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Abstract. Prompt-tuning methods for Continual Learning (CL) freeze
a large pre-trained model and train a few parameter vectors termed
prompts. Most of these methods organize these vectors in a pool of key-
value pairs and use the input image as query to retrieve the prompts
(values). However, as keys are learned while tasks progress, the prompt-
ing selection strategy is itself subject to catastrophic forgetting, an issue
often overlooked by existing approaches. For instance, prompts intro-
duced to accommodate new tasks might end up interfering with pre-
viously learned prompts. To make the selection strategy more stable,
we leverage a foundation model (CLIP) to select our prompts within a
two-level adaptation mechanism. Specifically, the first level leverages a
standard textual prompt pool for the CLIP textual encoder, leading to
stable class prototypes. The second level, instead, uses these prototypes
along with the query image as keys to index a second pool. The retrieved
prompts serve to adapt a pre-trained ViT, granting plasticity. In doing
so, we also propose a novel residual mechanism to transfer CLIP seman-
tics to the ViT layers. Through extensive analysis on established CL
benchmarks, we show that our method significantly outperforms both
state-of-the-art CL approaches and the zero-shot CLIP test. Notably,
our findings hold true even for datasets with a substantial domain gap
w.r.t. the pre-training knowledge of the backbone model, as showcased
by experiments on satellite imagery and medical datasets. The codebase
is available at https://github.com/aimagelab/mammoth.

Keywords: Continual learning - Rehearsal-free - Prompt-based learning

1 Introduction

While human beings can easily acquire new knowledge and remember past in-
formation, several studies [26,33] have shown that Artificial Intelligence models
struggle to replicate this behavior. Specifically, neural networks tend to forget
previously solved tasks while learning new ones, an issue known as catastrophic
forgetting |26]. Continual Learning (CL) [9L[29] models a scenario in which data
from old tasks are no longer available when training on new tasks, and the
model needs to trade-off the preservation of past information (stability) with the
adaptation to the new data (plasticity).
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Fig. 1: Comparison between current approaches (left) and our STAR-Prompt (right),
regarding their prompting selection strategies. To enhance the stability of the pool
selection, we exploit the multi-modal CLIP embedding space and compute a similarity
between the image and prompt-learned class-prototype keys. Afterwards, the retrieved
values are used as prompts for another backbone, i.e. an ImageNet pre-trained ViT.

The emergence of large-scale pre-trained Transformers and foundation
models has recently changed the adaptation paradigm, usually moving to-
wards parameter-efficient plasticity, in which only a few parameters are opti-
mized to solve a new task while keeping most of the model frozen. A successful
example is prompt tuning, in which a few learnable vectors (“soft prompts”) are
appended to the input image tokens. For instance, CoOp learns a context
prompt, which is concatenated with the textual name of the class label and fed to
the textual encoder of CLIP . The latter generates a class prototype in feature
space, which is used to classify the images of the task at hand. Similarly, Visual
Prompt Tuning (VPT) learns task-specific visual prompts for each layer
of an ImageNet pre-trained Vision Transformer (ViT) [10], while CoCoOp
extends CoOp by conditioning its prompts on the input image.

Prompt tuning has recently been adopted in different CL proposals
with good results. These methods, inspired by CoOp, CoCoOp, and
VPT, usually devise a shared pool of key-value pairs to manage the prompts
learned during each round. As shown in Fig. [I] (left), the input image is used
as a query to retrieve a subset of relevant prompts from the pool. To make the
selection strategy effective, the keys are learned along with the values (i.e., the
prompts). The learning criteria for these keys usually involve a form of weak
supervision that pulls selected keys closer to corresponding query features, with
further orthogonality constraints to encourage diversification [40].

Despite the extensive application in incremental scenarios, prompting ap-
proaches fall into a pitfall, which is the main focus of our work. As the key space
is continuously updated with no further access to past queries/tasks, the selection
mechanism is itself subject to catastrophic forgetting and possible misalignments
between queries and keys. As outlined in Sec. this causes interference in the
prompt selection (i.e., prompts of a certain task are mapped to unrelated tasks),
thus leading to sub-optimal performance.
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We hence propose to employ a foundation model like CLIP to realize the
query-key matching mechanism, yielding a more stable selection strategy. In fact,
it has been shown that the fine-tuning regime of CLIP models favors stability
over plasticity [5], as distinct parameters can be naturally devoted to distinct
concepts, mitigating their interference. However, to enhance plasticity, we use
the prompts retrieved through CLIP to condition another backbone, specifically
an ImageNet pre-trained ViT. Notably, this leads to a two-level prompting
pipeline (Fig. [1| right), which is the main technical contribution of our work.
Briefly: as in CoOp and AttriCLIP [45], we train class-specific prompts (first-
level prompt pool) to be fed to the CLIP textual encoder. Conversely, we
exploit the resulting embedding not for computing classification scores, but as
keys of a second prompt pool. The retrieved second-level prompts are used to
adapt the ImageNet pre-trained ViT, which provides the final output prediction.

Our secondary contribution involves a novel mechanism to prompt the pre-
trained ViT, utilizing an additive residual technique to adapt it. While most
methods [40,47] concatenate the learned prompts to the arguments of the Multi-
head Self-Attention (MSA) layer (see Sec. , our second-level prompts are used
as semantic residuals which are added before the MLP layer input. While there
is no guarantee that a pre-trained and frozen MSA layer will take into account
all the prompt tokens, our additive mechanism forces the ViT embeddings to
include CLIP-derived semantics.

Finally, inspired by SLCA [49], where first- and second-order feature statistics
are used to generate synthetic samples of past tasks, we adopt a generative replay
method in both stages of our approach. However, differently from SLCA, we use
a Mixture of Gaussians (MoGs) to model the multimodal distribution of each
class, leading to a more effective generation process.

To assess our intuitions, we test our approach termed STAR-Prompt (Se-
mantic Two-level Additive Residual Prompt) on nine image classification datasets.
These encompass well-established CL benchmarks, such as Split Imagenet-R and
Split CIFAR-100 [5}40,/47,/49], but also satellite and medical settings, hence
covering domains that differ significantly [8,28.|32] from the pre-trainings of
both ImageNet and CLIP. As our experiments outline, prompting-based CL ap-
proaches struggle with such large domain gaps, often being outperformed by
older methods relying on the good old rehearsal schema. The results show a re-
markable +5.96 average improvement in final accuracy w.r.t. the state of the art,
with peaks of +3 on Split Imagenet-R and +11 on Split Cars-196. Importantly,
we prove the resilience of our framework to severe domain shifts. For example,
when the zero-shot CLIP model struggles (e.g., achieving only 54.50% accu-
racy on Split EuroSAT), our two-level approach instead excels (i.e., 93.70%),
underscoring the merits of a stable and continuous adaptation over the simple
reuse of frozen large pre-trained models. We therefore acknowledge the following
contributions:

— We shed light on the stability issue of prompt selection proposing a two-level
prompting strategy that builds upon the stability of foundation models.
— We present a novel prompting approach based on semantic residuals.
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— We extend the SLCA feature generation to multi-modal distributions.
— We deepen the current understanding of incremental adaption, underscoring
that large pre-trained models still require adaptability.

2 Related work

Continual Learning. CL approaches are usually classified according to the
strategy they adopt against forgetting. Regularization-based methods adjust
the loss function to restrict significant changes in either the model weights or its
activations when moving to other tasks [2023[[27,]35]. Architectural methods
alter the structure of the model by devoting separate groups of parameters to
different tasks [25}37.|38]. Finally, Rehearsal-based methods alleviate forget-
ting by storing a subset of samples from past tasks in a memory buffer, which
are then optimized along with the data of the current task [2}3,/14,33/34]. A
sub-category of rehearsal methods is based on generative replay, where real
samples are replaced by synthetically generated ones [18}36}39].

Prompting methods. The first attempt to use prompt tuning in CL is
Learning to Prompt (L2P) [48], where a pool of prompts is shared by all
tasks, and the input image is used as the query to select the most appropri-
ate prompts from this pool. DualPrompt |47 introduces a hierarchy of general
and task-specific prompts and adopts prefix-tuning over prompt tuning, where
the former prepends prompts to the keys and the values of MSA layers rather
than prepending prompts to the input tokens. Prefix-tuning is also adopted in
CODA-Prompt [40], which additionally introduces an end-to-end prompting
mechanism and an orthogonality soft-constraint to encourage prompt indepen-
dence (both of which we adopt, see Sec. [3.3)).

Recently, several works have investigated the application of CLIP [32] in
incremental settings. In AttriCLIP [44] the prompts are fed to the CLIP’s
textual encoder, while PromptFusion [5] takes inspiration from VPT and trains
prompts for the textual encoder jointly with visual prompts for a pre-trained
ViT. Differently from PromptFusion, which uses these prompts in parallel fusing
the corresponding classification scores, we instead employ them sequentially.
Specifically, the textual prompts are used to produce class-specific keys to index
a second pool of prompts.

3 Method

Problem setting. In Continual Learning, a model is trained on a sequence
of T tasks, where each task Dy, t = 1,...,T is composed of sample-label pairs
(xi,yi), 1 =1,...,|D¢|. In this paper, we adopt a class-incremental setting [42],
in which the set of classes )y of task Dy is disjoint from Yy (with ¢ # t’), and
the task identity ¢ is unknown at inference time. For simplicity, we assume that
V1| = .-+ = |Yr| = N. Importantly, when the model is trained on D, the
training data from the old tasks Dj.;_; are inaccessible.
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Fig. 2: The architecture of STAR-Prompt. The bottom left box illustrates our CL
setting, in which first- and second-level prompts of the old tasks are frozen.

3.1 Overview

Our method, shown in Fig. [2] relies on two pre-trained architectures:

— the CLIP model , i.e. the image F,;s(+) and the text Ey.:(-) encoders.
— an ImageNet pre-trained Vision Transformer ().

In a nutshell, every parameter of these networks is frozen during training. To
adapt them in a parameter-efficient manner while minimizing interference, we
devise a two-level codebook strategy. The first one provides learnable con-
text passed as input to the CLIP text encoder: by doing so, we produce stable
class prototypes. The second level leverages these text-level prototypes as keys of
a second codebook of prompts, which serve to provide a more plastic behaviour
to the second model f(-).

Specifically, the first-level prompting stage resembles CoOp and conditions
the text encoder Ey.+(-) by concatenating a class-specific learnable vector to the
input sequence. However, differently from CoOp, we do not directly exploit the
learned textual class prototypes to perform classification. In fact, we use them
as keys for comparison against the visual query, derived by applying the CLIP
visual encoder F,;s(-) on the input image. Based on the resulting similarities, we
retrieve a second-level learnable prompt R, termed semantic residual vector,
aiming to transfer class-specific semantics to the ViT f(-).

In particular, we devise a specific residual vector for each layer of f(-). For-
mally, indicating with €' the output of the I-th block of f(-) containing MSA,
MLP, and LayerNorm (LN) layers [10],

e’ = MSA(LN(e;)) + ¢ (1)
e+1 = MLP(LN(e')) + €, (2)
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we exploit the first residual connection to inject the semantic residual vector R:

e = MSA(LN(CZ)) +e + R. (3)

Ultimately, the classification scores are derived from the final classification layer
of f(+). We provide the details in the following subsections.

3.2 STAR-Prompt: Two-Level Prompt Tuning

In the first prompting stage, we associate a learnable prompt p. to each class
Ye € Vy. The prompt p. consists of a single learnable token that is concatenated
with the initial word embedding of the class y., indicated with [CLS-NAME]:

we = B ([pe; [CLS-NAME])). (4)

For instance, if y. refers to the class ‘dog’, then [CLS-NAME] is the embedding
of the word ‘dog’. These two embeddings are fed to Ey..(-) to get a final textual
representation w, € R%.

While CoOp utilizes w. as a class prototype to classify the image x, we
treat w. as a class-specific key. Specifically, we use these class-specific keys
to retrieve a second set of learnable prompts Q. € RL*?". These prompts aim
to adapt each layer of the ImageNet pre-trained Vision Transformer f(-). In
particular, let [ < L denote the I-th layer of f(-) and d’ its embedding dimension.
Then, Q.[l] € RY represents the second-level class-specific prompts used to adapt
the I-th layer of f(-).

In detail, the second-level prompting stage leverages the CLIP multi-modal
embedding space. Given the visual embedding of the input image z = E,;5(x)
(query), we compute its cosine similarity sim. = (z,w.) with each class prototype
key wq,...,wy:. Each of these keys is derived from the first-level prompting
stage and corresponds to one of the Nt classes observed so far.

Afterwards, we build the semantic residual R € RL*4 by using the prompt
Q., of the class with the highest cosine similarity, as follow:

R = sim,, - Q,, (5)
where ¢ = argmax sim,. . (6)
c=1,..., Nt

In Eq. (5)), the term sim,, weighs the residuals with the confidence CLIP assigns
to the selected key w,, . As shown in Sec. @, such a modulating operation yields
indeed a beneficial empirical effect.

The residuals R are then used to transfer CLIP-based class-specific cues to
each MLP layer of f(z). We hence replace Eq. (1)) with:

e = MSA(LN(@[)) +e + Rm (7)

Please note that R[l] is a single d’-dimensional vector that applies uniformly
across the entire sequence of visual tokens. In other words, to ensure dimensional
compatibility for summation, R][l] is repeated for each token in the sequence.
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Main training objective. For each task D, we extend the two codebooks
adding the class-specific prompts of the current task. In detail, the set of first-
level prompts is computed as: Py := Pr_1 U {p. | ¢ € V;}, while the second-level
codebook is obtained by: Q; := Qi1 U{Q. | ¢ € V;}. To avoid forgetting,
we freeze the prompts of the old tasks (P;—1 and Q1) and train only those
corresponding to the current task. Although both levels may be trained jointly
and end-to-end, we strive for simplicity and structure the optimization process
as a two-stage training procedure. Specifically, for both codebooks, we use the
cross-entropy as the main loss function:

| D]

|D 2 Zlogp = cla,), (8)

where, in the first stage, the posterior probabilities are computed as:

exp((zi, we)/T) 9)

p(yi = clz;) = > eev exp((zs,wer)/T)’

with 7 indicating the temperature parameter of CLIP. Conversely, in the second
stage, the posteriors in Eq. consider the CLS token e = f(z;;R) of the
last layer L of f(-) |10], as follows:

ply: = clzi) = ga, (L), (10)

where gy, (+) represents the classification head of the current task ¢. This module
comprises of a linear projection followed by the softmax layer. The parameters
0; of the projection layer are initialized at the beginning of task ¢, and trained
while keeping the classification heads of the old tasks frozen.

3.3 Additional Details

Query weighting. Similarly to CODA-Prompt [40], we train class-specific
weight vectors A, € R? to weigh the importance of the visual features with
respect to the c-th class. Specifically, each z = E,;s(z) is element-wise multiplied
with A., and in Eq. we replace sim, = (z,w.) with (z ® A.,w.).
Orthogonality. We also follow CODA-Prompt and discourage possible corre-
lations between old and new prompts. This is done by minimizing the following
two loss functions for the two codebooks respectively:

Lop = Z (Per,De)s (11)

cEYy,c’ Epast(t)

Loa=7> Y (QullQl). (12)

I=1 c€Yy,c’ Epast(t)

where past(t) = {¢'|¢ € Yy, t’ <t} indicates the set of past classes.



8 M. Menabue et al.

[JDualPrompt [£] CODA-Prompt 2 STAR-Prompt DualPrompt CODA-Prompt STAR-Prompt
- - - ..
» ~ o) ~-
° ® n ©- o W
£ 7 N - < |
© s 4 i
» 7| SP | 0 o | |
S /T N o e ||
= 7 3~ | O ~- ~ =
5 g e N RS o [
b3 /ENE7NS/ 41Ed 7 £ | | - o - ]|
1 2 3 4 5 6 7 8 9 10 o W HEN W IR L o NN n
12345678910 12345678910 12345678910
Incremental Task D, Selected task Selected task Selected task
(a) (b)

Fig. 3: Prompt retrieval on Split Imagenet-R. Left: for the test set of the first task,
the portion of examples using prompts of the correct task D; during the incremental
training. Right: we extend the analysis to all the tasks, computed at the end of the
incremental training. In each confusion matrix, the y axis represents the task of the
query sample, while the x axis shows the task of the corresponding selected key.

3.4 Discussion and comparisons to related works

Our main contribution relies on the use of a foundation model to enhance the
stability of the prompt selection. Indeed, we regard a prompting strategy as sta-
ble if, given a task, the query-key selection strategy retrieves the set of prompts
relevant to that task, and not those introduced for subsequent tasks. In the fol-
lowing, we dissect why existing approaches overlook stability and how we exploit
CLIP to enhance it.

On the stability of prompting-based CL methods. Like our method,
existing approaches such as L2P, DualPrompt, and CODA-Prompt employ a
query-key matching mechanism to fetch the prompts utilized for adapting the
pre-trained ViT. Notably, they learn new keys from scratch when a new task
is presented, and define a customized loss term to incentivize the learned keys
to be aligned with the visual queries of the current task (extracted using the
pre-trained ViT itself). However, these learned keys often lack a clear semantic
interpretation, and could be theoretically used to represent distant concepts.
Concerning this, we argue that learning keys as such is susceptible to inter-
ference between tasks. Indeed, since keys are continuously adjusted to align with
the queries of the current task, they may drift and no longer match with the
queries of earlier tasks. Or, when introducing novel keys, they could interfere
with those already present in the pool, and be selected to classify examples of
previous tasks. We assess such an intuition by analyzing the prompts retrieved
by different methods — i.e., DualPrompt, CODA-Prompt, and our approach
STAR-Prompt— on the Split Imagenet-R dataset. In detail, Fig. [3al shows the
proportion of testing samples of the first task D; retrieving the right prompts
— namely, those corresponding to prompts learned during the first task D;. As
can be seen, the precision of the selection strategies of both DualPrompt and
CODA-Prompt decreases as the tasks progress, indicating that more and more
examples of D; use prompts of subsequent tasks. Our approach is instead much
more stable, as also evident in Fig. which depicts the full confusion matrices
computed after the final task. While the confusion matrix of STAR-Prompt is
almost diagonal, the prompt selection of DualPrompt and CODA-Prompt yields
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significant task confusion. As outlined in the suppl. materials, we verified these
outcomes also on other domains (i.e., in aerial and medical datasets).

The reason at the base of the stability of our STAR-Prompt is twofold. On
the one hand, we do not start from scratch when learning the keys, but we adapt
the CLIP text encoder, which allows us to devote distinct learnable parameters
to distinct classes. Such an approach promotes a greater modularity, and has
been already acknowledged as more stable by the authors of PromptFusion [5].
Differently from them, however, we exploit the stability of the text encoder not
for direct prediction, but to fetch a second codebook of prompts.

On the other hand, we provide explicit supervision (Eq. ) to enforce
class-driven separation in the key space. This differs from other CL prompting
approaches, which settle to weaker constraints (e.g., relying on orthogonality or
aligning the query with the closest key in the pool). Hence, since w. keys are
both stable and separated, the second-level prompts Q. can learn class-specific
information, reducing the interference among classes/tasks.

Prompting mechanism. In most methods, prompts are prepended with
the input sequence before each MSA layer. Another common solution is pre-
fix tuning (Sec. , which intervenes only on the keys and the values of the
MSA layer. Since the frozen MSA layer weighs the importance of each prompt,
we argue that there is no barrier preventing some of these tokens from being
disregarded. Conversely, our semantic residuals are added after the MSA layer
(see Eq. (7). This is similar to the shifting parameters of FiLM layers [30] used
to adapt the Batch Norm [16] of CNNs. However, we do not have a parameter
“generator” network [30], and the residuals for the Vision Transformer MLPs are
computed using CLIP-guided shifting vectors.

Computational cost. As detailed in suppl. materials, the computational de-
mand associated with STAR-Prompt is comparable with that of most prompt-
based approaches (e.g., L2P, CODA-Prompt, etc.), requiring two forward passes.
The key difference is that these methods rely on the same backbone, whereas we
employ two backbones with distinct parameters.

3.5 Multi-Modal Generative Replay

In SLCA, class-specific features are used to estimate the statistics of a Gaussian
representing the class distribution. Then, subsequent tasks use this Gaussian to
generate synthetic features and perform generative replay. To capture multiple
peaks in the distribution of each class, we extend this idea by introducing, in
both stages of our training, a Mixture of Gaussians (MoGs) representation of
the feature distribution. Specifically, in the first stage, for each class ¢, we fit a
MoGs G, on the CLIP visual features z; = Eyis(x;) V (z;,y; = ¢) € Dy:

M
Ge=G(10e) = > 0N (5 115, ). (13)

m=1

The parameter vector ¢, contains the M means, covariances and corresponding
Gaussian component weights, and it is estimated by Expectation-Maximization
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Algorithm 1 Training of STAR-Prompt on the current task

Require: Index of the current task Dy, t € 1,...,T, the orthogonality loss weighting
coefficient A\, the number of M Gaussian components, the number of E; and FEo
training epochs with real and generated samples (respectively), learning rate Ir.

First stage — goal: learning first-level Second stage — goal: learning second-
prompts peleeqi,...,ny for each class ¢ € level prompts Q., query weights A. Ve €

Y: of the current task . Vi, and the classifiers Oy |1, 13-
1. forep:=1,...,FE do 13: param <— {QC’AC}ceyt U o
2. ['CE <+ use Eqs ‘E' and @ 14: for ep .= 1, ey F, do
3. [/OP < use Eq 15: ECE <— use Eqs.and
14 Pe &= Ppe—lr- Voeleey, Lce + Mop 16 Loq + use Eq. (12)
s. end for 17 param < param—Ir-Vyaran LcE+AL0OQ
6: # apply Generative Replay (Sec. 18: end for
7. Ge < EM({Evis(?) }o,y=cep,) V¢ € V¢ 10. # apply Generative Replay (Sec.
s forep:=1,...,F> do 20 He <~ EM({f(2i;R)}o,y=cep,) Ve € Wi
o # create samples from Geor|orey,, .y, 21: forep:=1,...,FE> do
10:  LER + use Eq. 22:  # create samples from Her|ereyy ... v,
1 pe = pe—Ir V.o, LEr 28 Oy Oy —1r-Vo, L3V € {1,...,t}
12. end for 24: end for

(EM). G, is then used in the subsequent tasks t' (¢’ > t) to generate n = 256
synthetic features z of class c¢. Using this generative replay technique, we obtain:

Nt n
1
P _ = pp— 5.
‘CGR = TNt E E Ing(yl C‘Z;), (14>

c=1i=1

where p(y; = c|Z;) is the posterior probability for a synthetic visual point Z; ~ G..:

exp({Zi, we)/7)

p(yi = clzi) = =57 . : (15)
Yo exp((Zi,we)/T)
Note that, in the denominator, we use all the Nt classes observed so far.
Similarly, in the second training stage, we use the ViT features egLS =

f(z;; R) of the current task to estimate the parameters of a second MoGs, indi-
cated with H,, as for Eq. . In the rehearsal phase, we replace e(ELS in Eq. (10)
with n synthetic features sampled from each H., and, analogously to Eqs. (14)
and , we compute /.:gR (details in the suppl. materials).

The whole training algorithm is shown in Algorithm [I} For ease of presen-
tation, we do not split the dataset in mini-batches when computing a step of
gradient descent. The algorithm shows that, in the first training stage, only the
first-level prompts are updated (i.e., p., ¢ € V;). Conversely, in the second stage,
we train the second-level prompts Q., the query weighting parameters A., and
the linear layer of gy, (-). Specifically, in the second-stage rehearsal phase, we
update the heads of all the tasks observed so far (i.e., Oy<;).
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4 Experiments

We evaluate our approach on varying benchmarks. We follow the current liter-
ature dealing with pre-trained CL models [5,/40}/47,|49] and cover conventional
image datasets such as CIFAR-100 and Imagenet-R. Then, we assess the adaptabil-
ity of these pre-trained methods by moving to settings with decreasing domain
similarity w.r.t. the Image-Net pre-training [8,28|. In particular, we test on the
following domains (more details can be found in suppl. materials):

— Natural domain: Split CIFAR-100 |22| and Split Imagenet-R [13], with
respectively 100 and 200 classes split into 10 tasks.

— Specialized domain: following [49], we adopt Split Cars-196 [21] and Split
CUB-200 [43] as fine-grained scenarios. Classes are split across 10 tasks.

— Aerial domain: datasets comprising RGB satellite images for land use and
land cover classification. We use Split EuroSAT [11,[12] (5 binary tasks) and
Split RESISC45 6], which divides 45 classes into 9 tasks.

— Medical domain: we adopt three settings, ranging from plant to human dis-
eases. Split CropDiseases |15 regards healthy /infected leaves with 7 tasks/5
classes each. In Split ISIC [7], images of 6 skin diseases are split into 3 tasks.
Split ChestX [46] consists of chest X-ray images (2 tasks/3 classes each).

Metrics. We report the Final Average Accuracy (FAA) — computed after
the end of the last task — and the Final Forgetting [4] in suppl. materials.
Each experiment is repeated three times with varying class orders [49]. We hence
provide both the mean and the standard deviation of the FAA.

Implementation details. We train our model with Adam [19] with a learning
rate of 0.001. The number of epochs is set according to the varying dataset sizes
(see suppl. materials), while we adopt a batch size of 16 for Split Imagenet-R and
128 for the other datasets. For a fair comparison, we maintain the same number
of epochs for all the competitors and search their optimal hyper-parameters
(including learning rate and optimizer) to guarantee the best performance. These
configurations are reported in suppl. materials. In line with most CL literature,
we perform inference in an instance-wise setup, where each prompt is selected
independently for each sample of the batch (more in suppl. materials).

Competiting methods. We focus our evaluation on the state-of-the-art prompt
tuning methods, including L2P [48|, DualPrompt [47]|, AttriCLIP [45], Prompt-
Fusion [5], and CODA-Prompt [40]. Furthermore, our comparison includes meth-
ods that fine-tune all the network, including SLCA [49], DER++ |2] (rehearsal-
based), GDumb [31] (rehearsal-based), and LwF [23| (regularization-based). We
follow [40L{47,149] and adopt the same backbone based on ViT-B/16 as the main
classification architecture for all the methods and settings (in our notation, f(-)),
initializing the network with a fully supervised pre-train on ImageNet-21K. Sim-
ilarly, for all methods using CLIP, we use ViT-L/14 as in [45] (in our notation,
E,is(+) and Ep¢(-)). We stress that our comparison comprehends methods such
as PromptFusion and AttriCLIP that leverage the CLIP model in CL scenarios;
we retain this ensures the fairness of our evaluation.
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Table 1: The Final Avg. Accuracy and std dev. for natural and specialized domains.
T denotes methods fine-tuning the whole model. * highlights rehearsal approaches. We
take results () from [40], @ from 45|, ® from [49], ) from [5]. Due to the absence of
a public codebase, we could not reproduce the results of PromptFusion on all datasets.

Model Imagenet-R CIFAR-100 Cars-196 CUB-200 Awvg.

Joint (STAR-Prompt) 90.03 £0.33  92.32 +0.28 89.00 +0.33 85.64 +£0.30 89.25
Joint @1 (ViT-B/16)  79.60 0.87  93.22 £0.16  80.31 £0.13 88.00 £0.34 85.28
Fine-tune ' (ViT-B/16) 17.21 +4.72  17.47 4251 9.28 +0.31 11.36 +1.43 13.83

k-NN (ViT-B/16) 18.93 26.14 11.57 2144  19.52
Zero-shot CLIP [32] 85.36 73.27 76.46 61.14  74.06
LwF T [24] 19.09 £5.72  19.68 £0.90 23.24 +1.88 16.73 £4.16 19.69
GDumb " T |31] 44.28 +0.51 57.92 £1.67 28.74 £0.47 61.34 +0.46 48.07
DER++ " T |2 56.66 +0.97  79.77 £1.14 53.66 +£1.51 74.62 +0.73 66.18
L2P & [48] 66.49 £0.40  82.76 £1.17 38.18 £2.33 62.21 +£1.92 62.41
DualPrompt ) [47] 68.50 £0.52  85.56 +0.33 40.14 £2.36 66.00 +0.57 65.05
CODA-Prompt [40]  75.45 +0.56 (1) 86.25 +0.74 (V) 31.99 +3.30 67.30 £3.19 65.25
AttriCLIP [45] 86.25 +0.75 81.40 @ 70.98 +0.41 50.07 £1.37 72.18
PromptFusion 9 " |5] 80.70 +— 87.40 +— - - -

SLCA ® 1 |49 77.00 £0.33  91.53 +0.28 67.73 +£0.85 84.71 +0.40 80.24
STAR-Prompt 89.83 +0.04 90.12 +0.32 87.62 40.20 84.10 +0.28 87.92

Training-free baselines and lower /upper bounds. We integrate our anal-
ysis with the zero-shot testing of CLIP [32| (Zero-shot CLIP), which uses
hand-crafted textual prompts (e.g., “A photo of a [CLS-NAME]”) to classify a
testing image through Eq. @D Notably, the comparison between STAR-Prompt
and the Zero-shot CLIP test provides an understanding of the algorithmic mer-
its of our approach, and allows us to disentangle them from the strengths of
CLIP. Futhermore, we consider a similar baseline built on top of the ImageNet
pre-trained backbone. It freezes the network and simply memorize the latent
features of each training example, employing a k-ININ approach.

For a thorough comparison, we include the results of STAR-Prompt when
trained on all tasks in a stationary scenario — Joint (STAR-Prompt) — which
serves as an upper bound. Moreover, we include Joint ¥ ( ViT-B/16) and Fine-
tune T (ViT-B/16), where a ViT-B/16 is fine-tuned on all tasks respectively
jointly and incrementally with no countermeasure to forgetting.

4.1 Comparison with the State of the Art

As shown in Tab. [I] and 2] STAR-Prompt outperforms all the other approaches
on average. The comparison is particularly significant when referring to other
CLIP-based methods (e.g. AttriCLIP and PromptFusion). For instance, in the
two fine-grained scenarios — Cars-196 and CUB-200— we get a +11.16 and a +22.96
margin over Zero-shot CLIP, respectively. We ascribe this result to the fact that
fine-grained class differences (distinguishing a “red headed woodpecker” from
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Table 2: The Final Avg. Accuracy for the aerial and medical domains. The std dev.
is reported in the suppl. materials for the sake of presentation.

Model EuroSAT RESISC CropDis. ISIC ChestX Awg.
Joint (STAR-Prompt) 97.21 96.41 99.19 78.25 45.36 83.28
Joint T (ViT-B/16) 98.19 96.88 99.68 88.31 48.92 86.40
Fine-tune ' (ViT-B/16)  19.91 14.96 1324  30.30 30.92 21.87
k-NN (ViT—B/16) 28.18 24.86 30.74 19.09 11.51 22.88
Zero shot CLIP 54.50 63.15 27.58 29.14 26.27 40.13
LwF T 25.13 15.37 22.31 33.06 32.82 25.74
GDumb “ 1 90.99 60.07 83.61 61.64 32.33 65.73
DER++ ~ T 93.08 51.84 92.53 65.68 35.52 67.72
L2P 46.34 63.27 74.68 47.13 32.46 52.78
DualPrompt 71.39 76.21 81.41 49.99 35.70 62.94
CODA-Prompt 63.12 70.46 77.09 44.87 38.62 58.83
AttriCLIP 57.51 66.64 33.21 26.77 28.94 42.61
SLCA f 88.69 85.70 93.80 59.19 39.07 73.29
STAR-Prompt 93.70 92.28 9492 66.67 41.85 T77.88

a “red bellied woodpecker”) are not easily captured by the pre-trained CLIP.
Therefore, a mechanism devoted to plasticity as our second-level prompting stage
becomes fundamental. A similar conclusion could be drawn for the aerial and
medical domains, where the average gap w.r.t. the Zero-shot CLIP is +37.75.

Remarkably, we get a +5.96 average boost over the runner-up method (SLCA),
which is remarkable considering that STAR-Prompt has only a fraction of its
learnable parameters (see suppl. materials). We also emphasize that STAR-
Prompt closely matches the performance of its Joint upper bound, with an aver-
age margin of just —3.59. This result looks particularly promising: our solution
yields an almost negligible drop in performance w.r.t. a stationary scenario. Such
an outcome holds true for both aerial and medical scenarios, which demand high
adaptability.

Moreover, existing prompting approaches struggle in aerial and medical set-
tings. They are surpassed by replay-based approaches, which can deeper fine-tune
the backbone to account for domain shifts. Notably, STAR-Prompt stands out
as the best compromise between stability and plasticity.

4.2 Ablation studies

Tab. [3] dissects the impact of each part of STAR-Prompt. For space constraints,
we report one dataset for each domain (see suppl. materials for the others).

Two-level prompting. Through the first two comparisons, we assess the role
of the two-level strategy. Specifically, “Classify with first-level keys w.” indi-
cates an ablative approach that lacks the second stage. To classify, similarly
to CoOp, it uses the learned keys w,. as class-prototypes (the posteriors are
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Table 3: Ablative studies on STAR-Prompt (Final Avg. Acc. £ std dev).

Model Imagenet-R Cars-196 EuroSAT ISIC
STAR-Prompt 89.83 +0.04 87.62 +0.20 93.70 +0.09 66.67 +1.45

Ablations on two-level prompting

Classify with first-level keys w. 88.16 £0.27 87.57 £0.12 90.12 +0.54 58.87 +1.25
w/o first-level prompts 88.97 £0.52 79.88 +£0.46 86.25 £5.32 58.68 £5.57

Other secondary ablations

Prefiz Tuning (no residuals) 71.34 £0.34  60.03 £4.14 90.92 +£0.44 62.46 +0.88

w/o0 Generative Replay 88.55 +0.06 87.17 +0.07 83.78 +1.82 50.76 +3.36
w. Unimodal Generative Replay 89.62 +0.12 87.28 +£0.12 92.58 +0.40 60.79 +0.68
w/o Confidence Modulation 88.73 +£0.16 87.29 £0.13 93.68 +0.38 63.53 +£0.75

computed as in Eq. @) Tab. [3| shows that this strategy achieves competi-
tive performance, highlighting the stability of the learned keys. However, if more
plasticity is required (as for EuroSAT and ISIC), the gap w.r.t. STAR-Prompt in-
creases. Similarly, STAR-Prompt shows improvement over the row labeled “w/o
first-level prompts”, which is a variation of STAR-Prompt that avoids learning
fist-level prompts and replaces them with the static hand-crafted CLIP textual
templates [32]. We use the resulting textual embeddings as class-prototype keys,
learning only second-level prompts Q..

Semantic residuals. Afterwards, we replace our semantic residual (Eq. (7))
with Prefix Tuning: following [47], for each ViT layer we train 5 key and 5 value
prompt tokens, concatenated to the keys and the values of the respective MSA.
Still, the results in Tab. [3] highlight the advantage of our additive mechanism.

Generative Replay. A significant drop occurs if the generative replay stage
is removed, especially when tasks deviate from the pre-train. Moreover, row w.
Unimodal Generative Replay shows the results obtained when using a single
Gaussian instead of a MoG. Despite it is generally better than w/o Generative
Replay, the results are largely inferior to the MoG used for the full model.

Confidence modulation of the semantic residuals. Eq. injects the
confidence of the CLIP encoders into the residuals. The last row shows that
Confidence Modulation provides a fair improvement across the different datasets.

5 Conclusion

We present STAR-Prompt, a prompting method for Continual Learning based
on three novelties. First, we strengthen the stability of prompt selection using
a foundation model and two levels of prompt tuning. Second, we replace stan-
dard prompt concatenation with additive residuals, which transfer semantics into
MLP layers. Finally, we use a simple generative replay based on a multi-modal
representation of the feature distributions. Each part of STAR-Prompt brings a
significant contribution, leading it to outperform the state of the art.
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