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ABSTRACT

Convolutional Neural Networks (CNNs) are supposed to be fed with only high-quality annotated
datasets. Nonetheless, in many real-world scenarios, such high quality is very hard to obtain, and
datasets may be affected by any sort of image degradation and mislabelling issues. This negatively
impacts the performance of standard CNNs, both during the training and the inference phase. To
address this issue we propose Wise2WipedNet (W2WNet), a new two-module Convolutional Neural
Network, where a Wise module exploits Bayesian inference to identify and discard spurious images
during the training, and a Wiped module takes care of the final classification, while broadcasting
information on the prediction confidence at inference time. The goodness of our solution is demon-
strated on a number of public benchmarks addressing different image classification tasks, as well
as on a real-world case study on histological image analysis. Overall, our experiments demonstrate
that W2WNet is able to identify image degradation and mislabelling issues both at training and at
inference time, with positive impact on the final classification accuracy.

Keywords Image Classification · Deep Learning · Convolutional Neural Networks · Bayesian Convolutional Neural
Networks · Data Cleansing

1 Introduction

Since the milestone study by Alex Krizhevsky and colleagues in 2012 [1], Deep Learning (DL), with particular emphasis
on Convolutional Neural Networks (CNNs), is the state-of-the-art method for image classification in many different
applications. Besides classification performance, the reason for the success of CNNs is twofold: i) the recent boost of
graphical processing units (GPUs) and parallel processing, that allows to train very large models; ii) the ever-growing
availability of massive annotated task-specific datasets. Nonetheless, in many realistic applications many concerns may
be raised about the reliability of such datasets both in terms of image and labelling quality, and consequently on the
robustness of the CNN models trained and tested on them.

As regards to image quality, standard CNNs are supposed to be fed with high quality samples. Nevertheless, in practical
scenarios different kinds of image degradation can heavily affect the performance of a CNN both in the training
and in the inference phase. Problems concerning image acquisition devices, poor image sensor, lighting conditions,
focus, stabilization, exposure time or partial occlusion of the cameras may lead to produce low quality samples, which
have been demonstrated to be one of the chief reasons for troublesome learning procedures of CNN models in many
applications [2, 3, 4]. On the other hand, even though the CNN had been proficiently trained and validated on high
quality data, noisy inputs can heavily affect the inference phase, and cause classification errors at run-time. A typical
example are self-driving cars, where a partial occlusion of the image acquisition device may lead to misinterpret a
road sign, with catastrophic consequences. In such settings, the well-known limitations of standard CNNs to broadcast
information about how much the given input resembles the ones the model was trained on - and hence, whether the
associated prediction should (or should not) be trusted - is also playing a major role.
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Besides image quality, also collecting and associating error-free labels to a massive number of representative images to
adequately train CNNs may be extremely problematic in a number of real-world applications. If we take as an example
the medical domain, where available data is typically small to begin with, image annotation is always a cumbersome
and time-consuming task, that is extremely error-prone. In a number of applications, inter-observer variability is even so
high as to necessitate consensus strategies to aggregate annotations from several medical experts [5], which is anyway
prone to mislabelling. Conversely, in a number of non-medical real-world scenarios the collection of massive labelled
image datasets is relatively easy and straightforward: for example, using semi-automatic tools based on web search
engines and keywords [6]. Nonetheless, even in this case concerns may be raised on the reliability of the image labels.
Take as an example the JFT dataset from Google, including 300M+ images labeled by an algorithm that uses complex
mixture of raw web signals, connections between web-pages and user feedback [7, 8]: JFT annotations have been found
to be 20% wrong, even after some cleansing procedures [9].

In the rest of this paper, we will refer to image degradation and to mislabelling errors respectively by the name of
measurement and labelling noise.

Even though recent studies have proposed many techniques to compensate the learning degradation due to measurement
noise [4, 2, 3] or labelling noise [5, 10, 9] specifically, very few researchers have developed solutions to mitigate
the impact of generic noise, where the two effects may even coexist. Furthermore, there is still very little scientific
understanding of how a CNN may behave in presence of noisy inputs at inference phase, i.e. when the final model is
applied to a given application, and how to make a CNN model robust to unpredictable noise effects that may make the
inputs considerably different to what the model was specifically trained on.

In our study, we want to focus the attention on data-perturbation irrespective of whether it is a measurement or a
labelling noise, and we will refer to spurious (vs. meaningful) samples to indicate images affected by any of the two
types of noise.

We therefore propose Wise2WipedNet (W2WNet), a CNN-based architecture able to i) model the distribution of spurious
samples in a generic dataset, which may be corrupted by both labelling and measurement noise; ii) clearly identify the
spurious samples within the training, by virtue of an adaptive pruning criterion that is fully embedded into the learning
algorithm, and focus the training on the only meaningful ones; and iii) at inference time, classify never seen images into
the learned categories plus one, clearly identifying noisy inputs by means of a statistically sound measure of prediction
confidence (see figure 2).

Hence, our solution exploits the concept of prediction confidence in two ways: (i) during the training phase, to establish
a separability criterion between the good quality (a.k.a. meaningful) and the spurious samples, that is embedded into
the learning algorithm to make the network able to focus on the only meaningful ones; and (ii) during the inference
phase, to improve the robustness of the model to ambiguous inputs.

To assess the goodness of our approach in different types of settings, we evaluate W2WNet on several state-of-the-art
public benchmarks, addressing different image classification tasks and types of noise. In addition to that, we also
provide a real-world case study from the medical imaging domain.

The rest of the manuscript is structured as follows. In Section 2 we provide the background and state of the art of our
work, and highlight our main contributions. In Section 3 we describe our proposed methodology and implementation
details. In Section 4 we provide and discuss experimental results, respectively on the public benchmarks and on the
real-world case study. Finally, Section 5 provides our final considerations and concludes the paper.

2 Background

As discussed in Section 1, in many real-world cases it is not so obvious to have high quality images to train a CNN
with. Most likely, the network will face many issues arising from artifacts during image acquisition, transmission, or
storage. This typically affects the training procedure, resulting in a degradation of the model performance [4, 2]. Thus,
a considerable amount of literature has been published on learning CNNs with low quality images and noisy datasets.
In surveillance applications, for instance, face recognition from low quality images is a key aspect, and many studies
address learning low-quality faces [11, 12]. In [13] the authors show that CNNs behave very differently than human
vision system (HVS) in handling minimal recognizable configurations (MIRCs), that is the smallest crop of an input
image for which a human observer is able to provide a categorization. More specifically, standard CNNs are generally
worse than humans at handling MIRCs, which are typically very small, and hence blurry and low resolved. In [4],
the authors present the first large scale evaluation of deep networks on natural images affected by different types and
different levels of image quality degradation. They show that the existing models are especially vulnerable to blur and
noise. Finally, in [2], authors show the effects of degradation on different CNN models, proposing a network setup able
to reduce the impact of specific type of perturbations.
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As already discussed, besides measurement noise, also manual mislabelling or faulty automatic annotations may lead to
unwieldy learning and lower classification performance [5, 6]. Previous studies specifically addressing labelling noise
can be categorized into three main groups:

(i) Methods that focus on model selection or design. These methods aim at selecting the model, loss function
and training procedures that are most robust to mislabelling [5]. Literature shows that most supervised loss
functions are not fully robust to faulty labels [14], unless they are handled by overfitting avoidance [15, 6].

(ii) Data cleansing methods. The rationale is in this case to remove samples with incorrect labels. In this
sense, voting among an ensemble of classifiers has been proven effective [5]. Other strategies include
identifying mislabeled instances based on their impact on the training process. For example, [16] prune and
re-label training instances by setting a threshold on the classification uncertainty, based on Monte-Carlo (MC)
dropout. The challenge of this group of methods is to distinguish the informative samples from the harmful
mislabeled ones [6]. In this sense, cleansing methods built on top of an uncertainty measure are known to be
highly dependent on the given application (i.e. type and level of noise) and even on the architecture of the
classifier [16, 5]. For instance, [16] set a fixed threshold on the uncertainty distribution retrieved from training
samples, without modeling the distributions of the uncertainties of the noisy and clean images. Hence, the
optimal threshold needs to be tailored to the given application, which may limit the usability in real-world
scenarios.

(iii) Methods that propose classifier training and labelling noise modeling into a unified framework. This category
somehow integrates the two aforementioned families. For instance, probabilistic models have been exploited
to model the labelling noise and thereby improve classifiers [16]. Other methodologies aim at identifying and
penalizing samples with incorrect labels during the training procedure [5].

While there is a large body of literature coping with either measurement or labelling noise individually, very little
efforts have been directed so far to handling both the problems at one time. Nonetheless, this is a non-trivial issue in
most real-world applications, where a-priori knowledge about the type of noise affecting the data may not be available.
Moreover, while labelling noise affects the only training phase, as the supervised learning requires an appropriate
labelling of the training samples, measurement noise may affect CNNs even at the inference phase. As already
mentioned in Section 1, this may leads standard CNNs to catastrophic failure in several real-world applications. Starting
from these considerations, we propose a methodology (a.k.a. W2WNet) able on one hand to deal with both measurement
and labelling noise, and, on the other hand, to provide a statistically sound measure of prediction confidence at inference
phase. Our methodology follows in the footsteps of the earlier work by [16], where the authors exploit uncertainty
measures retrieved by MC dropout to identify and remove mislabelled samples. Nevertheless, we are substantially
different from [16] in the following: (i) we tackle both measurement and labelling noise in parallel; (ii) we propose an
end-to-end framework, embedded into a single CNN model; (iii) we provide a pruning strategy for the spurious samples
which is totally automatized and adaptive to the given application; (iv) we exploit prediction uncertainty in two different
ways. First, to model, recognize and remove the spurious samples from the training strategy. Second, to broadcast
information on the prediction confidence, which is exploited to make CNNs robust to noisy inputs at inference time.

3 Methods

As represented in Figure 1, our architecture includes two main modules:

(i) the Wise, that is in charge of a two-fold aim: on one hand, to provide a reliable measure of predictive uncertainty
associated to samples (Figure 1(a)); on the other hand, to model the distribution of the spurious samples for
the purpose of removing them from the training dataset (Figure 1(c)).

(ii) the Wiped, that is the expert system trained on the cleaned dataset and designated to the actual classification
phase (Figure 1(b)).

3.1 The Wise: uncertainty estimation

As already mentioned, the Wise must be a noise-aware model, able to associate to each prediction a corresponding
uncertainty measure. Last trends in deep learning show a growing body of literature around the theme of uncertainty
estimation for predictive classification models [17, 18, 16]. With special regards to CNNs, the canonical softmax score
is erroneously regarded as a measure of prediction confidence, that is: the lower the output of the softmax, the higher the
uncertainty on the corresponding prediction. Nonetheless, it has been shown that this is not true, as the softmax merely
acts as a normalization [18, 19]. As a consequence, a traditional CNN might provide confident (wrong) predictions
even on samples that are completely unrelated to what it was specifically trained for.
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Figure 1: Overview of the training phase of the proposed architecture.

The most consolidated way to incorporate uncertainty estimation into a CNN leverages on Bayesian formalism [18, 20].
In a Bayesian perspective, individual parameters values (i.e. the weights of the network) are replaced with prior
distributions. Hence, the learning strategy is conceived as a probabilistic optimization problem, where the posterior
distribution over the parameters is computed, given the training data. As a consequence, the output of the model
will also be a posterior predictive distribution of values, from which a statistic can be derived to serve as uncertainty
measure.

Formally, the weights ω of a CNN are handled as random variables, and assuming the CNN to be exhaustively described
by its weights ω, we can write the predictive distribution for a new input x∗ as [18, 20]:

p(y∗|x∗, X, Y ) =

∫
Ω

p(y∗|x∗, ω)p(ω|X,Y )dω, (1)

Since the term p(ω|X,Y ), integrated upon the whole parameters space Ω, makes the predictive posterior of a CNN
analytically and numerically intractable [17, 20], a variety of approximations have been proposed, including Laplace
approximation [21], Markov chain Monte Carlo (MCMC) methods [22] and variational Bayesian methods [23, 24].
Nevertheless, the reliability of the uncertainty measure derived from these approximation strategies strictly depends on
two different factors: (i) the approximation quality constrained by computational requirements; (ii) the choice of the
Bayesian prior, which can ultimately lead to biased predictive uncertainties [17]. In practical terms, Bayesian CNNs
(BCNNs) are cumbersome to implement and hard to train, as they require a specific training pipeline handling a very
high number of possible hyper-parameters, as well as the high computational cost of the approximation technique [17].
An interesting insight by Gal and Ghahramani [18] suggested using Monte Carlo dropout (MC dropout) to estimate
predictive uncertainty, which is based on using Dropout [25] at inference time. Since many different neurons are
randomly dropped across different model calls, MC dropout method implements a Bayesian sampling from a variational
distribution of models. In other words, MC dropout can be seen as an ensemble methodology, where the predictions are
averaged over an ensemble of CNNs sharing the same parameters. In such setting, estimating the model uncertainty
for a given sample is as simple as keeping the dropout mechanism switched on at inference time, and performing
multiple predictions for the same input [17]. By using MC dropout, we can then rewrite equation (1) with the following
approximation:

p(y∗|x∗, X, Y ) ≈
∫

Ω

p(y∗|x∗, ω)q(ω)dω ≈ 1

T

T∑
t=1

p(y∗|x∗, ω̂), (2)

Thanks to variational inference [18, 26], we can approximate the posterior distribution p(ω|X,Y ) in (1) with a
variational one q(ω). Hence, by means of MC dropout, we assume q(ω) ∼ ω̂, where ω̂ is an estimation resulting from a
variational dropout call.
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Starting from the above-mentioned considerations, our Wise module (see figure 1(a)) was implemented as a BCNN,
leveraging MC dropout. As anticipated in the previous section, the initial task of the Wise is to provide an uncertainty
measure for the inputs samples, on the top of which the model can distinguish the spurious samples from the meaningful
ones. Downstream of the uncertainty estimation, the Wise is able to: (i) identify and eventually remove the spurious
samples, thus providing a cleaned dataset to train the Wiped; (ii) associate a confidence measure to the outcome of the
Wiped’s classification, that can be exploited to express the reliability of the model’s prediction on a given input.

To build our BCNN-based Wise, we put into effect equation (2) through a DenseNet121 model [27], inserting a dropout
layer with 0.3 rate after each convolutional, pooling and fully connected layer. The DenseNet-based architectures
connect all layers directly with each other: each layer obtains additional inputs from all preceding layers and forwards
on its own feature-maps to all downstream ones [27]. By exploiting such feature reuse paradigm, DenseNets typically
offer exceptional classification capabilities with reduced number of parameters. As it was recently observed that models
with less parameters are generally more resilient to image degradations [2], we chose DenseNet121 as best trade-off
between classification performances and model compactness. Nonetheless, our Wise module can be easily converted
into any other state-of-the-art CNN architecture, by simply exploiting MC dropout instead of softmax.

Before being fed to our model, which is random initialized, samples are pre-processed by zero-centered normalization.
The Wise is trained with Stochastic Gradient Descent (SGD), setting weight decay to 0.001. The number of training
epochs of the Wise model is a key parameter, which is self-optimized as explained in the next section.

Ultimately, we need to define a statistically sound measure of uncertainty. To do so, we adopted the methodology
proposed by Kwon and colleagues [20]: starting from (2), the predictive uncertainty of a BCNN may be computed as
the sum of the predictive variances of each class [19]. Such predictive variance can be further decomposed into the
aleatoric component, able to represent the intrinsic noise in the samples, and the epistemic component, which stems
from the parameters and the architecture of the model:

1

T

T∑
t=1

diag(p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

+
1

T

T∑
t=1

(p̂t − p̄)⊗2

︸ ︷︷ ︸
epistemic

(3)

Here p̄ =
∑T

t=1 p̂t/T ; p̂ = Softmaxf(ωt, x
∗) and T is the number of forward passes for input x∗. T has been

empirically set to 100 as the best trade-off between computational time and reliability, as stated in [28].

3.2 The Wise: modelling of spurious samples distribution

The aforementioned uncertainty measure provides a way to distinguish between spurious and meaningful samples.
The Wise has a two-fold functionality. On one hand, during the training phase (see Figure 1), it should identify an
epoch ej so that the uncertainty of the spurious samples is significantly higher than the uncertainty of the meaningful
samples. Hence, Wise’s training should proceed until (i) the separation between high uncertainty (i.e. spurious) and low
uncertainty (i.e. meaningful) samples is large enough, and (ii) this separation is sufficiently stable over the training
epochs. On the other hand, the Wise must identify an uncertainty threshold UTh (see Figure 1(c)) that will be exploited
at inference time, to broadcast information on the level of confidence of the final prediction (see Figure 2).

To pursue the stated goals, for a generic j − th training epoch the learning proceeds as follows:

(i) The Wise computes for each training sample a corresponding classification uncertainty value, by means of
equation (3); thus, given N training samples, we obtain a vector of N uncertainty values, referred to as ~uj in
Figure 1(c);

(ii) The vector ~uj is given as input to a K-means clustering, with K = 2, where the low-uncertainty and the
high-uncertainty clusters should represent the meaningful and spurious clusters, respectively. After doing so,
the difference between the two clusters’ sizes is computed and normalized upon the total number of training
samples. Hence, after j training epochs, we obtain a signal δ made of j such values, whose evolution over
time can be exploited to estimate the stability of the clustering at the given epoch. That is, the more stable δ is
over the epochs, the lower the number of samples that are re-assigned to a different cluster, and hence, the
more stable the clustering;

(iii) At this stage, we need a quantitative stability criterion to stop the Wise’s training. First, δ is low-pass filtered
via a median filter with a window size of 11. Second, the standard deviation is computed over a sliding window
of size 40 and a stride of 1, obtaining the signal referred to as std(∆) at the bottom of Figure 1(c)). To decide
on the stability of the clustering at epoch ej , and hence on whether to stop the training, std(∆) is imposed a
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Figure 2: Overview of the inference phase of the proposed architecture.

threshold STDTh, which is set to 0.01 (see Figure 1 (a)). In other words, we stop the training of the Wise if
more than 99% of the training samples are stably assigned to the same cluster for 40 consecutive epochs. At
inference time, the centroid of the spurious cluster will be exploited as an uncertainty threshold, referred to as
UTh, in order to identify the samples upon which the model’s prediction is not sufficiently confident.

3.3 The Wise & the Wiped: classification

While providing a framework to estimate prediction uncertainty, standard BCNNs are often less accurate than their
deterministic counterparts at inference time [29, 28]. To address this issue, as it can be gathered from Figure 2, in our
model both the Wise and the Wiped take part in the inference phase. Given a classification task involving C classes and
a generic test sample x∗, the Wise initially computes the corresponding uncertainty u∗ through equation 3. Then, u∗ is
compared with the threshold UTh, identifying x∗ either as a confident or a not-confident prediction. Beside this first
categorization, the Wiped will also assign a classification label in the range [1, C] to x∗.

Beneath the lid, the Wiped module is a canonical deterministic DenseNet121 model, trained on the only meaningful
samples as pre-identified by the Wise. The training procedure is the same that was described in Section 3.1, with the
only difference that the number of epochs is fixed and equal to 100.

4 Experimental Results

In this Section we present the experimental validation of our W2WNet. So far, there is no agreed upon benchmark
protocol to evaluate learning methods in the way they handle measurement and labelling noise. Therefore, we started
from two well-known public datasets, the MNIST [30] and the CIFAR10 [31], and we artificially corrupted such
datasets in a controlled way. By doing so, we tried to replicate different types of real-world noisy scenarios:

(i) Labelling noise (labels from a different classification task).
In text processing, handwritten character classifications are typical mainstream tasks for CNNs. The MNIST
dataset, that is made of 60000 black and white images of handwritten digits (0 to 9), was corrupted by adding
a controlled percentage of alien samples randomly extracted from the EMNIST dataset [32], which contains
handwritten alphabetical characters. Hence, the resulting corrupted dataset, referred to as Sp-MNIST, contains
either digits (that are still the majority of the images) and letters, all with a white foreground and black
background. By doing so, we simulate a real-world situation where a pre-processing pipeline may produce
spurious samples to a downstream classifier that was specifically trained on digit classification, due to text
parsing errors. This scenario is similar to any other instances of data corruption, where the spurious samples
share the same characteristics of the meaningful ones in terms of color range and encoding, but belong to
different classifications tasks (in this case, digits and alphabets).

(ii) Labelling and measurement noise (labels from the same classification task).
As anticipated in Section 1, in natural image classification, datasets may be corrupted by both labelling and
measurement noise. Mislabelling may sometimes occur due to errors during the automatic collection of a
large amount of annotations from the Internet (for example, by extracting tags from the surrounding texts or
keywords from search engines). On the other hand, measurement errors can always occur because of problems
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Table 1: Validation benchmarks: number of images

Dataset Train Test
Meaningful Spurious Meaningful Spurious

MNIST 60000 - 10000 -
Sp−MNIST − 10 60000 6000 10000 1000
Sp−MNIST − 20 60000 12000 10000 2000
Sp−MNIST − 30 60000 18000 10000 3000
CIFAR10 50000 - 10000 -
Sp− CIFAR10− 10 50000 5000 10000 1000
Sp− CIFAR10− 20 50000 10000 10000 2000
Sp− CIFAR10− 30 50000 15000 10000 3000

with acquisition and storage of the images. To simulate such scenarios, we exploited the CIFAR10 dataset,
which consists of 50000 32x32 RGB images of 10 classes of natural objects. As regards to labelling, the dataset
was artificially corrupted by two different types of noise patterns: symmetric and pair. In the former, original
labels are randomly flipped to another label. In the latter, labels are systematically flipped to the subsequent
one. Both the patterns are well know in literature, as they are experienced in several image classification
tasks [16]. As regards to measurement noise, we picked a random pool of images from CIFAR10 and applied
three different types of transformations: (i) blurring, via a median filter with kernel size 11; (ii) random
cropping; (iii) random scaling. Even in this case, such image degradation is widely reported by literature,
and known to be troublesome for CNN learning in many classification tasks [4]. As a result of our artificial
corruptions, in the final dataset, referred to as Sp-CIFAR10, a known subset of images are either given a wrong
label (which, differently from the previous case, belongs to the same classification task of the original dataset),
or altered in terms of image definition, scale and dynamic range.

To push the capabilities of our methodology to its limits, for both the above-mentioned settings, we introduced increasing
amount of spurious samples (respectively, 10, 20 and 30% of the size of the original dataset). A full characterization of
the obtained validation datasets is reported in Table 1. In this table, each dataset is referred to as [Sp]− name− [N ],
where the Sp prefix indicates the presence of spurious samples, name is the acronym of the original dataset and N is
the percentage of spurious samples with respect to the total size of the corresponding original dataset.

4.1 Data cleansing capability

As a matter of principle, our W2WNet should follow three fundamentals: (i) if spurious samples are present, it should
remove as many as possible (i.e. high sensitivity); (ii) while removing spurious samples, it should remove as little
meaningful ones as possible, as they might be essential for the training of the model (i.e. high specificity); (iii) it should
be able to handle datasets that do not contain any spurious samples (that is the ideal case), and leave them untouched.

To assess all the mentioned specifications, we trained and tested our W2WNet both on the corrupted datasets (i.e. the
ones with the Sp prefix in Table 1) as well as on the corresponding original ones, in the exact configuration of their
reference papers.

In Figure 3 we show the results of our experiments. Bars show the average number of images removed per dataset,
separately for the training and for the test phase. In the former case, removed images means that the model tagged them
as spurious and hence removed them from the training set. In the latter case, the trained model tagged them as spurious
at inference time, by providing a low-confidence prediction.

The first plot of Figure 3 reports the percentage of spurious samples which were correctly identified and removed from
the corrupted datasets (i.e. the sensitivity of the model). The last two plots report the number of meaningful samples
mistakenly tagged as spurious, respectively on the corrupted datasets and on the original ones. As mentioned earlier,
the lower these numbers, the higher the specificity of the model.

As it can be gathered from the first plot, W2WNet was able to remove at least 30% and at best 70% of the spurious
images, when considering both the training and the test sets. Apart from the training of the Sp−CIFAR10, where it is
possible to see a decreasing trend of the bars, the performance was quite stable at increasing number of spurious samples
in the datasets. The relation between the sensitivity on the training and test sets was different for the two applications:
higher on the training than on the test set for the Sp− CIFAR10 datasets, the opposite for the Sp−MNIST ones.

As it can be gathered from the second plot, W2WNet proved to be reasonably specific in the corrupted datasets, removing
as little as 17% of meaningful samples in the worst case (SP − CIFAR − 30) and almost 0% in the best case
(SP −MNIST ).
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Figure 3: W2WNet removal rates in the validation datasets. Error bars represent standard deviation of values among
different classes.

Finally, by looking at the last plot, the number of meaningful images that were on average mistaken as spurious in
the original datasets were 5 and 10%, respectively in MINST and CIFAR10. A more thorough analysis revealed
that in both cases these samples are very ambiguous images, that a human observer can hardly ascribe to any of the
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(a) (b)

Figure 4: Examples of images tagged as spurious, respectively from MNIST (a) and CIFAR datasets (b).

training categories (see Figure 4). Hence, we believe that tagging such images as spurious is totally reasonable, and
more importantly, it does not have a negative impact on the training, as will be showed later on. Overall, W2WNet is
reasonably sensitive and specific in the identification of spurious samples, and the reliability of the uncertainty measure,
associated with the final prediction, is proved by our results.

4.2 Classification performance

At last, to assess the effectiveness of our solution in terms of positive impact on the classification performance, we
compared W2WNet against a canonical deterministic counterpart on all the datasets reported in Table 1. For this purpose
we exploited a deterministic DenseNet121 model, as it is also the backbone of our W2WNet architecture, and hence it is
totally equivalent to our model in terms of depth and classification potential. For the training of the deterministic CNNs,
we followed the same procedure described in Section 3, with the only difference of having set the MC dropout rate to
zero. The learning rate was set to 0.1 and 0.01, respectively for the datasets derived from MNIST and CIFAR10.

As already anticipated in Section 1, to the best of our knowledge, there is no published literature on deep learning
methods addressing measurement and labelling noise coexisting together. Nonetheless, to better contextualize our
validation, besides our approach and its deterministic counterpart, we also provide results obtained by representative
algorithms facing either measurement or labelling noise. For the former category, we tested the methodology by
Roy and colleagues [2], which leverages on a not trainable low-pass filter-like CNN layer to reduce the impact of
image degradation on the classification performance. For the latter, we put into effect the work by Kohler et al., in the
configuration made up of a single MC droput-based classifier with 25 forward passes [16]. For a fair comparison, both
the methods were implemented using a DenseNet121 model as the backbone.

The results of our experiments are reported in Figure 5, where we show the mean classification accuracy obtained by
the four models (our W2WNet, a deterministic DenseNet121, ad the two literature data cleansing approaches). As it can
be observed from the plot, for all the approaches, the mean classification accuracy decreases at increasing number of
spurious samples affecting the dataset (from 10 to 30 %, see also Table 1). This is absolutely consistent with previous
literature [16]. When considering the corrupted datasets, our W2WNet outperforms the deterministic DenseNet121 of a
value between 5% and 10%. In addition, W2WNet overcomes both the baseline literature solutions, which both behave
similarly to DenseNet121. This is not surprising, as both methods are specifically tailored to address one type of noise
solely. By a lesser margin, the accuracy of our W2WNet was the highest even in the non-corrupted datasets.
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Figure 5: Mean accuracy of W2WNet compared with representative works from literature. Error bars represent standard
deviation of values among different classes.

4.3 Real-world case study: histological images classification

Histological image analysis is the gold standard for the diagnosis and gauging of large number of cancers [33]. Typically,
when there is a suspicion of cancer, the patient goes through a biopsy, where a thin layer of tissue sample is resected,
fixed on a slide, and stained (for example, by Hematoxylin and Eosin). Then, the pathologist analyzes the slide on the
microscope looking for malignancies, which commonly cause alterations of the normal tissue architecture. The recent
diffusion of digital scanners imposed the transition from standard histological slides to very large born-digital multi-
resolution images called Whole-Slide Images (WSIs, see Figure 6(a)), whose typical size may be 100, 000× 100, 000
pixels. This is rapidly changing the workflow of clinical laboratories [34]: the traditional visual evaluation of the samples
directly under the microscope is progressively shifting to Computer-Aided Diagnosis (CAD) systems, encouraging a
complete automatization of downstream image analysis.

Recently, researchers have shown an increased interest in applying DL techniques (most often based on CNNs) to the
automated assessment of the WSIs. Nonetheless, obtaining good quality training sets for the CNNs is an extremely
cumbersome task, involving a number of steps: (i) manually dividing each WSI into regions of interest (ROIs), that
should be homogeneous in terms of tissue architecture; (ii) manually labelling ROIs, based on the tissue category
(e.g. cancer vs no-cancer, see Figure 6(b)); (iii) cropping ROIs into a regular grid of small tiles, that can be fed into a
CNN together with their corresponding label (the same of the corresponding ROI, Figure 6(c)). Due to image artifacts,
imprecision in the ROI delineation, or non-homogeneous content of the ROIs, the outcome of this procedure is typically
a dataset which may contain a large amount of spurious tiles: that is, a significant number of tiles may have a content
that is either too blurred (measurement noise) or unrelated to the label they were associated to (labelling noise), and
then potentially harmful for the training of the CNN. For example, in Figure 6(e), a number of tiles labeled as cancer
contain a prevalence of background glass, which is obviously not meaningful to the cancer category. This makes it a
significant case-study for the exploitation of our W2WNet.

More specifically, in our experiments we refer to the same case study described in our earlier work [28], focused
on Colorectal Cancer (CRC) categorization. In this case, the classes of interest are three: (i) Adenocarcinoma (AC),
corresponding to recognizable CRC; (ii) Tubulovillous adenoma (AD), a precursive lesion of CRC, and (iii) Healthy
tissue (H). As detailed in [28], downstream of the automated ROI cropping and labelling procedure represented in
Figure 6, a total number of 19644 non-overlapping annotated tiles were obtained from 27 different WSIs. After ad-hoc
re-examination of the tiles by a pathologist, 6144 of them were tagged as spurious, as the prevailing content of such
slides (either blood vessels, adipose cells, background glass or stroma, see figure 6(e)), was not deemed meaningful to
any of the three classes of interest.
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Figure 6: Generation of a digital patholohy dataset to train CNNs: typical automated procedure. (a) Whole Slide Image
(WSI). (b) Identification and labelling of homogeneous Regions of Interest (ROIs). (c) Cropping ROIs into small tiles,
which are all given the same label of the originating ROI. (d) Meaningful tiles (e) Spurious tiles (that is, tiles whose
content is not fully representative of the given label).
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Figure 7: Removal rate of spurious samples with W2WNet (left) and classification accuracy comparison of W2WNet
and DenseNet (right) on the CRC dataset. Error bars represent standard deviation of values among different classes.

For training and testing purposes, the initial cohort of 27 WSIs was randomly split into two disjoint subsets (18 for
training and 9 for testing), roughly balanced with respect to the classes, and then fed into our W2WNet for data cleansing
and classification.

The results of our experiments are shown in Figure 7. As it is visible from the plot on the left, our framework was able
to identify 55% and 58% of the spurious samples from training and test set respectively. The impact on the classification
is shown on the right plot, where we compare the mean classification accuracy of W2WNet with the one obtained by the
deterministic counterpart, a state-of-the-art DenseNet121 CNN, trained from scratch with learning rate set to 0.0001
and SGD optimizer. Even in this case, the accuracy of our proposed solution was higher, by about 9% on average on the
test set.

5 Conclusions

Unfortunately, measurement and labelling noise are unavoidable in many real-world applications of CNNs. On one
hand, the training phase of a CNN may be affected by many types of image degradation, due to problems of acquisition,
encoding or storage, and mislabelling, due to faults of the manual annotation or of the automated labelling systems. On
the other hand, at inference time, a CNN that was trained on a good quality dataset may be fed with low-quality images,
that are completely unrelated to the ones the model was trained on. Even in such cases, a standard CNN is neither able
to provide a correct prediction, nor to communicate its impossibility to provide a reliable answer.

To address this issue, in this paper we proposed W2WNet, a CNN architecture exploiting Bayesian probabilistic inference
to i) identify the peculiar distribution of spurious samples in a dataset, that may be affected by both measurement and
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labelling noise; ii) clean the training dataset from the spurious samples and focus the learning strategy on the only
meaningful ones; iii) at inference time, provide a statistically well-founded measure of prediction confidence on the
new inputs, clearly identifying the ones on which the network is too uncertain.

Our experiments on MNIST and CIFAR10 datasets, artificially corrupted by a controlled number of spurious samples,
has shown that W2WNet can cope well with measurement and labelling noise, both in terms of sensitivity and specificity
in the identification of the spurious samples. As an effect of this, W2WNet improves on the classification accuracy of a
DenseNet121 CNN, which is the deterministic counterpart of our classifier, as well as of state-of-the-art methods, which
are tailored to one specific type of noise. On top of that, we found that W2WNet outperformed the other techniques even
in the classification of non-corrupted datasets (i.e. original MNIST and CIFAR10), thanks to its capability of discarding
a limited number of ambiguous images from such datasets.

Ultimately, we evaluated W2WNet in a real-world case study from medical image analysis, that is the classification
of histological samples from WSIs. Even in this case, W2WNet was able to handle the presence of several spurious
samples, that were generated by a typical dataset generation pipeline in digital pathology [28], and improve on the
performance of the DenseNet121.

In conclusion, we believe that our findings have important implications for the proficient exploitation of DL models in
many real-world settings, where the presence of image quality and labelling issues typically challenge the use of classic
CNN architectures, both during the training and the inference phase.
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