score should
mainly rely on this aspect, while when the identity in-
formation is uncertain (as for the accomplice attempts),
the D-MAD should also consider and evaluate the pos-
sible presence of artifacts to better detect morphing.

The underlying idea considered in this paper has been
first introduced in [16] where we showed that the combin-
ations of identity features and artifact analysis improve
the accomplice detection. Then, this paper further ex-
tends that initial work, including the following original
contributions:

1) We propose ACIdA, a deep learning-based D-MAD
method expressively conceived to detect both criminal
and accomplice attempts in the face morphing attack.
Specifically, with respect to [16], we introduce a new
module to provide the attempt classification, and other
two modules focus on identity and artifact features. All
these modules cooperate to output the final score through
a weighted prediction.

2) We test ACIdA on a D-MAD scenario in which
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document images are compared with both accomplice and
criminal contributing subjects and the morphing process
is not necessarily symmetric (i.e., it does not include an
equal contribution of the two subjects). From a practical
point of view, this approach broadens the scope of applic-
ation of current D-MAD methods to scenarios, such as
the enrollment one, that have been relatively unexplored
until now. We also highlight, from a quantitative point of
view, the lack in terms of accuracy of identity-based D-
MAD methods currently available in the literature.

3) We perform an extensive and cross-dataset evalu-
ation, highlighting several experimental aspects of the
proposed method. Moreover, we show the generalization
capability of the proposed method in a different D-MAD
scenario through the FVC-onGoing! platform.

For the sake of reproducibility and the comparison
with future works, we publicly release the code, the list of
subject pairs used for morphing generation for training
and testing sets, and the implementation details of the
proposed method?.

1.1 Issues with existing D-MAD methods

Differential morphing attack detection (D-MAD)
methods, also referred to as two-image or pair-based ap-
proaches, employ a pair of facial images as input. The ob-
jective of these methods is to determine whether the doc-
ument image has undergone morphing. The second image,
which is a verified live capture, serves as a crucial refer-
ence for the task, facilitating the analysis of inconsisten-
cies in identity, texture, or color when compared to the
first image, as analyzed in Section 2.

In practice, these two images can be obtained during
passport issuance, where the first image is the provided
photo and the second image is captured in real-time. Sim-
ilarly, during controls at ABC gates, the live image is ac-
quired through automated face verification procedures,
while the probe image is retrieved from the electronic ma-
chine readable travel document (eMRTD).

Analyzing the results obtained on two important se-
questered datasets, i.e., NIST FATE MORPH? and FVC-
onGoing[l7l, it can be noted that the most promising D-
MAD algorithms are based on the comparison of the
identity features obtained through pre-trained deep learn-
ing architectures. We observe that these approaches can
be limited in accuracy, in particular, when morphed im-
ages are compared with the accomplice and, in general,
with look-alike subjects.

These hypotheses are validated through our experi-
ments, the results of which are presented in Fig.1. Spe-
cifically, we evaluate the performance of various D-MAD
systems from the literature across multiple image pairs
with increasing similarity between the subjects, i.e., the

! https://biolab.csr.unibo.it/fvcongoing/
2 https://github.com/ndido98/acida
3 https://pages.nist.gov/frvt /html/frvt_morph.html

document image and the live acquisition. Identity similar-
ity is quantified by computing the cosine similarity of
identity features extracted using the method described in
[18]. For a thorough analysis, we also calculate the per-
centage of criminal and accomplice pairs relative to the
total number of attempts as a function of similarity.

In order to summarize the MAD performance, results
are reported through the weighted average error (WAE)
metric (detailed in Section 4.4), i.e., the average of error-
based metrics commonly used in the MAD task. As
shown, all reported methods suffer the increasing similar-
ity (values close to 1 on z-axis), which corresponds to an
increasing number of verification attempts involving the
accomplice subject instead of the criminal one (represen-
ted with dotted lines). The trend of the method®l differs
from other algorithms because, despite slightly lower per-
formance for low similarity values, it exhibits greater ro-
bustness as the similarity value increases. One possible
explanation derives from the fact that this method util-
izes both identity-related features and features associated
with the presence of artifacts to compute the final morph-
ing score (see Section 2 for more details).

Furthermore, an additional limitation of current D-
MAD methods lies in the robustness of pre-trained net-
works on large and diverse datasets for the face recogni-
tion task, which makes these methods potentially insens-
itive to clearly visible artifacts in morphed images. An ex-
ample of this is depicted in Fig.3, in which the SoA D-
MAD method described in [6] wrongly predicts these im-
ages as bona fide, even though visible artifacts are
present. From here, also taking into account the previous
considerations, the intuition was born to include artifact
detection in the proposed ACIdA method, as detailed in
Section 3.2.

Fig. 3 Morphed images that successfully fool an identity-based
D-MAD system, but exhibit visible artifacts related to the
morphing procedure. This observation leads to the intuition to
exploit artifact detection techniques in the proposed ACIdA
system, as discussed in Section 1.1. (Colored figures are available
in the online version at https://link.springer.com/journal/
11633)

2 Related work

Given the importance of countering the face morph-
ing attack, a variety of D-MAD methods have been intro-
duced in the literature!% 20. From a general point of
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view, these methods can be classified depending on the
type of features they compute starting from the two in-
put images: artifact-based, identity-based, demorphing-
based and, finally, hybrid approached referred to as
mixed feature-based.

2.1 Artifact-based D-MAD

In this category, D-MAD methods extract from the in-
put images general-purpose features, both through classic
computer vision techniques and deep learning-based ar-
chitectures. The assumption is that the comparison of
these features can highlight the anomalous traces — i.e.,
the artifacts — left by the morphing procedure.

As hand-crafted features, the most used are binarized
statistical image features (BSIF)[2!, local binary patterns
(LBP)22, and histogram of oriented gradients (HOG)[=23],
in combination with machine learning classifiers. These
methods have achieved partially satisfactory results. The
approach described in [24], involves computing a histo-
gram of LBP for both images and subtracting them. The
resulting 256-dimensional feature vector is then used to
train a support vector machine (SVM) that generates the
morphing score.

The article in [25] suggests using undecimated 2D dis-
crete wavelet transform data to feed a Siamese neural
network, which highlights the differences between genu-
ine and altered images. While the findings presented are
compelling, the absence of implementation details* limits
the ability to reproduce the results.

Recently, various works have tackled the D-MAD
task, using a variety of different deep learning architec-
tures, such as the fusion of the output of different back-
bones(26: 27] or the feature-wise supervision on fine-grained
classification[28l. The work of Singh and Ramachandral?’]
describes a method based on the fusion of several deep
features computed from six different convolutional neural
networks (CNNs), trained on the ImageNet dataset, and
merged through a spherical interpolation, referred as
spherical linear interpolation (SLERP). Differently from
ours, this method is not based on identity features, and it
is specifically conceived for the on-the-fly D-MAD task
with different camera resolutions and acquisition dis-
tances. In [12] Soleymani et al.[?] proposed a Siamese net-
work based on the Inception ResNet architecture. After
the first alignment stage, the embedding of the two in-
put images is extracted; a contrastive loss is used during
the training phase.

Finally, other methods compare specific facial ele-
ments, on which the Euclidean and angle distances are
computed, as discussed in [30]. However, the perform-
ance of these techniques is heavily dependent on the ac-
curacy of the facial landmark predictor, so they are not
included in the current analysis. The method described in

4 At the time of writing, the method is being patented
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[31] proposes to analyze the locations of fundamental fa-
cial landmarks, in order to capture inconsistencies in the
facial geometry introduced by the morphing process.

2.2 Identity-based D-MAD

Identity-based D-MAD methods, as the name sug-
gests, are based on the extraction of features related to
the identity of the depicted subjects in the input images.
The assumption is that it is possible to detect the morph-
ing attack through a sort of face verification procedure.

One of the most effective and accurate identity-based
D-MAD approaches is presented in the recent work of
Scherhag et al.[f], in which authors propose a convolution-
al neural network (CNN) architecture, specifically a Res-
Net50B2, trained with an angular margin loss referred to
as ArcFacel3d], originally designed for the face recognition
task. This architecture is utilized to extract feature em-
beddings from the input images. According to Scherhag
et al.lfl, the network is pretrained and no additional train-
ing procedures are performed specifically for the morph-
ing detection task: This ensures that the deep learning
model does not suffer from overfitting with training data-
sets limited in size and variety. Finally, the extracted fea-
tures are then subtracted and fed into an SVM for the fi-
nal classification process. A recent evolution of this sys-
tem has been proposed in [7], in which the backbone is a
ResNet trained through the MagFacell8l loss function, an
adaptive mechanism to learn a well-structured within-
class feature distribution relying on the magnitude of vec-
tors that have achieved SoA performance on the face re-
cognition task. Another methodB4 extracts identity fea-
tures and learn to implicitly disentangle identities from
the morphed image conditioned on the live trusted ac-
quisition using a conditional generative adversarial net-
work (GAN).

2.3 Demorphing-based D-MAD

In this category, the main idea is to reverse the
morphing procedure to restore the identity of the legitim-
ate document owner. In this manner, the comparison
between the morphed image and the restored one can re-
veal the presence of the morphing attack.

A seminal work is described in [14], where the reverse
morphing procedure (referred to as “demorphing”) is ap-
plied to the input images in order to reveal the real iden-
tity hidden in the morphed image. This method works in
combination with commercial-on-the-shelf (COTS) face
verification systems and is interesting since it does not re-
quire any training procedure. In this case, the main issue
is represented by the fact that the morphing process is
rarely a simple linear combination as assumed by Fer-
rara et al.[14. Moreover, the entire process is based on the
accuracy of the estimation of the position of facial land-
marks and even small localization errors could negatively
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influence the effectiveness of the whole pipeline. Similar
approaches based on the generative adversarial network
(GAN) paradigms have been proposed[35-38l in order to re-
store the accomplice’s facial image hidden in the morph-
ed one, with partial generalization capabilities. More re-
cently, diffusion autoencoders have been applied to the
demorphing task3 to improve the resulting image qual-
ity and restoration accuracy. Finally, Long et al.[ 9 intro-
duce a novel network based on transformer feature inter-
action to restore the accomplice’s face.

2.4 Mixed feature-based D-MAD

D-MAD methods of this category are hybrid, since
they are based on a combination of the identity and arti-
fact-related features.

The work described in [8] proposes a deep learning-
based Siamese network. This network not only focuses on
features related to the identity of the input subjects but
also on the presence of artifacts caused by the morphing
process. The network has two separate branches that
analyze the same input image, and their outputs are then
combined using a fully connected layer to generate the fi-
nal morphing score. In [16] the authors investigate the
use of both D-MAD and S-MAD features to improve de-
tection performance. Different ways to combine these fea-
tures are analyzed. The analysis of the mixed feature-
based D-MAD highlights the importance of combining
features related to artifacts, typical of S-MAD methods,
with features related to the subject identity, more typic-
al of the D-MAD field: In these terms, only a few works
explore this topic. In the proposed method, the combina-
tion of these two kinds of features is not fixed at the time

of inference but is dynamically established based on the
the subject depicted
in the document image and the one captured through the

diversity of the input subjects, i.e.,
live acquisition, in order to improve the accuracy.

3 Proposed method

The underlying idea of the development of our meth-
od is to process every possible attempt — criminal, accom-
plice, and bona fide — with a specific module based on dif-
ferent features.

Our insight is that for criminal and bona fide verifica-
tion attempts, identity-related features are very effective,
as confirmed by the good results achieved by [6, 18]. Dif-
ferently, for accomplice verification attempts, due to the
greater similarity between subjects, the discriminative
power of identity features is reduced and we believe the
combination with artifact analysis can improve the MAD
performance. To accomplish this paradigm, an initial se-
lector of the attempt type is needed. Then, we build a
classifier that outputs the probability of the attempt type
used in the final MAD score computation. The effective-
ness of the use of different modules is experimentally con-
firmed by the ablation study reported in Section 4.6.

A general overview of the proposed method is depic-
ted in Fig.4. As shown, the framework is divided into
three main modules: the attempt classification (AC) mod-
ule, assigned to the classification of the pair attempt
provided in input, the identity-artifact (IdA) block, spe-
cialized in the detection of morphed images combining
identity and artifact information, and the identity block
(Id), that relies only on identity analysis to detect morph-
ing attacks.
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Fig. 4 General overview of ACIdA. The method is composed of three different modules: the attempt classification (AC) module, that
determines if the document image is compared with the criminal or the accomplice trust live image (see Section 3.1); the identity (Id)
module, an identity comparison-based MAD system (see Section 3.3) and the identity-artifact (IdA) module, that integrates both
information about identity and artifact detection (see Section 3.2). The score of these two MAD modules is combined through a

weighted sum to produce the final output of the system.
springer.com/journal/11633)

(Colored figures are available in the online version at https://link.
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The final output score is obtained through a weighted
sum, formally defined as:

S =pa X Sraa +ps X Sra + pc X Sra. (1)

Let pa, ps, pc denote the probabilities that the doc-
ument image is compared with the accomplice, bona fide,
and criminal subjects, respectively; these probabilities are
generated by the SVM classifiers within the AC module.
Additionally, Srqa and Sjq represent the outputs pro-
duced by the classifiers of the IdA and Id modules, re-
spectively. Through this procedure, the final output is ob-
tained as a weighted sum of all contributions generated
by the different modules, as detailed below.

3.1 Attempt classification module

The attempt classification module is responsible for
preparing the input for all the other modules and for the
pair typology classification itself, i.e., the prediction if the
subject depicted in the live acquisition (attempt) is the
criminal or the accomplice (in case of morphed document
image), or the same subject (bona fide). The input is rep-
resented by the probe image, i.e., the one contained in
the document, and the trusted live acquisition. Firstly,
these images are fed into the MTCNN face detector4!]
that, as the name suggests, crops the face excluding the
large part of the background, preparing the input images
for the feature extraction procedure. The resulting crops
are then used as input to extract features through a back-
bone that outputs two feature embeddings of size 512.
We employ a frozen iResNetl42 architecture as backbone,
trained using the magnitude and angular MagFace loss[!8],
originally conceived for the face recognition task. This
training process has been conducted on vast-scale data-
sets, namely MS-Celeb-1M43] and VGG-Face2[44, which
consist of trillions of face pairs. The two produced embed-
dings are combined through the cosine similarity and are
finally used as input for an SVM classifier that outputs 3
possible different classes: “bona fide”, “accomplice” and
“criminal” along with their probabilities used for the fi-
nal classification, as previously detailed.

3.2 Identity-artifact (IdA) module

As the name suggests, the idea behind this module is
to combine information belonging to two different tasks,
i.e., face verification and artifact detection, following the
considerations reported in Section 1.1.

This module receives as input the extracted feature
embeddings and the document image crops. As men-
tioned, these embeddings are extracted using a backbone
architecture trained for the face recognition task, and
thus we assume these vectors represent the identity of the
faces available in the input images. These identity fea-
ture embeddings are then combined in two different
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ways: In the first, a subtraction followed by a min-max
normalization (that rescales each component in the range
[0,1]) is exploited. In the second, the cosine similarity, a
metric widely used in the check of the identity distance in
the face verification task, is computed. In this manner,
both the two embeddings produced contain information
regarding the difference of the identities provided in in-
put, an essential information for the D-MAD taskl6 7.

A third feature embedding containing information
about the presence of artifact in the document image is
computed as follows. The document image crops are fed
into an Inception-ResNet V145 architecture, starting
from the weights obtained with the VGG-Face2l*4 data-
sets. A fine-tuning procedure is conducted on ICAO-com-
pliant and JPEG-compressed images for the artifact de-
tection task, following the findings reported in [46]. Fi-
nally, a 512-dimensional feature embedding is obtained
removing the final last fully connected layer of the adop-
ted architecture.

These three outputs are finally combined through a
concatenation, that has revealed good performance in the
preliminary work[16l, obtaining a 1 025-dimensional fea-
ture vector, used as input to a multi-layer perceptron
(MLP) architecture exploited as a classifier that pro-
duces in output a score in the range [0, 1].

3.3 Identity (Id) module

For the identity module, we draw inspiration from the
solution presented in [6], which can be considered as the
current state-of-the-art D-MAD method, as evidenced by
the results published on the FVC-onGoing platformll7.

We employ an iResNetl42 network that has been
trained for the purpose of face recognition using the Mag-
Face loss['8l. As the input consists of two images, this
module generates two distinct feature embeddings of size
512. These embeddings are then combined through sub-
traction, resulting in a single final feature vector of the
same size that is fed into an SVM classifier, trained to
output a probability in the [0,1] range that represents
whether the probe image is the result of a morphing pro-
cess. Meng et al.l8l demonstrate that the MagFace loss
function yields robust embeddings by maximizing the
geodesic distance between different identities. Con-
sequently, the produced embeddings exclusively contain
information pertaining to the input face identity.

4 Experimental results

4.1 Investigated scenario

In the investigated scenario, we consider different
types of verification attempts: 1) bona fide, in which an
unmanipulated document image is compared to a live
capture of the same subject; 2) the attempts where a
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morphed document image is compared to a live capture
of the criminal subject (morphed-criminal); 3) the at-
tempts in which a morphed document image is compared
to a live capture of the accomplice subject (morphed-ac-
complice).

The experimental results are therefore categorized in-
to three distinct sub-benchmarks, based on the types of
attempts considered:

1) Accomplice: This benchmark includes bona fide
and morphed-accomplice verification attempts where the
live image is from the accomplice. An example of the in-
put pair of this benchmark consists in Figs.5(a)-5(b).

(a) Subject 1

(b) Morphed (c) Subject 2

Fig. 5 In a D-MAD approach, the morphed image (Fig. 5(b))
can be compared with the criminal (Fig. 5(c)) or with the
accomplice (Fig. 5(a)).

2) Criminal: Conversely, this benchmark encom-
passes bona fide and morphed-criminal attempts where
the live image belongs to the criminal subject (e.g.,
Figs.5(c)-5(b)).

3) Both: In this case, this benchmark is obtained
through a union of the previous ones and it is useful to
understand the generalization capabilities of the MAD
method. It is worth noting the combination of the two
sets of previous attempts allows for evaluating the global
performance of the system since in real-world scenarios
both types of attempts can occur and the system, of
course, is not aware of the image pair type received in in-
put.

In the subsequent analysis, particular emphasis is
placed on the performance achieved in the “accomplice”
scenario. As previously mentioned, due to the greater re-
semblance between the subjects depicted in both images,
this scenario is generally regarded as more challenging for
D-MAD methods based on identity analysis.

Finally, it is important to note that the “criminal”
case represents one of the common benchmarks for new
D-MAD methods, so these results can be used as a refer-
ence for previous work.

4.2 Datasets

Progressive morphing database (PMDB)I4. A
total of 1108 morphed images are obtained by utilizing
three commonly used datasets in the MAD field, namely
ARM face recognition grand challenge (FRGC)M8] and

Color FERET]. These images have been generated us-
ing a publicly available morphing algorithm outlined in a
previous study(!4. The morphing process involved a co-
hort of 280 individuals, consisting of 134 males and 146
females. It is noteworthy that these morphed images have
not been subjected to manual retouching procedures to
enhance their visual quality, thus potentially exhibiting
artifacts such as blurred areas or ghost effects. However,
it is important to mention that the background replace-
ment performed by the morphing is artifact-free.

Idiap morphl9 is a collection of multiple datasets
publicly accessible, comprising five subsets generated us-
ing different morphing algorithms. In our analysis, we fo-
cus on OpenCV, FaceMorpher, and StyleGANDBY. These
algorithms utilize face images from the FERET, FRGC,
and face research lab London setl’2 datasets as input
data. The overall visual quality of the morphed images
created with OpenCV and FaceMorpher is negatively af-
fected by the presence of various artifacts present in both
the background and the foreground of the images. Differ-
ently, morphed faces generated through StyleGAN exhib-
it fewer visible visual artifacts, but common textures as-
sociated with GANs are still discernible.

MorphDB[4. This dataset is constructed using im-
ages sourced from the Color FERETH) and FRGCH
datasets. It comprises 100 morphed images generated
through the sqirlz morph 2.1 algorithm. This dataset of-
fers valuable material as all morphed images have under-
gone manual retouching, resulting in good final visual
quality.

FEI Morph. This dataset has been generated using
images from the FEI face databasel], which consists of
200 subjects evenly divided between males and females.
The faces within the database predominantly represent
individuals aged between 19 and 40 years old, showcas-
ing distinct appearances, hairstyles, and accessories. This
dataset comprises a total of 6 000 morphed images, gener-
ated through the utilization of three different morphing
algorithms: FaceFusion®, University of Twente (UTW)H],
and Norwegian University of Science and Technology
(NTNU)M4. These algorithms have been used with two
different morphing factors, specifically 0.3 and 0.5. The
need to introduce this new dataset arises from the neces-
sity to faithfully replicate the new scenario introduced, in
which, specifically, the morphed image appears particu-
larly similar to the accomplice and the goal is to detect
morphing even when the live acquisition comes from the
most similar subject. The dataset is publicly released®.

4.3 Experimental protocol
In all our experiments, we conduct a cross-dataset
evaluation to assess the effectiveness of our method even

in the presence of possible new morphing algorithms. In-

5 http://www.wearemoment.com/FaceFusion/

6 https://miatbiolab.csr.unibo.it /fei-morph-dataset
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deed, the training and validation of the proposed ap-
proach are performed on progressive morphing database
(PMDB), MorphDB, and Idiap morph datasets, while the
proposed MAD method is tested on the FEI morph data-
set, in a cross-database and cross-algorithm evaluation:
Indeed, the FEI morph dataset is completely disjoint
from the training ones. In other words, the testing set has
no common elements with the training datasets, neither
in terms of contributing subjects (for the morphing gener-
ation) nor in terms of the morphing algorithms. It is im-
portant to note that the test on the FEI morph dataset is
fully reproducible for future comparisons since the FEI
face databasel53] is publicly available as well as the
morphed images used in our experiments. It is important
to note that a cross-dataset evaluation procedure is relev-
ant due to the scarcity of publicly available datasets with
diverse samples for each subject and morphing al-
gorithms. Besides, privacy issues play a crucial role in
hindering the public release of such datasets.

As competitors, we select the state-of-the-art ap-
proaches following the ranking certified by the independ-
ent platforms NIST FATE-MORPH? and FVC-onGoing?®
for the D-MAD task. Thus, despite being limited in num-
ber and a few years old, they are highly representative as
competitors in the literature. Finally, we also include
competitors not based on neural networks, in order to
variegate the final analysis.

4.4 Metrics

In the evaluation and comparison of MAD systems,
various metrics are typically employed to assess their per-
formanceld. Two commonly used metrics are referred to
as bona fide presentation classification error rate (BP-
CER) and the attack presentation classification error rate
(APCER). The BPCER measures the proportion of bona
fide images that are incorrectly classified:

BPCER(r) = = >~ H(b: — 7). 2)

Conversely, the APCER represents the proportion of
morphed images that are erroneously labeled as bona fide:

APCER(r) =1 — L\Z S H(mi — T)] . )

In both definitions, 7 represents the score threshold at
which the detection scores for bona fide and morphed im-
ages (b;, m;) are compared. The function H(z) is defined
as a step function, which returns 1 if x is greater than 0
and 0 otherwise. The BPCER is typically evaluated with
respect to a specified APCER value, here referred to as

7 https://pages.nist.gov/frvt /html/frvt_morph.html
8 https://biolab.csr.unibo.it/fvcongoing/UI/Form/Home.aspx
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Bo.os and Bg.g1. These values correspond to the lowest
BPCER achievable while maintaining an APCER of 10%
and 5%, respectively. In an ideal scenario, an MAD al-
gorithm deployed in a real-world setting would aim to
achieve a low APCER (allowing only a minimal number
of criminals to bypass detection) of around 0.1%, while
simultaneously maintaining an acceptable BPCER (gen-
erating few false positives) of approximately 5% 4.

The equal error rate (EER) is a commonly reported
metric, representing the error rate at which the BPCER
and APCER are equal. It is typically presented as a
single value, providing a summary measure of the
system'’s performance. Besides, APCER and BPCER met-
rics can be condensed in the detection error trade-off
(DET) curve, reported as well to improve the under-
standing and the comparison of the experimental analys-
is.

In this paper, we introduce and exploit the metric
weighted average error metric (WAE) in order to sum-
marize all the performance indicators in a single value (as
done in Fig.2). This metric is formally defined as:

WAE = wgE” (4)

where F is the set of error-based metric values £ = [EER,
BO.l, B0,05, Bo_m] and WE = [0.3, 0.1, 0.2, 04] These
weights are chosen by assigning the majority of the
weight to the most common real-world operating point
(i.e., Bo.o1), followed by the EER, as it is useful for
evaluating the performance of the system at a glance, and
finally the other two chosen operating points (i.e., Bo.os
and B0.1)~

4.5 Training procedure

In the IdA module, the MLP has an architecture com-
posed of 3 hidden layers of size 250, 125 and 64, with
ReLU activation and a single output neuron with a sig-
moid function. For the training, we adopt the Adaml]
optimizer with an initial learning rate of 107°. For the
training of the Inception-ResNet, we adopt the stochastic
gradient descent (SGD) optimizer with a learning rate of
107% and an early-stopping procedure (patience of 5
epochs with a minimum improvement of 10™*). No mo-
mentum decay is exploited.

In the other modules, SVM classifiers share the same
details: They implement the radial basis function (RBF)
kernel, and are trained with the regularization parameter
C = 1.0, and the kernel coefficient v = 1073.

4.6 Results

The results of the proposed MAD method compared
with the literature are reported in Table 1, while the re-
lated DET curve is reported in Fig. 6.

As shown, our method is able to overcome the com-
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Table 1 Morphing detection scores obtained on the FEI morph test dataset across different differential MAD (D-MAD) competitors
presented in the literature. Results are reported in terms of equal error rate (EER), the lowest BPCER related to APCER < 1% and
< 5%, respectively (see Section 4.4). As reported, the proposed method achieves the best accuracy across all the competitors both
in the “accomplice” and in the “criminal” benchmarks. The generalization capabilities are confirmed in the “both” case,
in which our model effectively handles different attempt typologies.

Year Accomplice Criminal Both
Methods
EER Bo.os Bo.o1 EER Bo.os Bo.o1 EER Bo.os Bo.o1
Demorphing[14] 2017 0.160 0.377 0.618 0.027 0.015 0.050 0.111 0.235 0.522
SVM+LBP[24 2018 0.200 0.327 0.623 0.185 0.335 0.697 0.192 0.330 0.628
DFRI¢] 2020 0.178 0.482 0.770 0.068 0.090 0.295 0.128 0.347 0.690
Siamesel8] 2021 0.153 0.347 0.563 0.061 0.095 0.370 0.115 0.257 0.515
MagFacel?l 2023 0.112 0.230 0.465 0.028 0.013 0.052 0.083 0.135 0.393
ACIdA (ours) 2023 0.102 0.192 0.333 0.023 0.010 0.027 0.070 0.105 0.280
BPCER performance of the proposed system is influenced when
! I two different score fusion techniques are employed to cre-
) ate the final MAD score, namely “weighted” and “selec-
tion”. The first strategy produces the final morphing
score by summing the ones produced by the different
10! modules, each weighted by the probabilities returned by
the attempt classification module, as described in (1) and
depicted in Fig.4; the “selection” approach directly re-
i turns the score produced by the module whose associated
102 LD probability computed by the attempt classification mod-
n ule is the highest, as shown in (5), where pmax =
i max (pa,ps, pc)-
/ I Sta if pp = Pmax Vpc =p
103 L | S = 5 . ‘max 'max (5)
10 10~ 10" 1 Sraa, if pa = pmax.
APCER

Fig. 6 Detection error trade-off (DET) curves computed on the
FEI morph dataset considering several literature compet-
itors. Competitor reported: ACIdA in orange, Meng et al.[8! in
blue, Deng et al.33] in red, Borghi et al.l¥l in dark green, Scherhag
et al.24 in light green and Ferrara et al.4 in purple. (Colored
figures are available in the online version at https://link.springer.
com/journal/11633)

petitors in all the investigated benchmarks. In particular,
our method not only achieves better performance in com-
parison with D-MAD based only on identity compari-
sonl® 7> 14 but also with methods that include the analys-
is of artifacts introduced by the morphing procedure on
input imagesl® 24. The results show that the error rates
were higher in the accomplice scenario, indicating that
this scenario presents unique challenges that require fur-
ther investigation in future D-MAD studies. The pro-
posed method demonstrated excellent accuracy in the
“criminal” benchmarks, confirming its effectiveness in a
more conventional D-MAD setting. Furthermore, the
“both” case results suggest that incorporating an at-
tempt classification module, which can apply different
solutions for criminals and accomplices, is a crucial factor
in improving overall performance, as explored in the sub-
sequent analysis.

In the second part of our analysis, we test how the

Experimental results show that the weighted strategy
is overall more effective than employing the selection fu-
sion technique, respectively totaling on the global test set
EER =0.070 versus 0.076, Bgos = 0.105 versus 0.125,
and Bgoi = 0.280 versus 0.385. Therefore, the weighted
sum fusion strategy is adopted in our framework.

In Table 2, we include an analysis of the feature em-
bedding source: Indeed, several works on the face recogni-
tion task have been recently introduced in the litera-
turell8 33, 57, 58] constantly improving the accuracy, and
can be exploited in our proposed MAD pipeline. In par-
ticular, we focus our analysis on recent and state-of-the-
art methods. According to the analysis provided by the
Deepface framework?, we select best-performing al-
gorithms on the labeled faces in the wildP9 dataset. In
addition, we include in our analysis the recently intro-
duced and promising MagFacel!8] approach. It is import-
ant to note that one of the top-performing methods, Ar-
cFacel3], has already been effectively utilized in the field
of D-MADI6. As reported, MagFace achieves the best
performance, confirming that superior accuracy in the
face recognition task leads to better performance also in
the MAD task, especially if based on the identity compar-

9 https://github.com/serengil/deepface
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Table 2 Morphing detection scores obtained by the proposed system on the FEI morph dataset using different feature embeddings
originally developed for the face recognition task. In bold the best results, underlined the second ones.

Accomplice Criminal Both
Feat. Embed.

EER Bo.os Bo.o1 EER Bo.os Bo.o1 EER Bo.os Bo.o1

ArcFacel33] 0.115 0.255 0.507 0.056 0.063 0.115 0.093 0.142 0.385
DLibl56] 0.176 0.375 0.587 0.103 0.155 0.240 0.148 0.255 0.517
SFacel57] 0.213 0.480 0.640 0.102 0.167 0.327 0.166 0.363 0.585
Facenet/[58] 0.129 0.308 0.510 0.061 0.075 0.142 0.097 0.175 0.435
MagFacel8] 0.102 0.192 0.333 0.023 0.010 0.027 0.070 0.105 0.280

Table 3 Ablation analysis results obtained on the FEI morph dataset. As reported, the single modules of the proposed system — IdA
(Section 3.2) and Id (Section 3.3) — are separately tested. In addition, we compute the results obtained using
only the Inception-ResNet architecture of the IdA module.

Module Accomplice Criminal Both
IdA 1d EER Bo.os Bo.o1 Agp EER Bo.os Bo.o1 Agp EER Bo.os Bo.o1 Agp
y v 0.102 0.192 0.333 0.023 0.010 0.027 0.070 0.105 0.280
y 0.120 0.207 0.455 -16% 0.117 0.195 0.415 -90% 0.120 0.203 0.440 -42%
V* 0.125 0.230 0.480 —22% 0.125 0.230 0.480 -91% 0.125 0.230 0.480 -47%
V 0.112 0.230 0.465 -18% 0.028 0.013 0.052 -30% 0.083 0.135 0.393 -22%

* Only the Inception-ResNet architecture of IdA module is tested (see Fig.4).

ison.

In Table 3, the ablation study of the proposed meth-
od is reported. In particular, we test the performance of
the system using only the IdA or the Id module and ex-
ploiting the previously determined best feature (i.e., Mag-
Facel!'8]). We also report the results exploiting only the
Inception-ResNet which computes the
morphing score relying only on the document image, in
an S-MAD fashion. In addition to the standard error met-
rics,

architecture,

we summarize the relative error rate reduction
achieved by the proposed system with respect to each
single module. This metric is reported with the symbol
Ag, and is formally computed as:

E —F
Ap = ACIdE/‘XM M (6)

where M is the module Id, or IdA or the Inception-
ResNet architecture of IdA. The Ag value is computed
for the three error indicators (EER, Bg.s, Boo1) and then
averaged to obtain Apg. Experimental results validate
that the implementation of both modules is crucial for
achieving optimal performance. As anticipated, the
second module, i.e., Id, demonstrates a notable capability
in detecting morphed images within the “criminal”
benchmark. Meanwhile, the IdA yields

noteworthy results, particularly in terms of BPCERs

module

(Bo.0s, Bo.o1), in the “accomplice” benchmark. From a
general point of view, the whole ACIdA system achieves a
noticeable reduction of the error, as expressed by the
metric Ag. The error reduction is noticeable in the
“criminal” benchmark (up to 90%) where very low error

@ Springer

rates are measured for ACIdA (EER = 2.3%). In the
“accomplice” benchmark, we note a consistent error
reduction of about 20%, leading to an overall performance
of about —37% in the “both” benchmark.

In conclusion of our experimental analysis, we focus
our investigation on the attempt classification (AC) mod-
ule.

In the first experiment, reported in Table 4, we test a
variety of different classifiers commonly used in biomet-
rics. Interestingly, experimental results reveal that the
SVM is the best choice, also with respect to deep learn-
ing-based solutions (i.e., MLP).

Table 4 Comparison of several classifiers of the attempt clas-
sification (AC) module, using as input feature embeddings
extracted using the method described in [18].

Classifier Accuracy F1l-score
SVM 0.650 0.634
Random forest 0.575 0.554
AdaBoost 0.603 0.580
KNN (K=5) 0.575 0.545
Decision tree 0.572 0.554
MLP 0.639 0.634

In addition, we analyze the impact of the classifica-
tion accuracy of the adopted SVM classifier on the whole
MAD pipeline. Indeed, in order to have an upper bound
result, we replace in the AC module, the SVM classifier
with an oracle, i.e., a classifier is able to perfectly predict
the classes — criminal accomplice and bona fide — of the
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Table 5 Classification performance and morphing detection scores obtained on the FEI morph dataset. In particular, we highlight the

impact of the attempt classification accuracy on the whole proposed system, with respect to the

performance of an “oracle” classifier reported on the top lines.

Classification attempt (CA)

Morphing attack detection (IdA - Id)

Accomplice Criminal Both
Classifier Accuracy BF to

EER Bo.os Bo.o1 EER Bo.os Bo.o1 EER Bo.os Bo.o1
IdA 0.120 0.207 0.455 0.208 0.522 0.625 0.146 0.480 0.598

Oracle 100.0%
Id 0.006 0.002 0.005 0.028 0.013 0.052 0.018 0.005 0.040
IdA 0.171 0.495 0.560 0.046 0.027 0.555 0.118 0.445 0.555

SVM 66.9%
Id 0.102 0.192 0.333 0.023 0.010 0.027 0.070 0.105 0.280

input attempts. In addition, we analyze how the overall
performance of the system is affected when the morphing
score of bona fide pairs is computed using Srq4 instead of
Sta (see (1)).

Results are reported in Table 5.

Firstly, the accuracy of the SVM classifier with re-
spect to the oracle reveals that there is a margin for im-
provement in the attempt classification task. Closing this
gap can significantly enhance the overall performance, as
demonstrated by the impressive MAD results reported in
the oracle case, with an EER = 0.006.

Secondly, it is possible to note that a substantial im-
provement in the overall MAD performance is achieved
by properly selecting the module used in the weighted av-
erage score computation for bona fide images. Specific-
ally, the use of the Id module with bona fide images rep-
resents the best solution, since analyzing artifacts pro-
duced by the morphing procedure is not useful — bona
fide images are free of visible or not visible artifacts — and
it could even be counterproductive. Indeed, in the MAD
literature, the S-MAD task, and specifically the artifact
detection task, is more challenging with respect to the D-
MAD onel.

Finally, the proposed system is evaluated on the FVC-
onGoing platform. However, publicly available platforms
like NIST FATE MORPH and FVC-onGoing do not
provide a suitable testing environment for the scenario
described in this paper. This is because they typically do
not consider the accomplice’s attempts when the morph-
ed image is heavily biased towards the accomplice, and
they do not present the results for the criminal and ac-
complice attempts separately. Results are reported in
Table 6: We observe that the proposed method is able to
achieve good accuracy in any case, in particular with re-
spect to the previous work[!6l, In this criminal-based scen-
ario, DFRISl remains the preferable option to use to
achieve good performance, since it is based on highly ef-
fective identity features when the comparison involves
only the criminal or the morphed images equally repres-
ents the two contributing subjects (i.e., the morphing
factor is 0.5).

Finally, we draw some analysis of the computing per-
formance of the proposed system. ACIdA is able to pro-

Table 6 Comparison of the results on the sequestered DMAD-
SOTAMD D-1.0 benchmark through the FVC-onGoing plat-
form. As shown, the proposed method is able to generalize on
a different scenario, obtaining a good accuracy w.r.t. the
other D-MAD methods available in the literature.

Algorithms EER Bo.a Bo.os Bo.o1
DFRI] 4.54 2.00 3.93 18.87
Demorphingl[4] 14.17 17.20 22.77 65.57
Siamesel] 23.37 35.03 48.97 93.60
MBLBPI60] 33.47 52.80 59.93 74.80
WLI61] 37.13 71.67 83.27 95.67
BSIF21 45.93 78.30 84.13 93.83
DNI62] 52.03 89.70 94.70 98.57
Laplacel63] 55.13 96.70 98.67 99.87
R-DMADI16] 10.23 10.33 19.67 47.47
ACIdA 7.84 7.57 12.60 26.23

cess images in about 1.8 seconds using about 3.8 GB of
RAM. This inference time is obtained in a computer
equipped with an AMD EPYC 7 282 processor and using
a single Quadro RTX 5000 GPU; the operating system is
virtualized on a virtual machine using only 8 cores of the
available 16. We observe the processing time and re-
source requirements are in line with real-world scenarios,
such as automated board control gates in international
airports.

5 Conclusions

ACIdA, a novel modular D-MAD method was pro-
posed, and extensive experimental validation demon-
strated its ability to achieve state-of-the-art results, sur-
passing competing methods in the investigated scenario.
These results suggest that an analysis of possible morph-
ing artifacts in combination with the use of identity fea-
tures can increase the robustness of D-MAD approaches
when dealing with a high subject similarity. ACIdA has
been tested in a new scenario, that aims to expand the
scope of application of current D-MAD systems, by deal-
ing with both comparisons of the trusted live images with
the criminal and the accomplice. Our preliminary analys-

@ Springer



12

is indicates that this scenario is challenging and raises
new interesting research aspects in the D-MAD field, es-
pecially for identity-based systems. The findings of this
study contribute to the advancement of MAD systems,
enhancing the security and reliability of FRS in the face
of morphing attacks. Further research can build upon
these results to develop even more robust and efficient
MAD systems in the future. In particular, new experi-
mentation and research are needed to improve the classi-
fication accuracy of the attempt that, as shown, is a key
element for the final performance of the proposed system.

It is worth noting that unfortunately, the publicly
available datasets for the MAD task are limited in num-
ber in the literature, even due to privacy concerns(64, and
this entails significant difficulties for the aforementioned
analyses. The existing datasets, indeed, are generally
characterized by limited variations in terms of environ-
mental factors (i.e., lighting conditions and background
scenarios), and some demographic and ethnic groups are
not sufficiently represented in the data. This lack of di-
versity and representativeness in the available datasets
poses challenges for the development and evaluation of
robust and unbiased MAD models, as they may not cap-
ture the full range of real-world scenarios and individual
variations.

Therefore, more extensive and diverse data collection
efforts will need to be undertaken in this direction to ad-
dress such critical shortcomings. Researchers may need to
explore innovative approaches to data acquisition, such as
collaborating with various stakeholders, leveraging crowd-
sourcing platforms, or using synthetic datal63 661 genera-
tion techniques, while ensuring the ethical and privacy-
preserving handling of sensitive information. The develop-
ment of benchmark datasets that better reflect the di-
versity of human populations and environmental condi-
tions would greatly benefit the advancement of the MAD
field, enabling more comprehensive testing and valida-
tion of the developed algorithms.

Finally, we propose incorporating the examined scen-
ario into web platforms that offer D-MAD tests. Cur-
rently, these platforms often provide tests with only the
criminal comparison or fail to directly display the per-
formance of the accomplice, criminal, and combined
benchmarks. Expanding these platforms to include a
broader range of benchmarks and scenarios, while also
providing more transparency and detailed feedback on
the model’s performance, would greatly contribute to the
understanding and advancement of the MAD task. This
could help researchers and developers better evaluate the
strengths, limitations, and biases of their approaches, ul-
timately leading to more robust and reliable malicious
activity detection systems.
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