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Abstract

MicroRNAs (miRNAs) are small molecules that play an essential role in regulating gene

expression by post-transcriptional gene silencing. Their study is crucial in revealing the fun-

damental processes underlying pathologies and, in particular, cancer. To date, most studies

on miRNA regulation consider the effect of specific miRNAs on specific target mRNAs, pro-

viding wet-lab validation. However, few tools have been developed to explain the miRNA-

mediated regulation at the protein level. In this paper, the MoPC computational tool is pre-

sented, that relies on the partial correlation between mRNAs and proteins conditioned on

the miRNA expression to predict miRNA-target interactions in multi-omic datasets. MoPC

returns the list of significant miRNA-target interactions and plot the significant correlations

on the heatmap in which the miRNAs and targets are ordered by the chromosomal location.

The software was applied on three TCGA/CPTAC datasets (breast, glioblastoma, and lung

cancer), returning enriched results in three independent targets databases.

Introduction

MicroRNAs (miRNAs) are small RNA molecules that emerged as important regulators of gene

expression at the post-transcriptional level. They are involved in many diverse biological pro-

cesses [1], and their dysregulation may lead to various diseases, including cancer [2–4]. Accu-

rate prediction of miRNA-target interactions is critical to understanding the function of

miRNAs. Although much progress has been made, target identification remains a challenge

because of the limited understanding of the molecular basis of miRNA-target coupling, but

also due to the context-dependence of post-transcriptional regulation and miRNA mode of

action [5–7]. Generally, miRNAs downregulate proteins through a combination of transla-

tional inhibition and promotion of mRNA decay [8–10], even though which mechanisms of

action of microRNAs are the most dominant remains a matter of debate. The emergence of

high-throughput methods in the past decades has allowed researchers to address the question

of miRNA action on a global scale. High-throughput experiments have usually been focused

on measuring miRNA-mediated changes at the mRNA level (degradation), allowing for the

characterization of only a subset of direct targets [11–14]. Further integration of global prote-

ome profiling has allowed the investigation of miRNA-mediated gene expression changes at
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both the mRNA and the protein level [15, 16], even though many of these studies are limited

to one or a few miRNAs or proteins. Additionally, few published tools are available to integrate

mRNA and protein profiles to infer miRNA regulation. ProteoMirExpress [17] infers active

miRNAs based on the anticorrelation between miRNAs and their potential targets at either the

mRNA or the protein level, or both. However, pairwise correlation approaches applied to

omics profiles produce very dense networks containing direct and indirect associations that

are very difficult to distinguish.

Here, we propose a novel in silico method, called MoPC (Multi-omics Partial Correlation

analysis), to analyze post-transcriptional regulation by miRNAs by integrating information at

both mRNA and protein level. The MoPC method predicts miRNA-target potential interac-

tions using high-throughput mRNA, protein, and miRNA expression datasets from matched

samples. It computes the conditional dependence (partial correlation) of mRNA and protein

levels, taking into account the effect of a third variable, the expression of a given regulatory

miRNA. The underlying hypothesis assumes that if a miRNA regulates a given gene, then the

partial correlation between the mRNA and the protein expression of that gene conditioned by

the expression of the miRNA will be greater than the bivariate correlation between the mRNA

and protein levels of the gene. Therefore, to identify candidate miRNA targets, MoPC selects

those genes whose partial correlation between the level of RNA and protein levels conditioned

to the expression of a given miRNA is more significant than the bivariate correlation between

the RNA and the protein.

MoPC has been applied to TCGA/CPTAC omics datasets of breast, glioblastoma, and lung

cancer, predicting key miRNAs involved in these diseases. To assess the reliability of the inter-

actions predicted by the MoPC, they have been tested for the enrichment in predicted targets

by three independent databases, namely miRDB [18, 19], TargetScan [20], and miRTarBase

[21]. The targets predicted by MoPC in breast and lung cancer show significant overlap with

those predicted by the three independent databases. In contrast, the targets predicted in glio-

blastoma significantly overlap with targets predicted in TargetScan and miRTarBase. Finally,

MoPC provides the user with a heatmap to visualize results and simultaneously explore the

conditional correlation map of all genes and miRNAs included in the analysis. The user can

visualize the interactions between multiple miRNAs and multiple targets by considering hori-

zontal or vertical bands in the heatmap.

Materials and methods

MoPC method

The MoPC workflow is reported in Fig 1.

To predict miRNA-target interactions by integrating information at both mRNA and pro-

tein level, MoPC calculates the partial correlation of the mRNA and protein levels of a gene con-

ditioned by miRNA expression. Input requires three matrices of mRNA, protein, and miRNA

expression denoted respectively as M, P, and MI with the same number of columns n, corre-

sponding to the samples. The M and P matrices must have the same rows IDs corresponding to

the genes for which the mRNA and protein levels were measured. Partial correlation ryx.z

between mRNA x and protein expression y while accounting for the effect of a given miRNA z
is computed as in Eq 1 (ryx stands for the bivariate correlation between variables y and x):

ryx:z ¼
ryx � ðryzÞðrxzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

yz

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

xz

p ð1Þ
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The bivariate Pearson correlation ryx between mRNA expression x and protein expression y
is also computed. Relevant miRNA-target interactions are selected as those for which a lower

p-value is observed with partial correlation than that obtained with bivariate correlation. To

ensure a large increase in the significance of the p-value, only interactions with an improve-

ment in the p-value in the upper quartile of the distribution are selected.

The MoPC returns two outputs:

1. miRNA-target significant interactions. This list reports all miRNA-target candidate inter-

actions based on the partial correlation measure. Additional columns contain the validation

information (e.g., if the miRNA-target interaction was previously known in the literature

according to three databases: miRDB, TargetScan, and miRTarBase).

2. summary heatmap. The heatmap reports genes on the rows and miRNAs on the column

ordered according to their chromosomal location. Significant miRNA-targets are

reported in red (the more intense the color, the higher the partial correlation estimate).

MiRNA-targets both significant and validated in at least one of the three databases

(miRDB, TargetScan, and miRTarBase) are reported in dark green. The user can identify

miRNAs targeting multiple genes by visually inspecting horizontal or vertical bands in

the heatmap.

The method is freely available as an R package at the following link: https://github.com/

martalovino/MoPc.

In addition, we investigated the miRNA-targets found by MoPC in all three datasets (breast,

lung, and glioblastoma) to search if they contain the seed region of the corresponding miRNA.

Since the MoPC method does not exploit at all gene and miRNA sequences in the analysis, the

presence of the miRNA seed in the target mRNA is of interest. The gene sequences were

obtained by processing the human reference sequence and the annotation files (fasta and gtf

format, respectively) from the ENSEMBL GRCh38, version 109, database. Each gene sequence

has been selected as the sequence (from the start to the end coordinates) of the longest

Fig 1. MoPC method in a glance. Input data consist of M, P, and MI matrices representing mRNA, proteomics, and

miRNA expression matrices. First, the partial correlation matrix is computed. Note that this matrix has Rm rows

corresponding to the number of rows in M and P (genes) and Rmi columns equal to the number of MI rows (miRNAs).

Next, the improvement matrix is computed as the difference between the partial correlation p-value and the bivariate

correlation p-value. Finally, relevant gene-miRNA interactions are chosen as the top quartile of positive improvement

values.

https://doi.org/10.1371/journal.pone.0289699.g001
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transcript. The miRNA sequences were obtained from miRDB in fasta format, and the miRNA

seed region was identified from base 2 to base 8, counting from the miRNA 5p end. To verify

the presence of the seed region in the target gene, we enforced an exact match.

Data pre-processing

The MoPC method was tested on three TCGA/CPTAC datasets from breast, glioblastoma,

and lung cancer studies [22–24].

The breast cancer dataset was obtained from the work of Meryins et al., published in 2016

[22]. The published matrices contain the quantifications of 17814 genes, 7665 proteins, and

332 miRNAs for 77 samples, respectively. The glioblastoma dataset was obtained from the

publication of Wang et al. of 2021 [23], including mRNA, protein, and miRNA expression

values for 106 tumor samples. The input matrices contain, respectively, 45914 genes, 10998

proteins, and 2883 miRNAs. The lung squamous cell tumor dataset comes from the 2021

publication of Satpathy et al., in which mRNA, proteins, and miRNA expression are quanti-

fied [24]. More than 200 samples have been analyzed, of which 201 have all three omics

quantifications of our interest. Overall, 21792 genes, 11111 proteins, and 2585 miRNAs are

reported.

The three datasets were processed according to the following procedure. These datasets

contain missing values, particularly in protein and miRNA expression matrices. For our pur-

poses, proteins and miRNAs with less than 10% of missing values across samples were kept.

The remaining missing values were imputed by imposing the median value. Finally, the

mRNA e miRNA matrices were transformed by applying the log2 function.

In all datasets, only the top 50% most highly variable proteins were included, since MoPC

requires a certain variance in the expression profiles.

Table 1 shows the datasets size supplied to MoPC.

Results

MoPC detects biologically relevant regulatory miRNAs in cancer datasets

MoPC was applied to three omic datasets from TCGA/CPTAC projects, namely breast, glio-

blastoma, and lung cancer. MoPC output returns 1) a table of miRNAs and predicted target

genes and 2) a heatmap to visualize the chromosomal position of miRNAs and target genes. In

particular, the table listing miRNAs and target genes contains both the estimate value and p-

value returned from the partial correlation (the higher the estimate and the lower the FDR

adjusted p-value, the more significant the interaction between that gene and that miRNA). In

addition, it returns if the gene-miRNA target interaction is already annotated in the three

external databases (miRDB, TargetScan, and miRTarBase).

Table 1. Data dimensions as provided in input to MoPC. For each dataset, the number of samples, quantified mRNA, proteins and miRNAs are reported after the adegu-

ate preprocessing.

Dataset name # of samples # of genes # of proteins # of miRNAs

Breast cancer 77 5263 5263 332

Glioblastoma 106 4355 4355 316

Lung cancer 201 4279 4279 252

# of samples column refers to samples for which mRNA, protein and miRNAs quantifications are available.

https://doi.org/10.1371/journal.pone.0289699.t001
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Computational validation

In order to test the reliability of MoPC predictions, the enrichment in miRDB, TargetScan,

and miRTarBase predicted targets was assessed for each of the three cancer datasets, using

hypergeometric test. In addition, the same enrichment test was performed for miRNA-target

predictions based on the bivariate correlation between mRNA and miRNA expression and

between protein and miRNA expression. Pearson correlation with FDR corrected p-values

was computed and the miRNA-target pairs with a p-value lower than alpha 0.05 were selected.

The same conditions of the partial correlation were used to compute the bivariate correlations

to perform a fair comparison. Tables 2–4 report for each of the three cancer datasets the per-

centage of miRNA-targets selected as significant, and the p-value of the hypergeometric test in

each of the three databases (miRDB, TargetScan, and miRTarBase) both for the MoPC method

and the mRNA-miRNA and protein-miRNA bivariate correlation.

MiRNA-targets visualization map

MoPC returns a heatmap where miRNAs and predicted targets are arranged according to

their chromosomal position. The heatmap represents in red the miRNA-targets significantly

predicted according to the MoPC partial correlation analysis and in dark green, the miRNA-

targets statistically predicted and validated in at least one of the three databases (miRDB, Tar-

getScan, and miRTarBase). The user can visually explore the presence of miRNAs that regulate

multiple genes and vice-versa (the same gene regulated by multiple miRNAs). S1–S3 Figs show

breast, glioblastoma, and lung cancer heatmaps, respectively.

Discussion

The goal of MoPC is to predict relevant miRNA-targets integrating information from miRNA,

mRNA and proteome profiles. The predicted targets are validated with three reference data-

bases (miRDB, TargetScan, and miRTarBase), both for the MoPC method and for the bivariate

correlation between mRNA-miRNA and protein-miRNA. As reported in Tables 2–4, MoPC

predictions are enriched in independent database targets for the three cancer datasets ana-

lyzed. Except for the enrichment of glioblastoma in miRDB, all enrichments are statistically

significant. The miRNA-target pairs predicted from the bivariate mRNA-miRNA and protein-

miRNA correlation are also statistically enriched for each cancer dataset and database, unless

for breast cancer in the bivariate protein-miRNA correlation in the mirDB database.

An essential aspect to compare is the total number of miRNA-target interactions predicted

by MoPC and bivariate mRNA-miRNA and protein-miRNA correlation. Analyses of glioblas-

toma and lung cancer datasets benefit from the results obtained through MoPC. Indeed,

MoPC returns 17.20%, 18.26%, and 18.49% of miRNA-target interactions for breast, glioblas-

toma, and lung cancer. Although the bivariate mRNA-miRNA and protein-miRNA

Table 2. Validation of results on breast cancer dataset. The first two columns contain the results related to the bivariate correlation between mRNA-miRNA and pro-

tein-miRNA. The last column contains the MoPC results. Pearson correlation with FDR corrected p-values was computed and the miRNA-target pairs with a p-value

lower than alpha 0.05 were selected. The same conditions of the partial correlation were used to compute the bivariate correlations to perform a fair comparison.

Bivariate correlation mRNA-miRNA Bivariate correlation protein-miRNA MoPC based on partial correlation

% of predicted miRNA-targets 2,59% 0,68% 17,20%

miRDB enrichment 2.66e-05 0.607 3.73e-05

TargetScan enrichment 0.038 0.094 0.0003

miRTarBase enrichment 0.0094 0.023 2.24e-11

https://doi.org/10.1371/journal.pone.0289699.t002
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correlation are generally more enriched in the three external target databases, they return a

higher percentage of miRNA-target correlated pairs, typically greater than 36% for both

mRNA-miRNA and protein-miRNA. This aspect is of uttermost importance, as the number of

investigable gene-miRNA pairs is not clinically useful if it is close to 30–60% of all gene-

miRNA pairs in the input dataset. MoPC proves to be an effective method in identifying key

miRNAs within a dataset, reducing the number of targets while maintaining the statistical sig-

nificance of the enrichment.

After the MoPC computational validation in the three external databases, we focused on

specific miRNAs known in the literature to be associated with specific diseases. Indeed, the

enrichment in miRDB, TargetScan, and miRTarBase verifies that the miRNA-target interac-

tion is known or predicted in the literature. However, such enrichment does not consider

whether the predicted miRNAs are key in the specific disease (breast, glioblastoma, lung can-

cer). Therefore we compared MoPC miRNA-target pairs with disease-associated miRNA in

the literature [25–27] (see Tables 5–7 for validation information in breast, gliobastoma and

lung cancer, respectively.

Regarding breast cancer, MoPC detects the main miRNAs involved in the cancer genesis,

including miR-126–5p and miR-140–5p (with anti-angiogenesis and anti-tumorigenesis func-

tion) and miR-200b-5p and miR-200c-5p (promoting metastasis and invasion). Furthermore,

among the miRNAs known in glioblastoma, MoPC successfully identifies the tumor suppres-

sors miR-7–5p and miR-128–5p and the oncomiRs miR-21–5p and miR-93–5p, responsible

for survival, proliferation, apoptosis, and drug resistance. For lung cancer, the miRNAs known

and identified by MoPC are miR-7–5p and miR-21–5p (chemosensitive and chemoresistant,

respectively) and miR-200c-5p and miR-223–5p with EGFR-TKI and ALK-TKI sensitivity.

The Tables below show the top 5 percentile of miRNAs with the highest significant number of

targets found by MoPC and their associated disease.

Table 8 shows for each dataset the percentage of miRNA-targets in which the seed was

found in any region of the gene, the percentage in which the seed region is located at 5p and

3p of the gene, and the percentage in which the seed region is located in a coding region (CDS

region). The last row shows the percentage in which the seed region is either on the 5p UTR,

Table 4. Validation of results on lung cancer dataset. The first two columns contain the results related to the bivariate correlation between mRNA-miRNA and protein-

miRNA. The last column contains the MoPC results. Pearson correlation with FDR corrected p-values was computed and the miRNA-target pairs with a p-value lower

than alpha 0.05 were selected. The same conditions of the partial correlation were used to compute the bivariate correlations to perform a fair comparison.

Bivariate correlation mRNA-miRNA Bivariate correlation protein-miRNA MoPC based on partial correlation

% of predicted miRNA-targets 61,13% 59,60% 18,49%

miRDB enrichment <e-70 <e-70 2.891e-11

TargetScan enrichment <e-70 <e-70 2.973e-06

miRTarBase enrichment <e-70 <e-70 6.68e-27

https://doi.org/10.1371/journal.pone.0289699.t004

Table 3. Validation of results on glioblastoma dataset. The first two columns contain the results related to the bivariate correlation between mRNA-miRNA and pro-

tein-miRNA. The last column contains the MoPC results. Pearson correlation with FDR corrected p-values was computed and the miRNA-target pairs with a p-value

lower than alpha 0.05 were selected. The same conditions of the partial correlation were used to compute the bivariate correlations to perform a fair comparison.

Bivariate correlation mRNA-miRNA Bivariate correlation protein-miRNA MoPC based on partial correlation

% of predicted miRNA-targets 36,69% 41,70% 18,26%

miRDB enrichment <e-70 <e-70 0.999

TargetScan enrichment <e-70 <e-70 9.48e-23

miRTarBase enrichment <e-70 <e-70 1.57e-63

https://doi.org/10.1371/journal.pone.0289699.t003
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3p UTR, or CDS (the seed could be found in multiple locations, so the last row could not be

the mathematical sum of the three previous ones).

The seed is always present in the miRNA-targets selected by MoPC. In addition, although

MoPC does not profit from any information related to gene or miRNA sequences, more than

22% of the total miRNA-target interaction is found in 5p UTR, 3p UTR, or coding regions.

Table 5. Breast cancer validation information.

miRNA gene/pathways known effect Reference

hsa-miR-3200–3p

hsa-miR-197–3p

hsa-miR-505–5p

hsa-miR-505–3p

hsa-miR-18a-5p

hsa-miR-17–5p

hsa-miR-577–5p

hsa-miR-135b-5p LATS2, CDK2, p-YAP Promotion of cell proliferation and S–G2/M cell cycle progression [25]

hsa-miR-93–3p

hsa-miR-93–5p

hsa-miR-20a-3p

hsa-miR-301a-3p

hsa-miR-127–3p

hsa-miR-29b-1–5p Akt3, VEGF, c-MYC Anti-angiogenesis and anti-tumorigenesis [25]

hsa-miR-15b-3p Cyclin E1, E2F7 Anti-proliferative and G1–S cell cycle arrest [25]

hsa-miR-17–3p

https://doi.org/10.1371/journal.pone.0289699.t005

Table 6. Glioblastoma validation information.

miRNA gene/pathways known effect Reference

hsa-miR-128–

3p

Tumor suppressor Proliferation, apoptosis, angiogenesis, stemness, radioresistance [28]

hsa-miR-139–

5p

In vitro, human ELTD1, cyclin A, cyclin D1 [28]

hsa-miR-21–

5p

oncomiR Survival, proliferation, apoptosis, migration, invasion, chemoresistance [28]

hsa-miR-21–

3p

oncomiR Survival, proliferation, apoptosis, migration, invasion, chemoresistance [28]

hsa-miR-7–5p Tumor suppressor Survival, proliferation, apoptosis, invasion, angiogenesis [28]

hsa-miR-

1249–3p

hsa-miR-155–

5p

In vitro, human MAPK13, MAPK14 [28]

hsa-miR-124–

3p

Cdk6, PPPR13L,

SNAI2/GJIC

miR-124–3p inhibits glioblastoma cell growth in part by diminishing the protein expression of cdk6, leading to

cell cycle arrest at the G0/G1 phase.

[28]

hsa-miR-874–

3p

hsa-miR-15b-

5p

In vitro, human miR-15b inhibited the proliferation, cell cycle arrest, and invasion. [28]

hsa-miR-769–

5p

hsa-miR-132–

5p

In vitro, human miR-132 promoted the proliferation and sphere formation of cells. [28]

https://doi.org/10.1371/journal.pone.0289699.t006
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The MoPC method could be also exploited to identify significant targets of miRNA isoforms.

Indeed, it is sufficient to supply the expression matrix of the miRNA isoforms instead of the

miRNA expression matrix, and MoPC will return the miRNA-target isoforms calculated

through partial correlation.

Conclusion

Identifying key miRNAs is of fundamental importance for the early diagnosis and treatment of

many diseases, including cancer. However, in the literature, various tools deal with providing a

list of relevant miRNAs without exploiting the information coming from the expression of

proteins. This paper presents MoPC, a novel method for predicting key miRNA-target pairs

by exploiting the computation of the partial correlation between mRNA and protein expres-

sion conditioned by miRNA expression. The method is applied to three TCGA/CPTAC data-

sets: breast, glioblastoma, and lung cancer. The results show enrichment for each dataset in the

three databases, miRDB, TargetScan, and miRTarBase, except for breast cancer in miRDB.

Furthermore, MoPC successfully identifies key miRNAs in each cancer type. Finally, the user

can inspect the results both through the list of significant miRNA-gene pairs and graphically

through the generated heatmap, in which genes and miRNAs are chromosomally ordered. In

the future, this approach can be extended to other types of omics data, given that the underly-

ing biological phenomenon can be detected through partial correlation.

Table 8. Presence of miRNA seed in miRNA-targets selected by MoPC. Each cell contains the percentage of

miRNA-targets detected by MoPC for the specific tissue (Breast, Lung, and Glioblastoma) in which the target mRNA

contains the miRNA seed region (anywhere in the gene, in 5pUTR, 3pUTR, coding region). The last row is not the

sum of the previous rows since the miRNA seed can be present in multiple gene locations.

Breast Lung Glioblastoma

Perc. with seed region 100% 100% 100%

Perc. seed region in 5pUTR 1.82% 1.94% 1.94%

Perc. seed region in 3pUTR 12.36% 11.93% 11.93%

Perc. seed region in coding region 11.50% 11.39% 11.39%

Perc. seed region in 5pUTR or 3pUTR or coding region 22.64% 22.04% 22.04%

https://doi.org/10.1371/journal.pone.0289699.t008

Table 7. Lung cancer validation information.

miRNA gene/pathways known effect Reference

hsa-miR-182–5p

hsa-miR-26b-5p

hsa-let-7a-5p LIN28 Chemo sensitive [27]

hsa-miR-26a-5p

hsa-miR-183–5p

hsa-let-7f-5p LIN28 Chemo sensitive [27]

hsa-miR-30a-3p PI3K-SIAH2 EGFR TKI-resistant [27]

hsa-miR-125a-5p

hsa-miR-205–5p PTEN, Mcl-1 and Survivin Chemo resistant [27]

hsa-miR-126–3p Akt and ERK pathways Chemo sensitiveEGFR TKI-sensitive [27]

hsa-miR-7–5p EGFR Chemo sensitive [27]

hsa-miR-9–3p

https://doi.org/10.1371/journal.pone.0289699.t007
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Supporting information

S1 Fig. Breast cancer summary heatmap. The heatmap reports in red the miRNA-genes pairs

resulting significantly with the MoPC analysis. In dark green, the miRNA-genes pairs are sta-

tistically significant in the input dataset and validated in at least one of the three databases

(miRDB, TargetScan, and miRTarBase). Genes are reported on the rows, and miRNAs on the

columns. Both genes and miRNAs are chromosomally ordered. Only the 5p’ most expressed

miRNAs in breast cancer, according to isomiRTar [6], have been reported in the columns to

provide more understandable results.

(TIF)

S2 Fig. Glioblastoma summary heatmap. The heatmap reports in red the miRNA-genes pairs

resulting significantly with the MoPC analysis. In dark green, the miRNA-genes pairs are sta-

tistically significant in the input dataset and validated in at least one of the three databases

(miRDB, TargetScan, and miRTarBase). Genes are reported on the rows, and miRNAs on the

columns. Both genes and miRNAs are chromosomally ordered. Only the 25% most expressed

miRNAs in this glioblastoma dataset have been reported in the columns to provide more

understandable results.

(TIF)

S3 Fig. Lung cancer summary heatmap. The heatmap reports in red the miRNA-genes pairs

resulting significantly with the MoPC analysis. In dark green, the miRNA-genes pairs are sta-

tistically significant in the input dataset and validated in at least one of the three databases

(miRDB, TargetScan, and miRTarBase). Genes are reported on the rows, and miRNAs on the

columns. Both genes and miRNAs are chromosomally ordered. Only the 5p’ most expressed

miRNAs in lung cancer, according to isomiRTar [6], have been reported in the columns to

provide more understandable results.

(TIF)
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