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Abstract—Morphing Attack Detection (MAD) is a critical
task in biometric security, aimed at identifying and mitigating
the risks posed by morphing attacks, where a face image is
manipulated to resemble multiple individuals. Therefore, MAD
systems are essential to prevent unauthorized access and ensure
the integrity of biometric authentication procedures. However,
the acquisition, storing and transfer of real biometric data on
which they are based are limited by ethical, legal, and privacy
concerns, and this hinders their accuracy. To address these issues,
we propose and release MONOT, a new dataset of synthetic
morphed images. The dataset includes high-quality synthetic
morphed images that are ISO/ICAO compliant and have the
characteristics of real biometric data without compromising
individual privacy. The morphing procedure is applied through
six different morphing algorithms, providing a great level of
data variability. Our experimental results demonstrate MONOT
morphed images show a high attack potential and that MAD
systems trained on MONOT exhibit high detection performance
across various morphing techniques. All these elements highlight
the dataset’s effectiveness in supporting the development of
robust and generalized MAD systems.

Index Terms—Morphing Attack, Morphing Attack Detection,
Synthetic Data, Face-based Verification Methods

I. INTRODUCTION

The accuracy of biometric systems is critical for ensuring
secure and reliable authentication in various applications,
including access control, identity verification, and border se-
curity. Biometric systems leverage unique physiological or
behavioral characteristics, such as fingerprints, iris patterns,
and facial features, to identify individuals. The precision of
these systems directly impacts their ability to distinguish
between legitimate users and imposters, thereby preventing
unauthorized access and enhancing security.

However, despite their high accuracy and widespread adop-
tion, biometric systems are vulnerable to recently discovered
attacks, one of which is the so-called Morphing Attack [1].
Specifically, the morphing attack involves the creation of a
single image that combines the facial features of two individu-
als, enabling both to be authenticated as the same person. This
type of attack poses significant security risks, especially in the
context of travel and identity documents, where it can facilitate
illegal activities such as unauthorized border crossings through
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Fig. 1: Example of the Face Morphing attack: two individuals
(1a and 1c) are combined to produce a morphed image (1b).
This hybrid image conceals the identity of a criminal within
the image of an accomplice, and it can deceive both human
examiners and automated face verification systems [2].

the Automatic Border Control (ABC) gates in international
airports and identity fraud [2].

Unfortunately, detecting morphing attacks is a challenging
task due to the subtlety of the image modifications, necessitat-
ing advanced detection mechanisms. To address this challenge,
the development of robust Morphing Attack Detection (MAD)
systems [3] is essential and strongly needed.

However, the creation and sharing of real biometric data for
training and evaluating these systems are fraught with privacy
and legal issues. Indeed, the use of personal data, especially
if consists of faces, is limited by privacy concerns, consent
requirements, and stringent regulations, which mandate the
protection of personal data [4]. As a consequence, these
constraints limit the availability of diverse and representative
datasets needed for effective MAD development.

In this context, synthetic data emerges as a viable alter-
native [5] since new datasets can be generated to mimic the
characteristics of real biometric data without compromising
individual privacy. Synthetic data has garnered significant
interest within the scientific community, as recent methods
(e.g. Diffusion Models [6] and Variational Autoencoders [7])
for generating highly realistic data have been introduced. In
other words, synthetic data offers several advantages, including
the ability to generate large, diverse datasets that can enhance
the training and testing of MAD systems.

Therefore, in this paper, we propose a new synthetic dataset,
namely MONOT1, specifically designed for the morphing

1https://miatbiolab.csr.unibo.it/monot-synthetic-dataset



attack detection task. MONOT dataset consists of a collection
of morphed images, created through a variety of morphing
algorithms. Morphed images exhibit high visual quality in
terms of ISO/ICAO compliance [8], reproducing the opera-
tional scenario in which they are used as document photos.
In addition, for each subject, several ”in the wild images” are
provided resembling, for instance, the live acquisition at the
airport gates. Concluding, the MONOT dataset aims to provide
a comprehensive and privacy-friendly resource for training and
evaluating MAD systems.

II. RELATED WORK

A. Synthetic Data for Morphing Attack Detection

The emergence of advanced AI-based generative algorithms
has led to the creation of numerous synthetic datasets in
the literature. In this context, a significant number of these
datasets [9]–[13] are specifically designed for face recog-
nition tasks. Consequently, they often focus on including
a high diversity of identities and head poses, while poten-
tially overlooking certain standard requirements [14]. Other
datasets utilize recent diffusion models [15], [16], which aim
to maintain and diversify identities by inverting pre-trained
face recognition models, resulting in face images with greater
realism compared to GANs [17], [18]. A smaller subset of
synthetic datasets is developed for alternative tasks, such
as age and gender recognition [19] or the morphing attack
detection [20] task investigated in this paper.

Specifically, for the MAD task, one of the most important
synthetic datasets is the Synthetic Morphing Attack Detection
Development dataset (SMDD) [20]. It consists of about 30k
attack and 50k bona fide images, and it is a valuable resource
for training and evaluating morphing attack detection systems.
By providing a high volume of diverse synthetic data, the
SMDD dataset enables more robust and generalized training
of MAD systems, which can lead to improved detection per-
formance even on previously unseen attack types. In relation
to our work, we observe the visual quality of the images
in SMDD is variable. In particular, all the morphed images
present a not uniform background, since the starting face
images are generated “in the wild”. This condition is not
very realistic, since morphed images are used as document
photos, and then they must be compliant with the ISO/ICAO
guidelines [8], [21]. These guidelines, developed both by ISO
and ICAO institutions, play a crucial role in numerous bio-
metric applications. Indeed, meeting these standards for facial
images in official documents greatly improves face verification
accuracy [22], [23]. Compliant images ensure consistency
in quality, thereby facilitating more precise matching. This
uniformity is essential in reducing the risks of false positives
and false negatives, which are critical for maintaining the
reliability of biometric systems. Among the requirements,
ISO/ICAO guidelines impose that document images have a
uniform and light background, a frontal head and shoulder
pose of the acquired subject, and a neutral expression, all ele-
ments not always available in the SMDD dataset as depicted in
Figure 2. Starting from these observations, MONOT consists

Fig. 2: Samples of morphed images belonging to the SMDD
dataset [20]. In these cases, the realism of these images is
limited, since morphed images used in documents should be
compliant with ISO/ICAO guidelines [8].

of ISO/ICAO compliant morphed images (see Fig. 3), and then
MAD systems can be trained and evaluated with more realistic
synthetic images.

B. The Morphing Attack

As mentioned, face morphing is an image manipulation
technique used to progressively transform one face into an-
other. Initially described in [1] in the context of electronic
machine-readable travel (eMRTD) documents, this technique
allows for the creation of hybrid faces with dual identities,
capable of evading both automated face verification systems
and human examiners [2], [3]. Recently, the application of this
technique has expanded to include 3D data [24].

The attack is further complicated by the rise of generative AI
techniques for face morphing [25]–[27], which have made the
process more accessible to malicious actors. These morphed
images can be further enhanced through manual [28] or auto-
mated retouching [29], [30], effectively removing both visible
and subtle artifacts, thus increasing the difficulty of detection.
Consequently, there is an urgent need to develop new MAD
systems. These automated tools must be explicitly designed to
detect morphing in facial images with high accuracy and the
ability to generalize to previously unseen images.

C. Morphing Attack Detection Models

The existing literature primarily categorizes MAD methods
into two types [3]: Single-image MAD (S-MAD) and Differ-
ential MAD (D-MAD).

S-MAD systems [31]–[33] focus on artifacts or traces left by
morphing procedures in input images. Typically, these systems
rely solely on the information provided by the single input
images [34]. This task is generally considered challenging
because it typically relies only on information available in a
single image, as evidenced by experimental results [35].

On the other hand, D-MAD systems [36]–[39] take two
different images as input: one from a trusted live capture and
another from the document: this image could potentially be
morphed. These systems operate on the assumption that at



Fig. 3: Samples of morphed images of the MONOT dataset.
As shown, all images present a high visual quality and are
ISO/ICAO compliant [8]. Among the others, all images have
a uniform and light background, and the subject depicted has
a neutral expression and uniform face illumination.

least one of these inputs has been acquired through a reliable
process, such as from a camera at an ABC gate or through a
procedure supervised by a law enforcement officer.

Focusing on S-MAD, early efforts in MAD focused on
handcrafted features and classical machine learning algo-
rithms. For instance, some studies employed texture descrip-
tors [40], [41] to differentiate between morphed and bona fide
images. Usually, these methods often struggled with general-
ization to new attack types and variations in image quality.
More recent advancements have leveraged deep learning tech-
niques [33], [42], which have shown superior performance in
detecting morphing attacks.

III. MONOT DATASET

MONOT dataset consists of about 15k synthetic morphed
images specifically generated for the morphing attack de-
tection task using six different state-of-the-art morphing ap-
proaches and two morphing factors (see Sect. III-A).

For the generation of the dataset, we utilized synthetic
faces from the ONOT dataset [43], a synthetic collection of
high-quality face images designed to adhere to the ISO/IEC
39794-5 standards [8] and the guidelines of the International
Civil Aviation Organization (ICAO) for electronic Machine-
Readable Travel Documents (eMRTD).

The presence of ISO/ICAO compliant images is important
since, in this work, we made a significant effort to repro-
duce as accurately as possible the real scenario. Indeed, in
the morphing attack, the morphing procedure is applied to
document images. As mentioned, these facial images, in order
to be included in official documents, must follow strict quality
requirements defined by ISO and ICAO institutions. Therefore,
the development of datasets containing morphed images for the
eMRTD use case should produce strictly ISO/ICAO compliant
images, to increase the level of realism and efficacy of the
proposed solutions. This is an added value of this work
because, to the best of our knowledge, most of the existing
synthetic face datasets have not been explicitly developed for
this application and are not realistic candidates to simulate
eMRTD images.

For each of the 254 subjects of the ONOT dataset, we
provide also ten other synthetic images taken “in the wild”, i.e.
without adhering to the ISO/ICAO guidelines. In this way, we
aim to simulate a real-world operational scenario at the airport
gates, in which the image stored into the document (bona fide
or morphed) is compared with a live acquisition, that indeed
is collected in a low-controlled scenario (e.g., the background,
as well the illumination, can be not uniform). These additional
images, referred to as “gate images”, are created through the
approach described in Section III-B.

A. Morphed Images Generation

The morphed images have been created by selecting the
morph pairing candidates with high comparison scores from
three Commercial-Off-The-Shelf (COTS) Face Recognition
Systems (FRSs). Similar to [28], the selection of candidate
images to produce morphing cases is performed as follows.
An image of each subject (i.e., the criminal) is compared with
the image of other subjects of the same gender and ethnicity
(i.e., possible accomplices). Since three different FRSs have
been involved, a unique value vi,j to select the most promising
accomplices is computed as:

vi,j =
1
3 ·

∑3
k=1

τk−ski,j
τk

where ski,j is the similarity score between subjects i and j
provided by FRS k and τk is the score threshold suggested
by the kth FRS corresponding to a False Acceptance Rate
(FAR) equals to 0.1%. Value vi,j represents how far from
the FAR=0.1% thresholds the verification scores are on the
average; lower values indicate more similar subjects.

Given the criminal subject i, the candidate accomplices j are
sorted in increasing order of vi,j and the top five candidates are
selected as accomplices. This choice is aimed at maximizing
the probability of fooling FRSs at the gate. Note that, none of
the selected pairs were able to fool the three FRSs at the same
time. Since each of the 254 subjects is paired with five other
subjects, a total of 1270 morphing pairs have been selected.

To increase the diversity and the challenging nature of the
dataset in order to simulate a realistic scenario, each image pair
has been morphed using six different state-of-the-art landmark-
based morphing algorithms (i.e., C01 [44], C02 [45], C03
[3], C05 [28], [46], C015 [47], [48], and C016 [49]) and
two morphing factors of 0.3 and 0.5 obtaining a total of
1270 × 6 × 2 = 15240 morphed images. Figure 3 and 4
shows an example of morphed images generated using the
six morphing algorithms used to create the MONOT dataset.

B. Gate Images Generation

For the generation of synthetic gate images, we focus on the
Arc2Face model [50], an identity-conditioned face foundation
model that can generate diverse photo realistic images from
the ArcFace [51] embedding of an individual. As reported
in [50], this model achieves a higher level of facial similarity
compared to existing generative models.
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Fig. 4: Example of morphed images contained in the MONOT dataset obtained using six morphing algorithms (see Sect. III-A)
with a morphing factor of 0.5 (first row) and 0.3 (second row) on the two subjects reported in Figures 1a and 1c as criminal
and accomplice, respectively.

Fig. 5: Example of the gate images generated through the
Arc2Face [50] method. In the first column, the original subject
image is reported, while in the remaining columns are reported
the corresponding gate images.

Arc2Face is built upon a pre-trained Stable Diffusion model
but is specifically adapted for the task of ID-to-face gener-
ation, conditioned solely on identity vectors. Unlike recent

approaches that combine identity with text embeddings for
zero-shot personalization of text-to-image models, this method
emphasizes the compactness of face recognition features,
which can fully capture the essence of the human face without
the need for hand-crafted prompts. This allows Arc2Face to
generate images using only the identity features, providing a
robust prior for tasks where ID consistency is crucial.

In this context, our primary objective is to generate new
realistic images of an individual to simulate images captured
live in an unconstrained scenario such as an ABC gate
(see Figure 5). All the generated images have been created
following the official guidelines and using the default hyper-
parameters.

IV. EXPERIMENTAL EVALUATION

A. Datasets

Progressive Morphing Database (PMDB) [28]: it is a collec-
tion of 1108 morphed images generated by applying the C05
morphing algorithm [28], [46] to AR [52], FRGC [53], and
Color Feret [54] datasets.
Idiap Morph [55], [56]: it is a collection of datasets created
using different morphing algorithms. We considered here the
portion of images generated with FaceMorpher [44] (algorithm
C01), which are of suboptimal visual quality due to the
presence of artifacts in both the background and foreground.
FEI Morph [57]: it is a dataset generated using the images
contained in the FEI Face Database [58], which includes 200
subjects equally distributed between male and female subjects,
with an age mainly ranging from 19 to 40 years. The images
are characterized by a good variability in terms of appearances,
hairstyles, and presence of accessories. This dataset contains
6k morphed images obtained with three different morphing
algorithms, namely C02 [45], C03 [59], and C08 [59], em-
ploying two different morphing factors (0.3 and 0.5).
ChiMo [33] : it is a compilation of morphed images generated
from the images with neutral expressions of the Chicago



Faces Database (CFD) [60] which includes photographs of
831 individuals from diverse ethnies. Also for this dataset, the
morphed images used in the experiments have been generated
by the C02 [45], C03 [59], and C08 [59], morphing algorithms.
The specific use of the datasets in the different experiments
will be described in the related section.

B. Results on MONOT attack potential

A first analysis has been conducted to evaluate the attack
potential of the MONOT morphed images, and to compare it
to the attack potential of a real dataset of morphed images. For
this evaluation, we used the Morphing Attack Potential (MAP)
metric recently introduced in [61] aimed at quantifying the
attack potential of a dataset M of morphed images analyzing
the combined impact of a variable number of probe images and
multiple FRSs. MAP is defined as a matrix with a number
of rows corresponding to the number of probe gate images
for each morphed image and a number of columns equal to
the number of FRSs considered in the evaluation. A generic
element of the matrix MAP[r, c] represents the number of
morphed images in the dataset M that can be successfully
matched with at least r probe images by at least c FRSs. This
definition implies that the MAP values naturally decrease as
we move towards the bottom-right corner that refers to the
most dangerous images in the dataset.

For MAP computation, three COTS FRSs (referred as FRS1,
FRS2 and FRS3) which provided top performance in the “Face
Recognition Vendor Test (FRVT)—1:1 Verification” [62] are
considered. The verification thresholds have been fixed as
suggested by the three FRSs to work at a FAR=0.1%, which
is the reference value for face recognition in eMRTD. Table I
reports the comparison, in terms of MAP, between MONOT
and FEI for different morphing algorithms; this evaluation is
motivated by the fact that the same morphing algorithms have
been used for morphing generation in the two datasets so that
possible differences that might arise are mainly related to the
nature of the data (synthetic vs. real).

The MAP for this experiment has been computed for the
two datasets by comparing each morphed image with a single
probe image of each contributing subject (the FEI dataset
includes only 2 “ISO/ICAO compliant” images, so one of
them has been used for morphing generation and the other
one as probe image). The MAP matrix contains therefore one
single row and three columns corresponding to the number of
commercial FRSs used in the evaluation.

The analysis of the results, reported for the different mor-
phing algorithms, show that both datasets present a very
high attack potential for all the algorithms analyzed, with
C02 and C05 reaching slightly but constantly higher results.
This result validates the effectiveness of synthetic data in
attacking commercial FRSs to a similar extent than real data.
However, in general MONOT MAP is slightly lower than FEI
MAP, and a further investigation has been conducted to better
understand this phenomenon. In particular, we performed a
number of bona fide verification attempts where two images
of the same subject are compared and the score distributions

MONOT FEI [57]
1 2 3 1 2 3

C01 94.2% 86.7% 73.5% 97.9% 91.7% 74.0%
C02 94.1% 86.7% 74.0% 99.7% 98.9% 95.9%
C03 90.9% 80.8% 63.4% 97.3% 89.9% 70.2%
C05 91.8% 83.0% 67.4% 98.4% 93.5% 78.0%
C15 89.3% 78.3% 55.8% 97.7% 91.5% 70.9%
C16 91.8% 82.3% 61.6% 99.3% 97.4% 88.7%

TABLE I: MAP metrics measured for the MONOT and FEI
datasets, for different morphing algorithms (rows). In columns,
the number of FRSs considered is reported. Best results in
bold, second ones underlined.

1 2 3
1 91.3% 80.1% 60.1%
2 86.7% 73.0% 52.5%
3 83.5% 67.9% 47.1%
4 80.3% 63.4% 42.6%
5 77.3% 59.2% 38.4%
6 74.0% 54.9% 34.5%
7 70.5% 50.5% 30.4%
8 66.6% 45.1% 26.0%
9 61.3% 38.8% 20.6%
10 52.1% 28.0% 12.9%

TABLE II: MAP on the MONOT dataset. In rows, the number
of gate probe images generated with Arc2Face [50] is reported,
while in columns is the numbers of FRSs considered.

in the two datasets obtained with the three FRSs is analyzed.
The scores measured are all definitely higher than the FAR
0.1% verification threshold fixed by the FRSs, meaning that
the probe images also for synthetic data are correcly recog-
nized as belonging to the same subject. However, the results,
reported in Figure 6, clearly show that the bona fide scores
for the FEI dataset are higher than those of ONOT (from
which MONOT is generated), suggesting that this second
dataset is characterized by a higher intra-class variability.
This observation is reasonable if we consider that one of
the main challenges in synthetic data generation is identity
preservation between multiple images of the same virtual
subject. We believe that this result explains the slightly lower
attack potential observed for MONOT, which in any case
achieves performance comparable to the real dataset.

We further analyzed the MONOT attack potential by taking
into account the gate images generated using Arc2Face as
described in Section III-B. In this case, we have 10 probe gate
images for each morphed image for each of the contributing
subjects. The MAP matrix for the is reported in Table II. Also
in this case, very good results are observed, thus confirming
both the validity of the MONOT morphed images and the
effectiveness of Arc2Face in preserving the subject’s identity
across the generation of multiple images.
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Fig. 6: Bona fide score distributions for the ONOT [43] and FEI [57] datasets, computed with the three FRSs.

Baseline Synth Mix
EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01

C02 .2650 .5716 .7040 .9110 .3928 .8171 .9013 .9868 .1426 .2082 .3466 .6438
C03 .1795 .3502 .5415 .8436 .4308 .8797 .9495 .9952 .0893 .0722 .1745 .4753
C08 .1847 .3730 .5788 .8929 .5945 .9061 .9519 .9904 .2265 .0722 .1745 .4753

TABLE III: S-MAD results obtained on the ChiMO dataset [33] for the models trained using real data only (Baseline), Synthetic
data only (Synth) and the union of real and synthetic data (Mix).

C. Results on S-MAD training

A second set of experiments has been conducted to evaluate
the utility of MONOT synthetic data in S-MAD systems
training. For our evaluation, we adopt here the common
metrics used for this task, namely the Bona fide Classification
Error Rate (BPCER) and the Morphing Attack Classification
Error Rate (MACER) [63], representing the percentage of bona
fide images wrongly classified as morphed and the percentage
of morphed image classified as bona fide, respectively. In
particular, the BPCER at fixed MACER values are reported
in the results tables: B0.1, B0.05 and B0.01, corresponding
respectively to a MACER of 10%, 5% 1%. Moreover, the
Equal Error Rate (EER) is also reported.

Given the quite large number of S-MAD solutions in the
literature, we have implemented the S-MAD model detailed
in [33], chosen for its state-of-the-art results [35]. In our im-
plementation, we utilize the Inception-ResNet architecture [64]
as a binary classifier, distinguishing between “morphed” and
“bona fide” classes. The model is trained using the SGD
optimizer with a momentum of 0.9 and an initial learning
rate set to 10−3. Input faces are first detected and cropped
using the MTCNN [65] face detector, known for its superior
performance in S-MAD tasks [33].

For this experiment, we perform a challenging cross-dataset
and cross-morphing algorithm evaluation. In particular, we
compare three S-MAD models trained as follows: Baseline -
real data only: training on PMDB (morphed images generated
with the C05 morphing algorithm) and Idiap FaceMorpher
(morphing algorithm C01); Synth - synthetic data only: train-
ing of the portion of MONOT images generated using the same
C05 and C01 morphing algorithms; Mix - real and synthetic
data: union of the previous two training datasets. Following the
experimental protocol described in [33], all the models have
been tested on the ChiMO dataset, whose morphed images
are generated using three morphing algorithms (C02, C03

and C08), not represented in the training set. The results are
reported in Table III for the three models. The error rates
observed for the model trained only on synthetic data are
higher than those obtained for the baseline model, suggesting
that the exclusive use of synthetic images for model training
is not feasible at this stage. Conversely, the joint use of real
and synthetic data (Mix) provides very interesting results, and
a significant performance improvement can be observed with
respect to the use of real data only (Baseline), confirming that
synthetic data can be successfully employed to extend the set
of training images for the S-MAD task.

V. DISCUSSION ABOUT SYNTHETIC DATA

We recognize that using diffusion models trained on ex-
tensive web-scraped datasets raises crucial ethical, legal, and
privacy concerns. Our aim with the MONOT dataset is to
explore alternative face data generation methods that could
potentially decrease the dependency on real, identifiable in-
dividuals. We acknowledge that this approach may not fully
address the complex issues surrounding ethics and privacy in
face recognition and related tasks.

VI. CONCLUSIONS

This paper introduces the MONOT dataset, which mimics
real ISO/ICAO-compliant biometric data without violating
privacy, and proves its effectiveness for robust S-MAD model
training. The experiments in terms of attack potential, where
MONOT achieved results comparable to those of a real dataset,
confirm the high quality of the synthetic morphed images.
Furthermore, MAD systems trained with the addition of this
synthetic dataset exhibit strong detection performance across
a challenging cross-dataset and cross-algorithm evaluation.
These findings highlight the utility of synthetic data in devel-
oping robust MAD systems, partially addressing the ethical
and privacy challenges of using real biometric data.
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