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A B S T R A C T

While biological intelligence grows organically as new knowledge is gathered throughout life, Artificial Neural
Networks forget catastrophically whenever they face a changing training data distribution. Rehearsal-based
Continual Learning (CL) approaches have been established as a versatile and reliable solution to overcome
this limitation; however, sudden input disruptions and memory constraints are known to alter the consistency
of their predictions. We study this phenomenon by investigating the geometric characteristics of the learner’s
latent space and find that replayed data points of different classes increasingly mix up, interfering with
classification. Hence, we propose a geometric regularizer that enforces weak requirements on the Laplacian
spectrum of the latent space, promoting a partitioning behavior. Our proposal, called Continual Spectral
Regularizer for Incremental Learning (CaSpeR-IL), can be easily combined with any rehearsal-based CL
approach and improves the performance of SOTA methods on standard benchmarks.
1. Introduction

Intelligent creatures in the natural world continually learn to adapt
their behavior to changing external conditions by seamlessly blend-
ing novel notions with previous understanding into a cohesive body
of knowledge. In contrast, artificial neural networks (ANNs) greedily
fit the data they are currently trained on, swiftly deteriorating pre-
viously acquired information, a phenomenon known as catastrophic
forgetting [1]. Continual Learning (CL) is a branch of machine learning
that designs approaches to help deep models retain previous knowledge
while training on new data [2]. These methods are evaluated by
dividing a classification dataset into disjoint subsets of classes, called
tasks, letting the model fit one task at a time and evaluating it on all
previously seen data [3]. Recent literature favors the employment of
rehearsal methods; namely, CL approaches that retain a small memory
buffer of samples encountered in previous tasks and interleave them
with current training data [4,5]. While rehearsal easily allows the
learner to keep track of the joint distribution of all classes seen so
far, the limited buffer size produces various overfitting issues that
constitute the focus of many recent works (e.g., divergent gradients for
new classes [6,7], deteriorating decision surface [8], accumulation of
predictive bias for current classes [9,10]).
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This paper instead focuses on the changes occurring in the model’s
latent space as tasks progress. We observe that the learner struggles
to separate latent projections of replay examples belonging to different
classes, making the downstream classifier prone to interference when-
ever the input distribution changes and representations are perturbed.
Given the Riemannian nature of the latent space of DNNs [11], we
naturally revert to spectral geometry to study its evolution. Conse-
quently, we introduce a loss term to endow the model’s latent space
with a cohesive structure without constraining the individual coordi-
nates. As illustrated in Fig. 1, our proposed approach, called Continual
Spectral Regularizer for Incremental Learning (CaSpeR-IL), leverages
graph-spectral theory to promote well-separated latent embeddings and
can be seamlessly combined with any rehearsal-based CL method to
improve its accuracy and robustness against forgetting.

In summary, we make the following contributions: (𝑖) we study
interference in rehearsal CL models by investigating the geometry
of their latent space; (𝑖𝑖) we propose CaSpeR-IL: a simple geometri-
cally motivated loss term, inducing the continual learner to produce
well-organized latent embeddings; (𝑖𝑖𝑖) we validate our proposal by
combining it with several SOTA rehearsal-based CL approaches, show-
ing that CaSpeR-IL is effective across a wide range of evaluations;
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Fig. 1. An overview of the proposed CaSpeR-IL regularizer. Rehearsal-based CL methods struggle to separate the latent-space projections of replay data points. Our proposal acts
on the spectrum of the latent geometry graph to induce a partitioning behavior by maximizing the eigengap for the number of seen classes.
(𝑖𝑣) we compare our work against recent contrastive-based incremental
strategies, showing that CaSpeR-IL better synergizes with CL models;
(𝑣) finally, we present additional studies further investigating the geo-
metric properties conferred by our method on the model’s latent space.
The code to reproduce our experiments is available at https://github.
com/aimagelab/CaSpeR.

2. Related work

2.1. Continual learning

Continual Learning [2] approaches help deep learning models min-
imize catastrophic forgetting when learning on changing input distri-
butions. There are different classes of solutions: architectural methods
allocate separate portions of the model to separate tasks [12], regu-
larization methods use a loss term to prevent changes in the model’s
structure or response [13] and rehearsal methods use a working memory
buffer to store and replay data-points [4] The latter class of approaches
is currently the focus of research efforts due to their versatility and
effectiveness [14]. Recent trends aim to improve the basic Experience
Replay (ER) formula through better memory sampling strategies [14],
combining replay with other optimization techniques [15] or providing
richer replay signals [5].

A prominent challenge for enhancing rehearsal methods is the im-
balance between stream and replay data. This can cause a continually
learned classifier to struggle to produce unified predictions and be
biased towards recently learned classes [9]. Researchers have proposed
solutions such as architectural modifications of the model [16], alter-
ations to the learning objective of the final classifier [6], or the use
of representation learning instead of cross-entropy [17]. Our proposal
similarly reduces the intrinsic bias of rehearsal methods; it does so by
enforcing a desirable property on the model’s latent space through a
geometrically motivated regularization term that can be combined with
any existing replay method.

A strain of recent CL approaches similarly conditions the model’s
representation to facilitate clustering by means of a contrastive regu-
larization objective. SCR [18] enforces consistency between two views
of the input batch by leveraging the Supervised Contrastive loss [19];
PRD [20] employs the same loss, in aid to a prototype-based classifier;
differently, CSCCT [21] pairs an explicit latent-space clustering objec-
tive with a controlled transfer objective preventing negative transfer
from dissimilar classes. In our experimental section, we compare our
proposal against representatives of this family of methods. This allows
us to make some interesting observations on how distinct formulations
of a similar clustering objective lead to the emergence of different
characteristics in latent space geometry.

The use of pre-trained models [22,23], also exploiting transformers
architectures [24], has been showing increasing popularity in the recent
CL literature. We leave the testing of CaSpeR-IL on those settings for
future work, and evaluate our proposal in the more common ‘‘train
from scratch’’ scenario.
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2.2. Spectral geometry

Our approach is built upon the eigendecomposition of the Laplace
operator on a graph, falling within the broader area of spectral graph
theory. In particular, ours can be regarded as an inverse spectral tech-
nique, as we prescribe the general behavior of some eigenvalues and
seek a graph whose Laplacian spectrum matches this behavior. In the
geometry processing area, such approaches take the name of isospectral-
ization techniques and have been recently used in diverse applications
such as deformable shape matching [25], shape exploration and re-
construction [26], shape modeling [27] and adversarial attacks on
shapes [28]. Differently from these approaches, we work on a single
graph (as opposed to pairs of 3D meshes) and our formulation does not
take an input spectrum as a target to be matched precisely. Instead,
we require the gap between nearby eigenvalues to be maximized, re-
gardless of its exact value. Since our graph represents a discretization of
the latent space of a CL model, this simple regularization has important
consequences on its learning process.

3. Method

3.1. Continual learning setting

In CL, a learning model 𝐹𝜽 is incrementally exposed to a stream
of tasks 𝜏𝑖, with 𝑖 ∈ {1, 2,… , 𝑇 }. The parameters 𝜽 include both
the weights of the feature extractor and the classifier, 𝜽𝑓 and 𝜽𝑐

respectively. Each task consists of a sequence of images and their
corresponding labels 𝜏𝑖 = {(𝑥𝑖1, 𝑦

𝑖
1), (𝑥

𝑖
2, 𝑦

𝑖
2),… , (𝑥𝑖𝑛, 𝑦

𝑖
𝑛)} and does not

contain data belonging to classes already seen in previous tasks, so
𝑌 𝑖 ∩ 𝑌 𝑗 = Ø, with 𝑖 ≠ 𝑗 and 𝑌 𝑖 = {𝑦𝑖𝑘}

𝑛
𝑘=1. At each step 𝑖, the

model cannot freely access data from previous tasks and is optimized
by minimizing a loss function 𝓁stream over the current set of examples:

𝜽(𝑖) = argmin
𝜽

𝓁stream = argmin
𝜽

𝑛
∑

𝑗=1
𝓁
(

𝐹𝜽(𝑥𝑖𝑗 ), 𝑦
𝑖
𝑗
)

, (1)

where the parameters are initialized with the ones obtained after
training on the previous task 𝜽(𝑖−1). If no mechanism is put in place
to prevent forgetting, the accuracy on previous tasks will collapse
while learning task 𝜏𝑖 [1]. Rehearsal-based CL methods store a pool of
examples from previous tasks in a buffer 𝐵 with fixed size 𝑚. This data
is then used by the model to compute an additional loss term 𝓁b aimed
at contrasting catastrophic forgetting:

𝜽(𝑖) = argmin
𝜽

𝓁stream + 𝓁b. (2)

For instance, Experience Replay (ER) simply employs a cross-entropy
loss over a batch of examples from 𝐵:

𝓁er ≜ CrossEntropy
(

𝐹𝜽(𝒙𝑏), 𝒚𝑏
)

. (3)

There exist different strategies for sampling the task data points to fill
the buffer. These will be explained in the supplemental material, along

with details on the 𝓁b employed by each baseline of our experiments.
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https://github.com/aimagelab/CaSpeR
https://github.com/aimagelab/CaSpeR


Pattern Recognition Letters 184 (2024) 119–125E. Frascaroli et al.
Fig. 2. How CL alters a model’s latent space. (a) A quantitative evaluation measured as Label-Signal Variation (𝜎) within the LGG for buffer data points – lower is better ; (b)
TSNE embedding of the features computed by X-DER for buffered examples in later tasks (top). Interference between classes is visibly reduced if CaSpeR-IL is applied (bottom).
All experiments are carried out on Split CIFAR-100, (a) uses buffer size 500, (b) uses 2000.
3.2. Analysis of changing latent space geometry

We are particularly interested in how the latent space changes when
introducing a novel task on the input stream. For this reason, we
compute the graph  over the latent-space projection of the replay
examples gathered by the CL model after training on 𝜏𝑖 (𝑖 ∈ {2,… , 𝑇 }).1
In order to measure the sparsity of the latent space w.r.t. classes
representations, we compute the Label-Signal Variation 𝜎 [29] on the
adjacency matrix 𝑨 ∈ R𝑚×𝑚 of :

𝜎 ≜
𝑚
∑

𝑖=1

𝑚
∑

𝑗=1
1𝑦𝑏𝑖 ≠𝑦

𝑏
𝑗
𝑎𝑖,𝑗 , (4)

where 1⋅ is the indicator function. In Fig. 2a, we evaluate several
rehearsal CL methods and show they exhibit a steadily growing 𝜎:
examples from distinct classes become more entangled in later tasks.
This effect can also be observed qualitatively by considering a TSNE
embedding of the points in 𝐵 (shown in Fig. 2b), in which the dis-
tances between different-class examples decrease in later tasks. Both
evaluations improve when applying our regularizer to the evaluated
methods.

3.3. CaSpeR-IL: Continual Spectral Regularizer for Incremental Learning

Motivation. Our method builds upon the fact that the latent spaces
of neural models bear a structure informative of the data space they
are trained on Shao et al. [30]. This structure can be enforced through
loss regularizers; e.g., in [31], a minimum-distortion criterion is applied
on the latent space of a VAE for a shape generation task. We follow
a similar line of thought and propose adopting a geometric term
to regularize the latent representations of a CL model. Namely, we
root our approach in spectral geometry; our choice is motivated by
the pursuit of a compact representation characterized by isometry
invariance. As shown in [11], the latent space of DNNs can be modeled
as a Riemannian manifold whose extrinsic embedding is encoded in
the latent vectors. Being extrinsic, these vectors are simply absolute
coordinates encoding only one possible realization of the data manifold,
out of its infinitely many possible isometries. Each isometry (e.g.; a
rotation by 45◦) would always encode the same latent space, but
the latent vectors will change – this is not desirable, because it may
lead to overfitting and lack of generalization. By resorting to spectral
geometry, we instead rely on intrinsic quantities, that fully encode the
latent space and are isometry-invariant.

Our regularizer is based on the graph-theoretic formulation of clus-
tering, where we seek to partition the vertices of  into well-separated

1 See Section 3.3 for a detailed description of this procedure.
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subgraphs with high internal connectivity. A body of results from
spectral graph theory, dating back at least to Cheeger [32], Sinclair and
Jerrum [33] and Shi and Malik [34], explain the gap occurring between
neighboring Laplacian eigenvalues as a quantitative measure of graph
partitioning. Our proposal, called Continual Spectral Regularizer for
Incremental Learning (CaSpeR-IL), draws on these results, but turns
the forward problem of computing the optimal partitioning of a given
graph, into the inverse problem of seeking a graph with the desired
partitioning.

Building the LGG. We take the examples in 𝐵 and forward them
through the network; their features are used to build a k-NN graph2

; following Lassance et al. [29], we refer to it as the latent geometry
graph (LGG).

Spectral Regularizer. Let us denote by 𝑨 the adjacency matrix of , we
calculate its degree matrix 𝑫 and we compute its normalized Laplacian
as 𝑳 = 𝑰 − 𝑫−1∕2𝑨𝑫−1∕2 , where 𝑰 is the identity matrix. We then
compute the eigenvalues 𝝀 of 𝑳 and sort them in ascending order. Let
𝑔 be the number of different classes within the buffer, we calculate our
regularizing loss as:

𝓁CaSpeR ≜ −𝜆𝑔+1 +
𝑔
∑

𝑗=1
𝜆𝑗 . (5)

The proposed loss term is weighted through the hyperparameter 𝜌 and
added to the stream classification loss. Overall, our model optimizes
the following objective:

argmin
𝜽

𝓁stream + 𝓁b + 𝜌𝓁CaSpeR . (6)

Through Eq. (5), we increase the eigengap 𝜆𝑔+1 − 𝜆𝑔 while minimizing
the first 𝑔 eigenvalues. Since the number of eigenvalues close to zero
represents to the number of loosely connected partitions within the
graph [35], our loss indirectly encourages data points to be clustered
without strict supervision.
Efficient Batch Operation. The application of CaSpeR-IL entails the
cumbersome step of constructing the entire LGG  at each forward step
by processing all available replay examples in the buffer 𝐵 (usually
orders of magnitude larger than a batch of input examples). We conse-
quently propose an efficient approximation of our initial objective by
not operating on  directly, but rather sampling a random sub-graph
p ⊂  spanning only 𝑝 out of the 𝑔 classes represented in the memory
buffer. As p still includes a conspicuous amount of nodes, we resort to
an additional sub-sampling and extract 𝑡p ⊂ p, a smaller graph with 𝑡

2 More details on how the k-NN operation can be found in the supplemental
aterial, along with the pseudo-code of CaSpeR-IL.
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Table 1
Class-IL results – 𝐴̄𝐹 (𝐹 ∗

𝐹 ) – for SOTA rehearsal CL methods, with and without CaSpeR-IL.

Class-IL Split CIFAR-10 Split CIFAR-100 Split miniImageNet

Joint (UB) 87.08 (−) 63.11 (−) 52.76 (−)
Finetune (LB) 19.53 (100.00) 8.38 (100.00) 3.87 (100.00)

Buffer size 500 1000 500 2000 2000 5000

ER-ACE 66.13 (21.76) 71.72 (14.88) 34.99 (51.41) 46.52 (34.60) 22.03 (49.04) 27.26 (29.99)
+ CaSpeR-IL 69.58 (20.56) 73.82 (14.11) 36.70 (46.61) 47.85 (33.86) 23.36 (47.90) 29.15 (28.36)

iCaRL 52.71 (22.69) 62.94 (21.64) 39.56 (32.73) 40.47 (31.24) 19.42 (36.89) 20.17 (33.23)
+ CaSpeR-IL 55.66 (20.56) 63.99 (21.05) 40.87 (32.31) 41.83 (25.55) 20.46 (35.90) 21.45 (32.26)

DER++ 67.38 (26.77) 71.17 (25.12) 28.01 (57.56) 43.27 (34.94) 20.88 (74.48) 28.55 (61.03)
+ CaSpeR-IL 69.11 (26.18) 73.12 (23.43) 32.16 (53.41) 46.95 (30.08) 22.61 (71.01) 29.96 (57.60)

X-DER 63.23 (14.99) 65.72 (12.28) 35.89 (44.54) 46.37 (23.57) 24.80 (44.69) 30.98 (30.12)
+ CaSpeR-IL 65.56 (14.41) 67.84 (10.65) 38.23 (43.90) 48.11 (18.47) 26.24 (41.72) 31.63 (28.71)

PODNet 37.22 (40.49) 45.97 (39.49) 30.16 (54.49) 32.12 (46.73) 16.82 (52.32) 20.81 (46.50)
+ CaSpeR-IL 39.85 (39.51) 47.40 (38.90) 32.27 (48.32) 38.64 (35.65) 18.09 (50.33) 23.63 (45.08)
exemplars for each class. By repeating these random samplings in each
forward step, we optimize a Monte Carlo approximation of Eq. (5):

𝓁∗
CaSpeR ≜ E

p⊂

[

E
𝑡p⊂p

[

−𝜆
𝑡p
𝑝+1 +

𝑝
∑

𝑗=1
𝜆
𝑡p
𝑗

]

]

, (7)

where the 𝝀
𝑡
p denote the eigenvalues of the Laplacian of 𝑡p. Here, we

enforce the eigengap at 𝑝, as we know by construction that each 𝑡p
omprises samples from 𝑝 communities within . In practice, we extract
samples from the buffer, maintaining 𝑏 equal to the batch size to

nsure balance [5,36]. This results in 𝑡 = 𝑏
𝑝 samples from each class of

the 𝑝 randomly chosen. An in-depth discussion on the hyperparameters
of CaSpeR-IL can be found in the Supplemental Material.

4. Continual learning experiments

4.1. Evaluation

Settings. To assess the effectiveness of the proposed method, we pri-
oritize Class Incremental Learning (Class-IL) classification protocol [3],

here the model learns to make predictions in the absence of task
nformation, as it is recognized as a more realistic and challenging
enchmark [14,37]. In the supplemental material, we report results for
oth Task-Incremental Learning (Task-IL) and Domain-Incremental Learn-
ing (Domain-IL) protocols, demonstrating that CaSpeR-IL can enhance
CL baselines within these scenarios as well.

Benchmarked models. To evaluate the benefit of our regularizer,
e apply it on top of several SOTA rehearsal-based methods: Ex-
erience Replay with Asymmetric Cross-Entropy (ER-ACE) [6], In-
remental Classifier and Representation Learning (iCaRL) [38], Dark
xperience Replay (DER++) [5], eXtended-DER (X-DER) and Pooled
utputs Distillation Network (PODNet) [16].

We include the performance of the upper bound training on all
lasses together in an offline manner (Joint) and the lower bound
raining on each task sequentially without any method to prevent
orgetting (Finetune).

atasets. We conduct the experiments on three commonly used image
atasets, splitting the classes from the main dataset into separate
isjoint sets used to sequentially train the evaluated models. For Split
IFAR-10 we adopt the standard benchmark of splitting the dataset

nto 5 subsets of 2 classes each; for Split CIFAR-100, we exploit
he 100-class CIFAR100 [39] dataset by splitting the dataset into 10
ubsets of 10 classes each; for Split miniImageNet, we leverage the
iniImageNet [40] Imagenet subset, adopting the 20 tasks per 5 classes
rotocol.

etrics. We mainly quantify the performance of the compared models
n terms of Final Average Accuracy 𝐴̄𝐹 ≜ 1

𝑇
∑𝑇

𝑖=1 𝑎
𝑇
𝑖 , where 𝑎𝑗𝑖 is the

accuracy of the model at the end of task 𝑗 calculated on the test set
122
of task 𝜏𝑖 and reported in percentage value. To quantify the severity
of the performance degradation that occurs as a result of catastrophic
forgetting, we exploit Final Average Adjusted Forgetting (𝐹 ∗

𝐹 ), as defined
in [41]. It is a [0, 100]-bounded version of the popular forgetting
metric [42].

Hyperparameter selection. To ensure a fair evaluation, we train all
the models with the same batch size and the same number of epochs.
Moreover, we employ the same backbone for all experiments on the
same dataset. In particular, we use Resnet18 [43] for Split CIFAR-100
and Split CIFAR-10 and EfficientNet-B2 [44] for Split miniImageNet.
The best hyperparameters for each model-dataset configuration are
found via grid search. For additional details and further experiments
with varying training epochs and batch sizes, demonstrating the effec-
tiveness of CaSpeR-IL under different conditions, we direct the reader
to the supplemental material.

4.2. Results

We report a breakdown of Class-IL results of our evaluation in Ta-
ble 1. CaSpeR-IL leads to a firm improvement in 𝐴̄𝐹 across all evaluated
methods and datasets. The steady reduction of 𝐹 ∗

𝐹 confirms that the
regularization adopted effectively addresses catastrophic forgetting.

We notice that the improvement in accuracy does not always grow
with the memory buffer size. This is in contrast with the typical
behavior of replay regularization terms [4,17]. We believe it is due to
our distinctively geometric approach: as spectral properties of graphs
are understood to be robust w.r.t. coarsening [45], CaSpeR-IL does not
need a large pool of data to be effective.

In Task-IL and Domain-IL (results in the supplemental material),
the gains are lower than in Class-IL: existing methods are already
strong in these less challenging scenarios. However, CaSpeR-IL still
provides a steady improvement, proving its ability to both consolidate
the knowledge of each task individually (Task-IL) and counteract the
bias introduced by new data distribution on known classes (Domain-IL).

Comparison with Contrastive Learning. The thorough study in [47]
interprets contrastive learning as a parametric form of spectral clus-
tering on the input augmentation graph, which points to a link with
our approach. Given the similarity between CaSpeR-IL’s goal and con-
trastive objectives, we devise a comparison with SCR (Supervised Con-
trastive Replay) [19] and CSCCT (Cross-Space Clustering and Con-
trolled Transfer) [21], two existing CL contrastive baselines described
in Section 2. We evaluated these methods on the Split CIFAR-100
benchmark described above. SCR is a standalone model extending
Experience Replay; conversely, CSCCT is a module that can be plugged
into existing CL methods, so we consider it as a direct competitor im-
plemented upon our baselines. Despite behaving similarly to CaSpeR-IL,
CSCCT requires a past model snapshot to be available during training
and inserts both streaming and memory data within its loss terms.
Results can be seen in Table 2. To better analyze the effects of different
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Fig. 3. For several rehearsal methods with and without CaSpeR-IL, the functional map magnitude matrices 𝑪 |⋅| between the LGGs 𝜏5 and 𝜏10 , computed on the test set of 𝜏1 ,… , 𝜏5
after training up to 𝜏5 and 𝜏10 respectively (Split CIFAR-100 - buffer size 2000). The closer 𝑪 |⋅| to the diagonal, the less geometric distortion between 𝜏5 and 𝜏10 . We report the
first 25 rows and columns of 𝑪 |⋅|, focusing on low-frequency correspondences [46], and apply a 𝑪 |⋅| > 0.15 threshold to increase clarity.
Table 2
Comparison with contrastive baselines. We report 𝐴̄𝐹 and the average variance of
same-class projections on the latent space.

Class-IL Split CIFAR-100

Buffer size 500 2000

𝐴̄𝐹 Variance 𝐴̄𝐹 Variance

SCR 31.18 2.2111 43.39 4.4439

ER-ACE 34.99 0.5313 46.52 0.5769
+ CaSpeR-IL 𝟑𝟔.𝟕𝟎 0.4926 𝟒𝟕.𝟖𝟓 0.5478
+ CSCCT 34.93 𝟎.𝟑𝟗𝟑𝟏 45.91 𝟎.𝟒𝟐𝟗𝟎

iCaRL 39.56 0.8381 40.47 0.8248
+ CaSpeR-IL 𝟒𝟎.𝟓𝟕 𝟎.𝟖𝟐𝟖𝟗 𝟒𝟏.𝟖𝟑 𝟎.𝟖𝟎𝟓𝟕
+ CSCCT 39.36 0.9167 40.87 1.0392

DER++ 28.01 0.1283 43.27 0.1209
+ CaSpeR-IL 𝟑𝟐.𝟏𝟔 0.0964 𝟒𝟔.𝟗𝟓 0.1012
+ CSCCT 30.17 𝟎.𝟎𝟓𝟓𝟐 44.27 𝟎.𝟎𝟖𝟓𝟕

X-DER 35.89 0.2265 46.37 0.2523
+ CaSpeR-IL 𝟑𝟖.𝟐𝟑 0.2065 𝟒𝟖.𝟏𝟏 𝟎.𝟐𝟐𝟎𝟕
+ CSCCT 36.23 𝟎.𝟏𝟗𝟕𝟒 45.51 0.2242

PODNet 30.16 0.4229 32.12 0.7366
+ CaSpeR-IL 𝟑𝟐.𝟐𝟕 0.4197 𝟑𝟖.𝟔𝟒 0.5700
+ CSCCT 30.78 𝟎.𝟏𝟖𝟎𝟗 33.59 𝟎.𝟐𝟓𝟕𝟕

CL approaches on the latent space, we measured the average variance
of same-class projections at the end of training.

Firstly, we observe that SCR exhibits a higher variance in the
latent space compared to other baselines. Conversely, both CSCCT and
CaSpeR-IL are able to reduce the latent-space variance of the model
they are applied to. The results highlight an intriguing behavior: despite
CSCCT often achieving minimal variance, the accuracy improvement of
CaSpeR-IL remains higher. Hence, we suggest two interesting explana-
tions for these observations: (𝑖) intra-class variance in latent space is
not proportional to accuracy; (𝑖𝑖) while directly constraining individual
coordinates may limit the model’s ability to rearrange data points,
spectral geometry may be a softer clustering approach that permits
the flexibility required to organize the latent space into more optimal
structures for classification tasks.

5. Model analysis

5.1. k-NN classification

To further verify whether CaSpeR-IL successfully separates the la-
tent embeddings for examples of different classes, we evaluate the
accuracy of k-NN-classifiers [48] trained on top of the latent represen-
tations produced by the methods of Section 4. In Table 3, we report
the results for 5-NN and 11-NN classifiers using the final buffer 𝐵 as a
support set. We observe that CaSpeR-IL also shows its steady beneficial
effect on top of this classification approach, further confirming its
validity in disentangling the representations of different classes.
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Table 3
Class-IL 𝐴̄𝐹 values of k-NN classifiers trained on top of the latent representations of
replay data points. Results on Split CIFAR-100 for Buffer size 2000.

k-NN Clsf w/o CaSpeR-IL w/ CaSpeR-IL

(Class-IL) 5-NN 11-NN 5-NN 11-NN

ER-ACE 43.73 44.41 46.75+3.02 47.29+2.88
iCaRL 34.86 37.78 36.00+1.14 38.33+0.55
DER++ 44.21 44.24 45.75+1.54 46.00+1.76
X-DER 43.44 44.62 49.47+6.03 49.49+4.87
PODNet 21.11 22.60 27.88+6.77 28.94+6.34

5.2. Latent space consistency

To provide further insights into the dynamics of the latent space
on the evaluated models, we study the emergence of distortions in
the LGG. Given a continual learning model, we are interested in a
comparison between 𝜏5 and 𝜏10 , the LGGs produced after training on
𝜏5 and 𝜏10 respectively, computed on the test set of tasks 𝜏1,… , 𝜏5.

The comparison between 𝜏5 and 𝜏10 can be better understood in
terms of the node-to-node bijection 𝑇 ∶ 𝜏5 → 𝜏10 , which can be
represented as a functional map matrix 𝑪 [46] with elements 𝑐𝑖,𝑗 ≜
⟨𝝓𝜏5

𝑖 ,𝝓𝜏10
𝑗 ◦𝑇 ⟩ , where 𝝓𝜏5

𝑖 is the 𝑖th Laplacian eigenvector of 𝜏5
(similarly for 𝜏10 ), and ◦ denotes the standard function composition. In
other words, the matrix 𝑪 encodes the similarity between the Laplacian
eigenspaces of the two graphs. In an ideal scenario where the latent
space is subject to no modification between 𝜏5 and 𝜏10 w.r.t. previously
learned classes, 𝑇 is an isomorphism and 𝑪 is a diagonal matrix [46].
In a practical scenario, 𝑇 is only approximately isomorphic, and, the
better the approximation, the more 𝑪 is sparse and funnel-shaped.

In Fig. 3, we report 𝑪 |⋅| ≜ abs(𝑪) for ER-ACE, iCaRL and X-DER on
Split CIFAR-100, both with and without CaSpeR-IL. It can be observed
that the methods that benefit from our proposal display a tighter
functional map matrix. This indicates that the partitioning behavior
promoted by CaSpeR-IL leads to reduced interference, as the portion of
the LGG that refers to previously learned classes remains geometrically
consistent in later tasks. To quantify the similarity of each 𝑪 |⋅| matrix to
the identity, we also report its off-diagonal energy 𝑂𝐷𝐸 [49], computed
as the sum of the elements outside of the main diagonal divided by
the Frobenius norm. CaSpeR-IL produces a clear decrease in 𝑂𝐷𝐸 ,
signifying an increase in the diagonality of the functional matrices.

5.3. Limitations

Given the necessity for the proposed regularizer to store and reuse
previously learned training samples, we remark that CaSpeR-IL appli-
cability might be limited if privacy constraints are in place. This applies
to any rehearsal CL method.

6. Conclusion

In this work, we investigate the evolution of a CL model’s latent
space throughout training. We find that latent-space projections of past
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exemplars are relentlessly drawn closer together, paving the way for
catastrophic forgetting. Drawing on spectral graph theory, we propose
CaSpeR-IL: a regularizer that encourages the clustering of data points in
the latent space, without constraining individual coordinates. We show
that our approach can be easily combined with any rehearsal-based CL
approach, improving their performance on standard benchmarks.
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