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Abstract

In response to the rising threat of the face morphing
attack, this paper introduces and explores the potential of
Video-based Morphing Attack Detection (V-MAD) systems
in real-world operational scenarios. While current morph-
ing attack detection methods primarily focus on a single
or a pair of images, V-MAD is based on video sequences,
exploiting the video streams acquired by face verification
tools available, for instance, at airport gates. We show for
the first time the advantages that the availability of multiple
probe frames brings to the morphing attack detection task,
especially in scenarios where the quality of probe images is
varied. Experimental results on a real operational database
demonstrate that video sequences represent valuable infor-
mation for increasing the performance of morphing attack
detection systems.

1. Introduction
In last decades, the wide diffusion of Facial Recogni-

tion Systems (FRSs) [25] has significantly increased the
demand for robust security measures to counter emerging
threats, including those associated with the face morphing
attack [12, 11] through which it is possible to create a sort
of hybrid face with a double identity.

Current methods to counter this kind of attack are
referred to as Morphing Attack Detection (MAD) sys-
tems [30, 28] and predominantly are focused on the anal-
ysis of the single document image, i.e., Single-image Mor-
phing Attack Detection (S-MAD) [19, 2] or pairs of images
(the document and the live acquired ones), i.e., Differential
Morphing Attack Detection (D-MAD) [31, 4]. However,
in real-world operational scenarios such as Automated Bor-
der Control (ABC) gates in international airports [7], many
commercial FRS technologies often acquire video streams,
providing a continuous sequence of frames [8]. This op-
erational mode is indeed considered in the evaluation of
FRS vulnerability to morphing attacks: the Morphing At-
tack Potential [14] metric is defined considering multiple
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Figure 1: In operational scenarios, V-MAD represents a vi-
able paradigm when a single probe document image is com-
pared with an input sequence to detect whether the image is
morphed or not. V-MAD differs from currently available
literature solutions, based only on a single (S-MAD) or a
pair (D-MAD) of images.

verification attempts. On one hand, the presence of multi-
ple frames could strengthen the morphing attack, increasing
the probability of success, since a single match for a frame
of the sequence might be sufficient to pass the verification
check [16]. On the other hand, the use of multiple frames
could be advantageous from the MAD task perspective.

Therefore, in this paper, we introduce the Video-based
Morphing Attack Detection (V-MAD) task, as an effective
solution for adapting MAD algorithms to real-world oper-
ational scenarios, such as ABC gates in international air-
ports, by leveraging multiple frames (see Fig. 1). Indeed,
we believe the availability of multiple frames is an opportu-
nity to design more accurate and robust MAD systems, en-
abling for instance the possibility of discarding low-quality
frames affected by uneven illumination or non-frontal pose
that might harm traditional D-MAD approaches.

From a practical point of view, this study specifically fo-
cuses on investigating the effectiveness of providing multi-
ple input frames in current sota D-MAD algorithms, includ-
ing frame-based quality scores and machine learning tech-
niques: in this manner, we aim to explore the feasibility and
benefits of such an approach in practical scenarios.



Our investigation is organized in three sequential steps:
i) we focus on widely-used score-level fusion strategies
across individual frames provided as input to different D-
MAD systems [13, 31, 4]; ii) we analyze the usefulness of
face image quality tools [24, 36, 5] as an additional input
for V-MAD, assuming that image quality metrics can con-
tribute to identifying the most reliable frame for analysis;
(iii) we exploit machine learning techniques to investigate
the potential of artificial intelligence in this task.

Concluding, our goal is to establish a foundation for un-
derstanding the potential benefits of leveraging video infor-
mation in the context of the MAD task, particularly when
compared to the classical D-MAD literature approaches.

2. Related Work
2.1. Face Morphing

Face Morphing is a method of manipulating images
whereby one image gradually transforms into another.
Within the context of electronic Machine-Readable Travel
Documents (eMRTDs), this technique enables the creation
of facial images that exhibit a double identity. Studies in
the literature [12] indicate that morphed images have the ca-
pability to bypass both Commercial-Off-The-Shelf (COTS)
FRSs and human controls, rendering face morphing a sig-
nificant security threat. Furthermore, the proliferation of
generative Artificial Intelligence techniques, such as Diffu-
sion Models [27], VAE [23] and GANs [18], greatly exac-
erbates this threat by simplifying the process for potential
malicious actors. Additionally, morphed images can be en-
hanced through either manual or automated retouching pro-
cedures [3, 10], effectively eliminating both detectable and
undetectable artifacts. Consequently, there is an urgent need
to develop novel MAD systems capable of counterattacking
new morphing algorithms and retouching methods. In this
scenario, the introduction of the V-MAD paradigm can fur-
ther improve the accuracy of existing MAD algorithms.

2.2. Morphing Attack Detection (MAD)

Since the introduction of the morphing attack, several
approaches have been proposed as potential countermea-
sures in the literature [29]. The research is mainly fo-
cused on two different categories of approaches. The first
one, named Single-image Morphing Attack Detection (S-
MAD), relies on a single image and aims to detect any trace
of a possible morphing process. These MAD systems are
mainly designed to be exploited during the document en-
rollment stage, where the ID photo is analyzed for possible
inclusion in the eMRTD. The second category is Differen-
tial Morphing Attack Detection (D-MAD) and includes sys-
tems that are supposed to be applied at the face verification
stage, such as at airport ABC gates, where the ID photo
stored in the document is compared to a trusted live capture

acquired at the gate. In this case, two images are available
and can be compared for MAD. In [34, 33] authors propose
the use of multiple single frames belonging to four different
camera for the D-MAD task, then in a different operational
scenario with respect to our proposal.

It is worth noting that only D-MAD approaches can be
included in the V-MAD scenario. One of the current most
accurate D-MAD solutions is proposed in [31], in which
two embeddings of the ArcFace model [9] are classified by
an SVM to decide if the input image is morphed or not.
These embeddings are obtained using a model for the face
recognition task then the classifier learns to detect morphing
only using information about the subjects’ identities.

The idea of exploiting not only information based on
identity is proposed in [4]: specifically, the identity fea-
tures are combined with features related to the presence of
morphing traces (artifacts). Then, even if two similar sub-
jects are provided as input, the detection ability is preserved.
Similarly, other works [6, 35] exploit the fusion of multiple
classifiers and features extracted by different models in or-
der to improve the morphing attack detection performance.

Other literature methods are not based on learning pro-
cedures. In particular, in [13] a reverse morphing proce-
dure, referred to as demorphing, is used to unveil the gen-
uine identity concealed within the morphed image. This
approach is based on COTS FRSs. The success of the en-
tire process hinges on the accurate estimation of facial land-
mark positions, with even minor localization errors poten-
tially compromising the efficacy of the entire pipeline.

3. Video-based MAD (V-MAD)
The typical identity verification process at border gates

consists of comparing an ID photo d stored into an eM-
RTD to a sequence of n trusted live-captured frames F =
(f1, f2, ..., fn), acquired for face verification. Therefore, a
theoretical V-MAD system V (d,F) should analyze in in-
put the whole sequence F and compare it to the document
image d to provide in output a single score to indicate the
morphing probability of the document image.

Being aware that this paper is a seminal work and no
V-MAD methods are currently available in the literature,
we focus our investigation on adapting D-MAD methods to
the V-MAD task, as represented in Figure 2, to establish a
foundation and guidelines for future V-MAD works.

Therefore, in our V-MAD implementation, we have a D-
MAD system D able to compute a morphing score D(d, fi),
representing the probability that the document image d is
morphed, based on its comparison with a specific frame fi.
This can be repeated for each frame in the sequence of gate
images F, thus producing a sequence S(d,F) of morphing
scores:

S(d,F) = (D (d, fi) , i = 1, . . . , n) (1)
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For the V-MAD task, we consider a MAD system V able
to compute a morphing score V (d,F) based on the compar-
ison of the document image d with the whole sequence F. In
its simplest form, a V-MAD system can combine, through
a function ϕ, the sequence S(d,F) of D-MAD scores (see
Eq. 1) computed on the individual frames fi ∈ F:

V (d,F) = ϕ(S(d,F)) (2)

where ϕ is a function ϕ : Rn → R, i.e., a function that takes
as input a vector of n scores and produces as output a single
score for a given sequence.

The function ϕ, and then the V-MAD task, can be easily
generalized to the case where multiple scores are available
for each frame fi:

V (d,F) = ϕ(Sk(d,F), k = 1, . . . ,K) (3)

where each Sk is a set of scores computed starting from
the document image and the sequence of probe frames
F. Therefore, in this case, the application domain is ϕ :
Rn×K → R, i.e., K scores available for each of the n
frames are condensed in a single output value.

3.1. D-MAD Score fusion

Let’s focus first on the case where the V-MAD score
V (d,F) for a given document image d and a sequence of
frames F is defined as SD(d,F), applying a function ϕ to
the D-MAD scores computed for every single frame fi ∈ F.

Then, we can define a variety of ϕ functions to produce
in output a single score as follows:

• Avg: the average D-MAD score of the sequence F

V (d,F) =
1

n

n∑
i=1

D (d, fi) (4)

• Med: the median D-MAD score of the sequence F

V (d,F) = med
i=1,..,n

D (d, fi) (5)

• Vote: a voting system based on the computed D-MAD
scores is defined as follows:

V (d,F) =
1

n

n∑
i=1

m (D (d, fi)) (6)

where

m(D(d, fi)) =

{
1 if D(d, fi) > thr

0 otherwise
(7)

in which thr is a decision threshold.
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Figure 2: Practical implementation of the V-MAD task.
Each frame of the input sequence is analyzed by the same
D-MAD model, which receives also the document image as
additional input and by a quality tool. Both output MAD
and quality scores are then combined through a specific fu-
sion strategy to produce in output the final single score.

3.2. Incorporating Face Image Quality

A further contribution to the V-MAD task is based on
exploiting image quality metrics, consisting of assigning a
quality score for each frame of the probe image sequence F.

In this case, the input to the V-MAD model consists of
two sets of scores, i.e. the D-MAD scores over the single
frames SD(d,F) and the set of quality scores of the probe
frames in the sequence SQ(F):

V (d,F) = ϕ(SD(d,F), SQ(F)) (8)

The document image could be considered as well, but since
ID document images have to fulfill strict quality require-
ments [22], we expect its quality to be high and will not have
a noticeable impact on MAD then we focus on gate images
only. Two possible ϕ functions are considered to combine
the single D-MAD scores SD = {D(d, fi), ∀fi ∈ F} and
the corresponding quality scores SQ = {Q(fi), ∀fi ∈ F}:

• Weighted average: the final V-MAD score is com-
puted as the average of the D-MAD scores of each
frame, weighted by the corresponding quality score:

V (d,F) =
n∑

i=1

D(d, fi) ·Q(fi) (9)

where Q(fi) is the quality score assigned to the frame
fi by, for instance, a Face Image Quality Assessment
Algorithm (FIQAA).

• Best quality: the V-MAD score is the D-MAD score
computed from the frame with the highest quality
score:

V (d,F) = D(d, fk)with k = arg max
i=1,..,n

Q(fi) (10)
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Figure 3: An example of the quality scores computed on a sequence of frames. As reported in Section 3.2, the first three
methods (CRFIQA [5], MagFace [24] and SERFIQ [36]) are able to compute an overall quality score on the whole image,
while the last three are based on specific aspects of the image.

Several algorithms can be used for Face Image Quality
Assessment (FIQA) [32]. In general, face image quality can
be assessed through a unified score, which takes into ac-
count different quality elements and summarizes them into
a single value, or by analyzing single quality components
related to specific image or face characteristics (e.g., illu-
mination uniformity, blurring, head pose, etc.). Most of the
unified FIQA algorithms exploit deep learning-based mod-
els and have been developed for a wide range of application
scenarios where face images are typically acquired in an un-
constrained environment and present therefore significant
variations. From this category, we consider in particular:

• MagFace [24]: it proposes loss functions that learn
universal feature embeddings capable of measuring
face quality. It is shown that the magnitude of the fea-
ture embeddings consistently increases for faces more
likely to be recognized. MagFace also incorporates
an adaptive mechanism to improve within-class feature
distributions, ensuring easy samples are pulled closer
to class centers while hard samples are pushed away.

• CR-FIQA [5]: it estimates the face image quality of
a sample by learning to predict its relative classifiabil-
ity, measured according to the allocation of the training
sample feature representation in angular space with re-
spect to its class center and the nearest negative class
center. The model is trained simultaneously with a face
recognition model.

• SER-FIQ [36]: the quality assessment score is derived
through an unsupervised methodology, relying on the
comparative robustness of deeply learned embeddings
of the image, rather than on predetermined ground
truth acquired from human annotation or facial com-

parison scores. This approach analyzes the variability
in embeddings generated from random subnetworks of
a facial model to estimate the robustness of a sample’s
representation, and consequently, its quality.

The idea of correlating FIQ to the MAD task is inves-
tigated in [17]: however, differently from our assumption,
the quality is directly used to discriminate bona fide from
morphed images, while in our proposal we use the quality
to select the optimal scores obtained on the input video.

In addition to the unified quality scores aimed at an over-
all evaluation of the face image quality, more specific mea-
sures can be used to analyze individual image characteris-
tics. The ISO OFIQ [21] standard defines a number of
quality components, also providing the guidelines for their
computation. We selected here a set of quality components
that might have a significant impact on MAD, computed
through commercial tools:

• Illumination uniformity: it measures the difference in
illumination on the left and right sides of the face. It is
computed as the intersection of the normalized lumi-
nance histograms computed on the left and right parts
of the face region, respectively.

• Defocus: it analyzes the level of sharpness. The score
is computed as the difference between the face region
image and the smoothed version of the same region
obtained through a mean filter.

• Pose: it is focused on the analysis of whether the head
pose is frontal. In our analysis, we take into account
only the pitch angle since in real operational scenarios
yaw and roll angles are mostly well controlled. Only
limited variations in pitch might be observed due to the
location of the acquisition device at the gate.
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Figure 4: V-MAD performance comparison of three D-MAD models using different MAD score fusion strategies (see
Sect. 3.1). The dashed line represents the theoretical upper bound of performance, while the dotted line, based on a ran-
dom choice in the score set, represents the lower bound. Metrics are expressed as errors, then lower are better.

An example of these quality scores computed on differ-
ent frames of a real sequence is reported in Figure 3. A
visual inspection of the frames suggests that the different
quality measures are able to capture to some extent the dif-
ferences in terms of quality between the images, by assign-
ing lower quality scores when specific issues are visible.

4. Experimental evaluation

Firstly, we investigate the impact of the described score
fusion strategies (see Sect. 3.1) applied to scores produced
by different D-MAD models. Then, we consider the scores
produced by different quality tools (see Sect. 3.2) in combi-
nation with the previous D-MAD scores.

4.1. Database and evaluation protocol

Current publicly available datasets commonly used for
the MAD task do not well represent the investigated opera-
tional scenario, since they do not contain probe sequences.
In the context of the iMARS European project [20], a new
dataset , called Mixed-Quality (MQ) database, has been col-
lected. Images are acquired in six different locations, in-
cluding two airports (Lisbon and Athens) and four research
laboratories, where images were acquired under real border
control conditions using authentic ABC gates. A total of 60
different subjects have been involved in the acquisition and
some of them have been acquired across multiple locations.

Summarizing, the database contains: i) 205 bona fide
document images acquired in a capture setup, which meets
the requirements for a document image in a passport ap-
plication, ii) 612 gate images acquired live with real ABC
gates, and iii) 1142 morphed document images created

starting from the bona fide document images using 12 mor-
phing algorithms and various morphing factors. For the
creation of morphed images, subject pairs are identified
through similarity tests using three commercial SDKs. This
choice aims to create a realistic and challenging scenario.

For the D-MAD task, bona fide document images are
compared against gate images of the same subject (for a to-
tal of 2187 bona fide attempts) and morphed document im-
ages are compared against gate images of both contributing
subjects (for a total of 34698 morphed attempts).

For the V-MAD task, bona fide document images are
compared against gate sequences of the same subject (for
a total of 125 bona fide attempts) and morphed document
images are compared against gate sequences of both con-
tributing subjects (for a total of 1145 morphed attempts).

Unfortunately, due to privacy, the dataset is not publicly
released but it is publicly available as an evaluation bench-
mark on the BOEP platform [1].

4.2. Metrics

In the evaluation of the effectiveness of the V-MAD
models, we utilize the common error-based metrics tailored
to the MAD task as outlined in [26]. Specifically, we com-
pute the Bona Fide Presentation Classification Error Rate
(BPCER), that quantifies the ratio of authentic images erro-
neously classified as morphed. Conversely, the Morphing
Attack Classification Error Rate (MACER) expresses the
ratio of morphed images inaccurately identified as genuine.
In the literature, BPCER is often analyzed in conjunction
with a predetermined MACER threshold: in our experimen-
tal setup, we investigate BPCER10 (B10), BPCER20 (B20)
and BPCER100 (B100), denoting the lowest BPCER achiev-
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able at MACER values not exceeding 10%, 5% and 1%,
respectively. It is noteworthy that the latter metric poses
a challenging benchmark and conventionally represents the
standard operational point for facial verification systems in
real-world applications [15]. These values are also repre-
sented through the Detection Error Trade-off (DET) curve,
useful to directly compare different solutions at a glance.

Method EER B10 B20 B100

Siamese [4] .392 .455 .575 1.00
DFR [31] .221 .361 .486 .691

Demorphing [13] .150 .205 .293 .501

Table 1: Performance of the three different models, on the
database used for our evaluation protocol, for the D-MAD
task.

4.3. Tested D-MAD models

Following the considerations reported in Section 3.1, we
test different D-MAD methods to produce a MAD score for
each frame of a sequence. Specifically, we test three recent
D-MAD methods: our implementation of DFR [31] and
Siamese [4], and the official implementation of the method
Demorphing [13] (see Sect. 2.2).

For the sake of completeness, we report in Table 1 the
performance of each model on the evaluation database for
the D-MAD task. It is important to note that these results
are not directly comparable with the ones obtained in the
V-MAD task, but they are useful to understand the perfor-
mance of the single methods in the simple D-MAD task.
From a general point of view, we observe that the Demor-
phing method exhibits great performance, followed by the
DFR (current state-of-the-art method on the BOEP plat-
form [1]), while the effectiveness of the Siamese approach
seems to be limited in this scenario.

4.4. Experimental results

4.4.1 Evaluation of D-MAD score fusion strategies

The results obtained by applying different score fusion
strategies to the scores produced by Demorphing [13],
Siamese [4], and DFR [9] are reported in Figure 4. To bet-
ter understand the range of the performance, we compute
two different baselines. The first one, here referred to as
“rnd” (gray dotted line) is based on the random choice of a
single D-MAD score among those available in a given se-
quence: in this manner, we can compare the performance
of each fusion strategy with the corresponding D-MAD ap-
proach since we have the same amount of scores for the V-
MAD task. The second baseline, referred to as “mxd” (gray
dashed line), simulates an oracle system able to choose for

each attempt (either bona fide or morphed) the best possible
score. Specifically, we select the minimum or the maximum
scores in the given sequence relying on the ground truth an-
notation: the minimum for the bona fide sequences, and the
maximum for the morphed ones. Then, this baseline reveals
the theoretical best performance achievable with the scores
produced by a specific D-MAD algorithm.

The analysis of the results highlights some important
findings. Firstly, the main observation is that even a V-MAD
system consisting of simple score fusion strategies outper-
forms the tested D-MAD approaches in most cases. In other
words, in a real scenario, merging the D-MAD scores of
multiple frames is better than computing the MAD score on
a random frame of the acquired sequence. In particular, we
note that the fusion strategies based on the average or me-
dian functions achieve great performance, while the voting
system is negatively influenced by the different thresholds
to be adopted to compute the votes. Indeed, the “avg” strat-
egy allows to achieve an EER of 0.216, 0.136, and 0.066
for Siamese, DFR and Demorphing, respectively. Even if a
direct comparison is not possible due to the different num-
ber of attempts, these results give us a clear perception of
improvement over the D-MAD results given in Table 1.

A second important finding is that the “mxd” result re-
veals that theoretically the V-MAD approach can signifi-
cantly improve the MAD performance, reaching impres-
sively low EER: 0.048 for Siamese, 0.016 for DFR and
0.008 for Demorphing, respectively.

4.4.2 Evaluation of the impact of image quality

Assuming that MAD scores could be estimated more reli-
ably when the quality of the gate image is good [3], the sec-
ond investigation analyzes the impact of combining MAD
and quality scores obtained using the approaches described
in Section 3.2. The results of this analysis, reported also in
this case through the DET curves, are given in Figure 5.

For all the D-MAD methods tested, the results reveal a
substantial homogeneity across the different quality mod-
els, in particular with respect to the EER. Moreover, it is
possible to note that the weighted average fusion strategy,
referred to as “wavg” (see Eq. 9) outperforms, even with a
limited margin, the best quality strategy (see Eq. 10). To
better appreciate the possible advantages deriving from the
use of image quality scores, Table 2 compares the best re-
sults obtained with D-MAD morphing scores only to the
best results obtained combining D-MAD and quality scores.
For all the D-MAD systems, the introduction of quality has
a positive effect since it allows to some extent to reduce the
error rates. We only consider here the unified quality scores
obtained with MagFace, SER-FIQ and CR-FIQA since they
are more effective than single quality components accord-
ing to the results of Figure 5. Among the three FIQAAs,
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Figure 5: DET curves for the different V-MAD approaches obtained by exploiting image quality estimated as either unified
(first row) or specific (second row) quality measures.

CR-FIQA achieves the best results even if a comparable im-
provement is observed for the other FIQAAs as well.

4.4.3 Evaluation of the impact of Machine Learning

A further experiment has been carried out to evaluate if a
Machine Learning (ML) approach can be effectively ex-
ploited as a fusion strategy. In other words, we investigate
if a regressor that receive as input a sequence of MAD and
quality scores is able to output a single V-MAD score.

Specifically, we exploit an SVM regressor, with a radial
basis function (RBF) kernel, the regularization parameter
C = 1.0, and the kernel coefficient γ = 10−3. In order to
have all the sequences, and then the number of the features,
of the same length, we empirically set the maximum num-
ber of frames to the average sequence length (50), padding

with null element shorted sequences, and clipping longer
ones. For each frame of the video sequence, we compute
the MAD score as reported in Section 4.4.1, and quality
scores as reported in Section 4.4.2. Then, both in the train-
ing and testing phases, all quality scores are normalized in
the range [0, 1]: the scores produced by MagFace are di-
vided by the median value of the entire set of scores of the
dataset (25.77), while the illumination, defocus and pose
scores are divided by 100 since the original score is in the
range [0, 100]. The dataset is split putting the 50% of data
in training and in the testing sets: since the D-MAD scores
are produced by the aforementioned methods – trained on
completely disjoint datasets – the subject identity is not rel-
evant. It is important to note that the results of this approach
are not directly comparable with the previous ones reported
in Figures 4 and 5, since they are computed on a different
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Method Quality EER B10 B20 B100

Demorphing
[13]

- .066 .032 .120 .432
CR-FIQA [5] .065 .024 .104 .400

SER-FIQ [36] .064 .032 .120 .392
MagFace [24] .067 .032 .136 .416

Siamese
[4]

- .216 .392 .504 .904
CR-FIQA [5] .203 .368 .488 .896

SER-FIQ [36] .216 .384 .488 .888
MagFace [24] .210 .384 .488 .896

DFR
[31]

- .136 .224 .312 .520
CR-FIQA [5] .127 .184 .304 .496

SER-FIQ [36] .132 .216 .312 .520
MagFace [24] .128 .216 .312 .512

Table 2: Comparison of the V-MAD results without (-) and
with the contribution of quality scores using the weighted
average (wavg) method.

portion of the dataset (and then a different number of com-
parisons). Different types of classifiers and other combina-
tions have been tested: in the following, we report only the
best combination based on the SVM model.

Experimental results are reported in Table 3. For each
of the D-MAD models investigated, we report three dif-
ferent results. In the first line, we report the performance
of the best fusion strategy outlined in the first part of our
experiments, i.e., the average (avg) and weighted average
(wavg) strategies, then without any use of a machine learn-
ing approach. In the third line, we report the results ob-
tained providing as input to the SVM only the MAD scores,
while in the last line, there are the values obtained providing
as input the concatenation of the MAD scores, the quality
scores produced through the MagFace method and the qual-
ity scores related to the illumination uniformity. Results
suggest that ML is a viable approach to merging different
scores for the V-MAD task. In particular, SVM overcomes
approaches based only on the average and weighted average
fusion strategy.

5. Conclusions

This study provides significant insights into the effec-
tiveness and advantages of the novel Video-based Morphing
Attack Detection (V-MAD) task compared to the traditional
D-MAD one.

Firstly, we have demonstrated that incorporating infor-
mation from multiple frames leads to substantial improve-
ments in overall performance. Utilizing video sequences
enables the development of a MAD system more robust to
the inherent variability characterizing face images, due to
several factors like illumination, pose changes, or motion

Method Input EER B10 B20 B100

Demorphing
[13]

avg .065 .016 .127 .381
wavg .064 .016 .111 .349

SD .063 .032 .079 .524
SD + SQ .033 .000 .000 .460

Siamese
[4]

avg .209 .317 .460 .968
wavg .206 .302 .460 .968

SD .190 .222 .286 .968
SD + SQ .127 .175 .254 .651

DFR
[31]

avg .128 .190 .238 .317
wavg .118 .190 .238 .309

SD .111 .111 .159 .206
SD + SQ .079 .079 .095 .175

Table 3: V-MAD resulting using a machine learning ap-
proach and providing as input the MAD (SD) and quality
(SQ) scores.

blur. Even simple score fusion strategies applied to the D-
MAD scores computed for the single frames proved to be
effective.

Secondly, we proved that face image quality further con-
tributes to the development of robust V-MAD systems. Uni-
fied quality scores as well as single quality components al-
low for further improvement the performance, especially
when exploited by means of ML models able to combine
D-MAD and quality scores into a single morphing score.

In conclusion, our study confirms that V-MAD rep-
resents a significant evolution from traditional MAD ap-
proaches, offering increased effectiveness and robustness in
detecting face morphing attacks. Our analysis is a prelimi-
nary study aimed at assessing the theoretic feasibility of V-
MAD, and the results achieved are still quite far from those
of the target oracle system, confirming the need for new
and more robust V-MAD systems that, also exploit the po-
tentiality of deep learning, can effectively work directly on
video sequences rather than on single images. The develop-
ment of new V-MAD approaches will also have to address
the issue related to the unavailability of datasets representa-
tive of this scenario. Our future research will be dedicated
to proposing new contributions to these aspects.
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