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Abstract

Scenarios in which restrictions in data transfer and stor-
age limit the possibility to compose a single dataset – also
exploiting different data sources – to perform a batch-based
training procedure, make the development of robust mod-
els particularly challenging. We hypothesize that the recent
Continual Learning (CL) paradigm may represent an effec-
tive solution to enable incremental training, even through
multiple sites. Indeed, a basic assumption of CL is that
once a model has been trained, old data can no longer be
used in successive training iterations and in principle can
be deleted. Therefore, in this paper, we investigate the per-
formance of different Continual Learning methods in this
scenario, simulating a learning model that is updated every
time a new chunk of data, even of variable size, is available.
Experimental results reveal that a particular CL method,
namely Learning without Forgetting (LwF), is one of the
best-performing algorithms. Then, we investigate its us-
age and parametrization in Morphing Attack Detection and
Object Classification tasks, specifically with respect to the
amount of new training data that became available.

1. Introduction
In this paper, we address the scenario in which new sets

of biometric training data become progressively available
across time, even on different sites [29]. Differently from
the traditional Machine Learning setting, the batch-based
training procedure [2] is unfeasible, making challenging the
learning process. Therefore, we investigate the use of the
Continual Learning (CL) [34] paradigm to train a model in
a distributed setting, in which several distinct data chunks
containing personal information cannot be stored and then
are available only in a limited time frame. In other words,
we aim to address the problem of incrementally training a
model on multiple data sources that, for different reasons
(e.g. privacy issues), cannot be shared and stored for long
time ranges, thus making it impossible to create a single
training dataset, as represented in Figure 1.

Figure 1. Visualization of the proposed incremental training sce-
nario, in which a trained model is updated every time new chunks
of data are temporarily available, even on different sites. In this
manner, no data transfer is involved and Continual Learning algo-
rithms are eligible to fully exploit the data available through incre-
mental model training.

A practical case is represented by the development of so-
lutions to contrast the Morphing Attack [14] (see Fig. 2), in
which severe privacy issues strongly limit the possibility of
storing, transferring and sharing public datasets of sensitive
data (e.g. facial images, sex, and age). As a consequence,
each research laboratory or institution usually exploits for
training only its own data, thus developing a model with
limited generalization capability whose performance is gen-
erally unsatisfactory on new unseen data [3].

From a theoretical point of view, this distributed train-
ing setting can be tackled through Federated Learning [23],
which is indeed a paradigm focused on training a global
model exploiting multiple clients that have access to pri-
vate and not-shareable data. We observe that this recent
paradigm is a promising solution, even though it presents
technical challenges [22], including the development of an
infrastructure that supports repeated global model transfers
and that maintains a copy of the original dataset in case new



training from scratch or fine-tuning procedures of the origi-
nal model become necessary. Moreover, privacy issues can
limit the temporal range in which new data are stored on
a site, hampering the possibility to have different datasets
available on different sites. For example an airport gate
could store some face images only for the short time re-
quired to update a model. Finally, a limited latency between
clients, that have to be simultaneously online, despite the
relevant size of data transfers, is needed [32]. These issues
lead us to explore a complementary approach based on the
recent and interesting Continual Learning paradigm.

In particular, this paper represents one of the first at-
tempts to investigate the use of this paradigm in the afore-
mentioned scenario, that imposes three challenging and
novel peculiarities:

• Variable chunk size: data amounts available at each
training step (from now referred to as experience) are
not known in advance. In other words, it is possible
to update the model only through a variable amount of
training samples. In our Morphing Attack Detection
(MAD) [40] scenario, the model is kept updated, for
instance, every time a certain (and variable) amount
of new data becomes available (e.g. a laboratory has
collected a new dataset, new morphed images are gen-
erated with new algorithms or additional bona fide im-
ages are collected through an Automatic Border Con-
trol system in an international airport, etc.)

• Variable amount of training steps: the number of
learning experiences is not known in advance. It is
unpredictable to define how many times a model re-
ceives new data to update the knowledge. It follows
that we aim to obtain the best performance after each
training phase of the model, in order to improve or,
at least, fully preserve the model performance in the
MAD task. Therefore, a metric able to consider not
only the final performance but the accuracy across the
whole learning process, referred to as BRoT, is intro-
duced in this paper, as detailed in Section 4.3.1.

• Limits in storage: limitations in the release and trans-
fer of datasets inhibit the direct use of stored samples.
However, we observe that in the CL paradigm, the use
of these samples, referred as replay memory [6], is
one of the most effective ways to contrast the so-called
catastrophic forgetting problem [31], i.e. the tendency
of a model to abruptly and drastically forget the previ-
ously learned knowledge. A workaround may consist
in exploiting a replay memory based on embeddings
instead of real samples [36], but further investigations
related to privacy constraints are still needed and are
out of the scope of this paper.

(a) Accomplice (b) Morphed (c) Criminal
Figure 2. Example of the Morphing Attack [14], in which a mor-
phed image is obtained merging the identities of an accomplice
and a criminal. The resulting face can fool automatic and human
face verification-based controls.

We observe that, even in the literature related to Con-
tinual Learning, these aspects are not yet fully investigated.
Therefore, in this paper, we simulate the proposed incre-
mental training scenario addressing the MAD task. In ad-
dition, the validity of our findings is further assessed on the
object classification task. We test and compare different tra-
ditional Continual Learning approaches, focusing in partic-
ular on the Learning without Forgetting (LwF) [25] method.

Experimental results reveal that the proposed setting rep-
resents an interesting and challenging scenario for com-
mon CL methods. Moreover, the choice of the proper
parametrization of LwF with variable experience size is not
trivial and must be investigated.

2. Morphing Attack Detection
In recent years, several studies [40, 45] confirmed that

existing Face Recognition Systems (FRSs) or, more in gen-
eral, face verification-based algorithms [5], are highly sen-
sitive to specific kinds of manipulation and, in particular,
to the morphing process. This vulnerability increases the
probability of success of a possible morphing attack, which
consists in merging two facial identities (a criminal and an
accomplice) into a single-face morphed image (see Fig. 2),
creating a new hybrid identity and thus destroying the link
between the document and its real owner. As a conse-
quence, it is possible to deceive the authority into issuing
a document that contains the morphed image. This cre-
ates a situation where two individuals can share the same
legal document, such as the electronic Machine Readable
Travel Document (eMRTD). Once the morphed document
is in possession, it can be used to deceive both human of-
ficers and automatic face recognition-based controls com-
monly used, for instance, in airports [44].

Due to the importance of this type of attack, MAD meth-
ods are strongly needed by private and public institutions.
Unfortunately, these methods usually suffer from limited
generalization capabilities mainly due to the lack of pub-
lic datasets, which also hamper the reproducibility of the
training procedure.



These limitations are amplified with MAD models based
on deep learning architectures, that are prone to overfit on
small low-varied datasets [3].

In this paper, we focus on the specific task of Differential
Morphing Attack Detection (D-MAD) systems, i.e. meth-
ods that receive a pair of images as input [4]. In particular,
the first image is the one stored in the document (i.e. sus-
pected morph) while the second is a trusted live captured
image. These methods work under the assumption that it is
possible to compare the two input images (one of which is
surely genuine) to detect the presence of the morphing at-
tack. Generally, this approach achieves better performance
with respect to MAD systems that receive as input only a
single image (S-MAD). From a general point of view, our
MAD task can be considered a binary classification task,
with the two classes “morphed” and “bona fide”.

3. Incremental MAD
In this Section, we define the tasks involved in the de-

velopment of MAD systems incrementally trained. In par-
ticular, we formulate the terminology used in the rest of the
paper and, for the sake of readability, we briefly recall the
Continual Learning paradigm.

3.1. Incremental Training

Following [3], we formally define two key elements of
the proposed scenario:

• Learning Experience (l): the given model M is
trained on a specific chunk of data of variable size.
Then, a learning experience is defined as:

li = (Mk, di), 1 ≤ i, k ≤ N (1)

where Mk is the model trained at the k-th experience
and updated using a new set of data di ∈ D, where
D = {di, i = 1, .., N} is the entire set of training
data available and N = |D| is the total number of data
chunks accessible for the training experiences.

• Testing experience (t): the given model M is tested
after each learning experience on the same set of test-
ing datasets, in order to globally monitor the model
performance. Formally:

ti = (Mk, E), 1 ≤ i, k ≤ N (2)

where Mk is the model updated at the k-th learning
experience, E is the set of the testing datasets and
N = |D| is the total number of datasets as before. We
observe that the size, the order, and the amount of data
chunks are irrelevant to the testing procedure since no
training steps are performed. E is a fixed set in or-
der to compute comparable performance metrics after
a given training experience.

Therefore, the proposed incremental scenario is formally
described as:

B = (li, ti), i = 1, ..., N (3)

or rather as an ordered set of training experiences li ∈ L
computed on a specific chunk of data of variable size, each
of them followed by a testing experience ti ∈ T used to
monitor the model performance across time. Since the sin-
gle chunks of data di are not shareable, model M is trans-
ferred each time to be updated through Continual Learning
techniques to contrast the catastrophic forgetting [31].

3.2. Continual Learning

Continual Learning, also known as lifelong learning,
is the ability to continually acquire, fine-tune and transfer
knowledge across time [34]. This is an ability naturally
present in humans and animals, but not in artificial learn-
ing systems, especially if based on deep learning architec-
tures. In particular, computational systems, that commonly
are trained on stationary batches of training data, have diffi-
culties in acquiring new incremental knowledge from non-
stationary data distributions due to the catastrophic forget-
ting problem [31].

The Continual Learning paradigm greatly differs from
the Machine Learning one, in which the development of a
learning agent is divided into two distinct phases: learning
and deployment. Indeed, training data, collected only be-
fore the learning phase, are unrealistically supposed to be
representative of all the nuances of future test data [16].

A variety of approaches have been proposed in the litera-
ture to limit or contrast the forgetting, ranging from regular-
ization methods [1], that exploit constraints on the update of
the neural weights, to dynamic architectures [13], in which
changes in architectures are introduced to deal with the new
information, and memory replay methods [48], based on the
storing of past data used for current training procedures. A
further analysis of the CL method investigated in this paper
is reported in Section 5.1.

4. Experiments

4.1. Datasets

Idiap Morph [41, 42] collects images belonging to differ-
ent datasets, i.e. FRGC [37], Feret [38] and Face Research
Lab London Set (FRLL) [8]. Morphed images are produced
through 5 different morphing algorithms, i.e. OpenCV [43],
FaceMorpher [39], AMSL [33], StyleGAN [20] and Web-
Morph [8]. The quality of resulting morphed images is
usually medium-low since artifacts commonly produced by
landmark-based morphing algorithms or GAN generation
are visible in the majority of images. No manual or auto-
mated retouching is applied.



Progressive Morphing Database [15] (PMDB) consists of
more than 1000 morphed images produced using the al-
gorithm described in [15], and accomplices and criminals
are selected in AR [30], FRGC [37], and Color Feret [38]
datasets. In total, 280 subjects (134 males and 146 females)
are available. In morphed images are visible some artifacts,
such as ghosts and blurred areas, especially close to the
nose, eyes, and mouth.
MorphDB [15] dataset is composed of 100 high-quality
morphed images, from an equal number of male and fe-
male subjects (50). This is one of the few datasets in which
images have been manually retouched to hide artefacts pro-
duced during the morph operation and then is effective to
test the performance of MAD systems. This dataset is not
publicly available, but the FVC-onGoing [12] platform of-
fers the possibility to test it as a sequestered dataset.

4.2. Configuration

Inspired by the state-of-the-art method [46] in the D-
MAD scenario, the model M is a Multi-Layer Perceptron
(MLP) that processes extracted features. This MLP receives
as input features extracted through the “ArcFace” [11] net-
work trained on the merge of VGGFace2 [7], CASIA [50],
and MS1MV2 [17] datasets1.

In all experiments, MLP has the same architecture that
consists of 5 layers that have 512, 250, 125, 64, 2 neurons,
respectively. The activation function is ReLU, while the
loss function is the Categorical Cross Entropy (CCE). As
for the optimizer, we use SGD with a learning rate of 10−2

and a momentum of 0.9. No weight decay is applied.
The training set D consists of (morphing algorithm -

dataset): StyleGAN - Feret; OpenCV - FRGC; FaceMor-
pher - FRLL. The whole MorphDB dataset is used for the
test, consisting of pairs with both the criminal and the ac-
complice. In this manner, we perform a challenging cross-
dataset evaluation, limiting the influence of overfitting on
the investigated algorithms. Since |D| = 4, we permute all
possible training dataset orders (4! = 24 orders in total) for
MAD experiments. All the training datasets are split into
chunks di ∈ D of variable size, depending on the experi-
mental validation conducted and detailed in the following.

4.3. Metrics

MAD task is evaluated through metrics commonly used
in the literature [40]. The Bona Fide Presentation Classi-
fication Error Rate (BPCER) represents the proportion of
bona fide images wrongly classified as morphed:

BPCER(τ) =
1

N

N∑
i=1

H(bi − τ) (4)

1https://github.com/serengil/deepface

Attack Presentation Classification Error Rate (APCER) rep-
resents the proportion of morphed images wrongly accepted
as bona fide:

APCER(τ) = 1−

[
1

M

M∑
i=1

H(mi − τ)

]
(5)

In both definitions, τ is the score threshold on which
bi,mi, the detection scores, are compared; H(x) =
1 ifx > 0, 0 otherwise is defined as a step function. Being
error rates, low values are desired.

To summarize metrics across different testing experi-
ences ti, we compute the Area Under the Curve (AUC)
metric. AUC is similar to the Average Mean Class Accu-
racy (AMCA) metric [16], but it is obtained through the
trapezoidal rule and the final value is divided by the num-
ber of training experiences. In the MAD task, the AUC
is computed by adding the EER, the error rate for which
both BPCER and APCER metrics are equal, and the lowest
point in which BPCER with APCER ≤ 1% (typical work-
ing point of face verification-based systems).

4.3.1 BRoT Metric

Finally, following the aforementioned considerations about
the measurement of performance during the whole learning
procedure, we introduce an additional metric named Borda
Ranking over Time (BRoT), computed over a set of algo-
rithms A, based on the idea of rewarding the algorithms
that perform better at each testing experience. Let r(aj , ti)
be the ranking of algorithm aj ∈ A at the testing experience
ti; ranking is here established according to the BPCER0.001

for MAD. At each ti, Borda count [26] is applied to score
the tested algorithms, i.e. a decreasing number of points
p(r(aj , ti)) is assigned to each algorithm based on the cor-
responding ranking, with p(i) = |A| − i.

For each algorithm aj , the points are accumulated over
the different learning experiences and the total score is fi-
nally normalized by the maximum theoretical score:

BRoT(aj) =
∑N

i=1 p(R(aj , ti))

|A| ×N
(6)

where N is the total number of testing experiences.
We observe the AUC metric is useful to understand the

whole performance of the method across all the training ex-
periences, highlighting the performance in terms of the best
accuracy achieved. Differently, the BRoT metric enables
the understanding of which algorithm has the greatest prob-
ability of having high accuracy across the whole learning
process (without taking into consideration the possible gap
between different methods in terms of absolute accuracy).
These two metrics are complementary and help to under-
stand different aspects of the performance of the investi-
gated model in our novel scenario.
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Figure 3. Performance of LwF [25] on the MAD task with respect to different training experience sizes (y-axis) and λ values (x-axis).
Each matrix is referred to a specific metric commonly used in the MAD scenario, i.e. EER, BPCER0.1, BPCER0.01 and BPCER0.001 (the
most challenging case), as detailed in Section 4.3. The darker color is better. As shown, different λ values strongly impact the performance
of the LwF algorithm, and suggest that larger values are the best choice for small experience sizes.

5. Results on MAD

5.1. Baselines

Different Continual Learning methods have been inves-
tigated. Elastic Weight Consolidation (EWC) [21] is based
on a penalty loss that tries to constrain the model weights
in maintaining the same value in new experiences. Learn-
ing without Forgetting (LwF) [25] contrasts the forgetting
problem by exploiting two different models: the old model
Mt−1, which is the result of training up to the current expe-
rience and thus carries the knowledge of previous data, and
the current model Mt, which is initialized as a copy of the
old model. The old model is frozen and is used through dis-
tillation to train the current model by adding a distillation
component to the loss function. In this algorithm, an im-
portant hyperparameter is represented by λ, which acts as
a regularization term used to balance the two components
of the loss function. The value of the λ hyperparameter de-
termines the trade-off between preserving knowledge from
previous experiences and adapting to the new one: higher
values of λ are used to emphasize the preservation of knowl-
edge from previous experiences, while lower values favor
the learning from current data. With λ = 0, no distillation
happens and LwF collapses to a plain fine-tuning strategy.
In LwF λ is fixed from the beginning and does not change
between experiences. This choice may be suboptimal and
an adaptive choice of λ may be beneficial, as demonstrated
in the next sections.

We include in our analysis also the Synaptic Intelligence
(SI) [51] method, based on a quadratic regularization that
aims to preserve the weights that contribute to the perfor-
mance on old data. Finally, we investigate the Deep Stream-
ing Linear Discriminant Analysis (SLDA) [18] method that,
taking inspiration from the data mining research field, uses
a covariance matrix to perform the final prediction on pre-

MAD ↓
Exp. Size Small Large

Naive +14% +16%

EWC [21] +14% +16%
SI [51] +21% +24%

SLDA [18] +27%
LwF [25] +13% +12%

Table 1. Comparison of different CL methods with variable expe-
rience sizes. Results are expressed as the percentage variations of
the AuC with respect to the ideal case, i.e. the Joint approach. A
positive value indicates a higher error, lower values are desired.

extracted features. This method, expressively developed for
the Online Learning task [16], does not have a proper learn-
ing phase (intended as the learning process of common neu-
ral networks) and the concept of batch size, since it pro-
cesses one sample per time in a streaming manner, without
any memory mechanism.

In order to have a reference in results, we also implement
two additional approaches: the first is the naive method, in
which the model is optimized on available data, without any
specific mechanism to contrast the catastrophic forgetting,
while the second is the Joint method, in which all the train-
ing data are available at the beginning of the training pro-
cedure (i.e. the common Machine Learning scenario). All
the compared baselines have been tested by exploiting the
public implementations available in Avalanche [28].

5.2. Results

Firstly, we test baselines in our distributed training sce-
nario with variable experience sizes. Results are reported in
Table 1, for two different settings referred to as “small” and
“large”, respectively; in the first one, the size of experience
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Figure 4. Performance of LwF [25] on the MAD task in terms of the BRoT metric (see Sect. 4.3), which highlights the probability to have
the best performance across the whole distributed training process. The darker color is better.

varies in the range [50, 500], and the probability to sample a
specific size is modelled through the Zipf ’s law [24]. In the
second, the range is inverted [500, 50], and the same distri-
bution is exploited. In other words, in the case “small” there
is a high probability to have small data chunks (of variable
size) as input, and vice versa in the “large” one.

In this test, the upper bound is represented by the per-
formance of the Joint training, in which the training set is
available as a single chunk in a single site, and then results
are expressed as the deviation percentage of the AUC metric
(see Sect. 4.3) with respect to the one obtained with the Joint
approach. Since AUC is related to errors and lower devia-
tion values are better, results reveal that the distributed train-
ing scenario is challenging and that the size of small and
large only partially impact the general performance. As ex-
pected, the SLDA method reports the same accuracy since
it is not influenced by the experience size (see Sect. 5.1).

From a general point of view, the LwF approach tends to
achieve the best performance and is therefore selected for
the next investigation that is focused on the analysis of the
weight assigned to the distillation loss with respect to the
experience size. It is worth noting that this aspect is not yet
fully investigated in the literature, especially in relation to
different experience sizes.

In particular, we create data chunks with different
fixed sizes, starting from 50 with a step of 50 (|d| =
{50, 100, 150, ..., 500}). Then, differently from the previ-
ous case, the size of chunks is the same across the whole
training procedure. For each defined size, we test different
λ values: empirically, we found a specific range must be
used to achieve reasonable results, in particular a range of
{100, 1500} for the MAD task. Results, obtained by av-
eraging the test metrics on all possible dataset order con-
figurations, are condensed through colored matrices (the
darker color is better), as reported in Figures 3. We ob-
serve that different λ strongly impact the performance of
the LwF, especially in relation to different training experi-

ence sizes. For instance, with λ = 100, the model per-
formance is generally limited for all possible chunk sizes.
From a general point of view, we observe a trend in which
with small experience sizes it is better to have larger λ val-
ues, and vice versa. This tendency is particularly noticeable
with BPCER0.001 (last matrix of Fig. 3), which represents
the most challenging (and realistic) case of the MAD task.

Then, we test LwF in terms of BRoT metric, reporting
the results (expressed in the same visual form of colored
matrices) in Figure 4. As shown, also the proposed BroT
metric confirms the tendency noted in the previous cases,
revealing that the proper choice of λ is needed to enhance
the probability to achieve the best performance on the whole
distributed training procedure.

Finally, we test MAD capabilities of the investigated so-
lutions. Results are reported in Table 2, in which we show
the performance of the following methods, all working on
features extracted through the ArcFace architecture [11]
from the two input images, and combined by a subtraction:
i) the current state-of-the-art method described in [46], con-
sisting in an SVM classifier with the Radial Basis Function
kernel. The training scenario is Joint, since all data must
be available before the single batch-based training proce-
dure; ii) a solution equal to the previous one, but exploiting
MLP as a classifier. This classifier has been adopted to sim-
plify the comparison with the incremental training meth-
ods, in which we are forced to use a deep learning-based ar-
chitecture to apply the CL strategies; iii) three incremental
training approaches based on the investigated LwF method,
trained with different experience sizes: large, small and the
scenario with fixed experience that achieved the best perfor-
mance (experience size equal to 500 and λ = 200).

As expected, the first method based on SVM and batch
training exhibits the best performance in terms of EER and
BPCER; such results represent in our experiments a sort of
upper bound to the performance achievable in this scenario.
Batch training, in fact, typically outperforms incremental



Training Method Classifier Exp. Size EER BPCER0.1 BPCER0.01 BPCER0.001

Batch ArcFace [46] SVM Joint 0.121 0.135 0.275 0.528
ArcFace [46] MLP Joint 0.138 0.209 0.722 0.825

Incremental
LwF [25] MLP small 0.156 0.294 0.837 0.837
LwF [25] MLP large 0.145 0.230 0.786 0.922
LwF [25] MLP fixed 0.140 0.224 0.679 0.896

Table 2. Experimental results obtained on the MorphDB dataset for the MAD task. In particular, it is possible to compare the performance
of the sota MAD method [46], based on the common batch-based training (first row), with respect to the investigated LwF method for
incremental training. In the Joint scenario, all training data are available at the same time, while “small”, “large” and “fixed” refers to the
incremental training described in Section 5.2.

learning and SVM proved to be the best classifier coupled
with ArcFace features for the DMAD task. The MLP clas-
sifier unfortunately performs slightly worse, especially at
BPCER levels corresponding to a low error threshold. Inter-
estingly, all the investigated CL strategies have similar per-
formance with respect to the batch-based training: then, we
observe that LwF method is a promising method to bridge
the gap between the common Machine Learning training
scenario and the incremental training one, needed to deal
with highly constrained scenarios.

Classification ↑
Exp. Size Small Large

Naive -6.4% -4.8%

EWC [21] -5.7% -5.1%
SI [51] -9.2% -5.2%

SLDA [18] -2.7%
LwF [25] -2.2% -1.5%

Table 3. Comparison of different Continual Learning methods with
variable experience sizes. Results are expressed in terms of the
percentage variations of the AuC with respect to the ideal case,
i.e. the Joint approach. Note that a negative value indicates a lower
accuracy, and then higher values are desired.

6. Further Investigation
To validate our findings, we extend our investigation also

on the supervised continual learning object classification
task [47, 35], which is one of the most common tasks in
the Continual Learning field. This task consists in contin-
ually training a classifier able to incrementally learn new
instances, new classes, or both. In particular, to maintain
similarity with the MAD task, we assume to work in the
New Instances (NI) scenario, also referred to as Data Incre-
mental [9], in which new instances of the same pre-defined
classes become progressively available during the training
phase. We observe this scenario is slightly different from
the Domain Incremental (Domain-IL) [49] task, in which
new instances belong also to different domains.

In our validation, we use CORe50 [27] dataset, that con-
tains 50 objects, belonging to 10 categories, acquired in
11 sessions (8 indoor and 3 outdoor) with different back-
grounds. The dataset is organized as reported in the origi-
nal paper, in which 8 sessions are used for training and val-
idation and the remaining 3 for the testing procedure. The
total amount of frame is about 164k with a resolution of
128×128 pixels. From the classification task point of view,
this dataset is challenging due to changes in backgrounds
(outdoor and indoor) and light sources, occlusions and low
data variability during the same experience.

In order to reproduce the MAD training setting, we use
a ResNet-50 [19] model, trained on the ImageNet [10]
dataset, to extract features that are then classified by the
same MLP architecture used in the MAD task. In this case,
|D| = 1 and then we shuffle the dataset averaging the col-
lected results on 10 runs. As metrics, we exploit the Top-1
accuracy, in which high values are positive. AUC and BroT
metrics are based on obtained accuracy values across the
testing experiences.

Results are reported in Table 3, in which large positive
variations are better. We observe that the performance of
the investigated CL methods is generally closer to the Joint
baseline with respect to MAD task. LwF is confirmed as
one of the best methods to limit the drop introduced by our
distributed scenario, even though SLDA shows better be-
haviour in comparison to the MAD task.

Focusing our analysis on LwF, we create several chunks
of data with a fixed size in order to analyze the impact of
varying λ. Differently from MAD, empirical experiments
suggest the proper range to achieve reasonable results is
λ = {1, 50}. The visualization of the experimental results
is reported in Figure 5a and 5b for the AUC and BRoT met-
rics, respectively. Results confirm our previous consider-
ations on MAD task, i.e. lambda greatly impacts the per-
formance of LwF, in particular with different sizes, even
though this tendency seems to be less evident. In particu-
lar, λ = 50 is a proper choice only for the case in which
the chunk size is equal to 50, while this value leads to a
significant drop in performance in all the other cases.
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Figure 5. Performance of LwF [25] on the object classification task
with respect to different training experience sizes (y-axis) and λ
values (x-axis). The darker color is better.

7. Concluding Remarks

In this paper, we have carried out one of the first in-
vestigations about the performance of Continual Learning
methods in an incremental and distributed training scenario
addressing the Differential Morphing Attack Detection (D-
MAD) task. In this scenario, in which data cannot be trans-
ferred between different sites due to privacy issues, the re-
cent CL paradigm proves to be useful in enabling model
transfer instead of data transfer.

Since data chunks available at each training experi-
ence may have different sizes in realistic usage, a fur-
ther investigation has been conducted to analyze the proper
parametrization for the LwF approach, an element not yet
fully investigated in the CL literature. It is worth noting
that, from a general point of view, the choice of the distilla-
tion loss value (λ) in the LwF approach is challenging, since
it varies in relation to both experience size and task, and a
wrong choice can lead to a significant drop in accuracy, as
shown in the experimental evaluation.

The outcomes of our analysis can be summarized as fol-
lows: i) experimental results confirm the opportunity to use
the Continual Learning paradigm, and specifically the LwF
method, to train a MAD detector in a distributed and incre-
mental manner in order to overcome privacy issues; ii) it
clearly emerged, in view of future work, the need to auto-
matically determine the proper parametrization of LwF, in
terms of the value of λ with respect to the size of the train-
ing chunk, following the general consideration that small
experience size should need larger values; iii) it is also im-
portant to note that further analysis is needed in order to
properly determine the λ ranges in relation to a specific
dataset or task to be addressed; iv) additional research in-
vestigations are important to improve the final accuracy of
the MAD model trained in the incremental and distributed
setting, that still suffers in terms of performance with re-

spect to a model trained in the common Machine Learning
setting (batch training on the whole dataset);.

In conclusion, we believe that our findings can be useful
in future research work in the field of Morphing Attack De-
tection, in order to enable distributed and incremental train-
ing, overcome privacy issues and train new models on more
varied and large datasets, but also the Continual Learning
task, to properly define values of the λ parameter taking
into consideration the size of the training experience.
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