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Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual
prompts in natural language. While these models have numerous benefits across various sectors, they have also
raised concerns about the potential misuse of fake images and cast new pressures on fake image detection. In
this work, we pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
Firstly, we conduct a comprehensive analysis of the performance of contrastive and classification-based visual
features, respectively extracted from CLIP-based models and ResNet or ViT-based architectures trained on
image classification datasets. Our results demonstrate that fake images share common low-level cues, which
render them easily recognizable. Further, we devise a multimodal setting wherein fake images are synthesized
by different textual captions, which are used as seeds for a generator. Under this setting, we quantify the
performance of fake detection strategies and introduce a contrastive-based disentangling method that lets us
analyze the role of the semantics of textual descriptions and low-level perceptual cues. Finally, we release a new
dataset, called COCOFake, containing about 1.2M images generated from the original COCO image-caption
pairs using two recent text-to-image diffusion models, namely Stable Diffusion v1.4 and v2.0.
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1 INTRODUCTION
Machine-generated images have gained extensive popularity in the digital world due to the popular-
ity of GANs [25, 35, 36, 48] and diffusion models [15, 52, 55, 58]. While image generation tools can
be employed for lawful goals, such as assisting content creators, generating simulated datasets, or
enabling multimodal interactive applications, they have raised concerns regarding their potential
for illegal and malicious purposes [2, 8, 14, 30]. These include the forgery of natural images, the
generation of images in support of fake news, and the generation of NSFW contents [50, 60]. In
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Fig. 1. Overview of our multimodal deepfakes detection setting, in which five subsets of the semantics
contained in a given image are employed to generate as many fake images.

this context, assessing the authenticity of images becomes a fundamental goal for security and for
guaranteeing the trustworthiness of AI algorithms.

Most of the past approaches for deepfake detection have employed perceptual cues [19, 22, 73],
including frequency analysis, the detection of artifacts, or pixel discontinuities. Furthermore, a
significant portion of the early studies has focused exclusively on fake faces [40, 41, 56]. Today’s
generators [16, 23, 52, 53, 55, 58] are general-purpose, text-driven, and exhibit higher generation
quality. If we look at images generated by Stable Diffusion [55] (a few examples are reported in
Sec. 3.5), we might notice that some of them appear hyper-realistic and, thus, easily recognizable,
while others contain semantic anomalies. However, most of them are realistically plausible.

In this paper, we aim at developing a systematic study on deepfake detection, in an era when
generated content is becoming increasingly realistic and text-driven. We do this in a multimodal
setting that enables us to examine deepfake detection from both a perceptual and a semantic
perspective. Specifically, given an image, we consider different textual descriptions and fake images
generated by using each of the descriptions as a prompt (Fig. 1). In this manner, we build clusters
sharing similar semantics, containing one real image and multiple fake images. Under this setting,
we first train a classifier to recognize deepfakes and investigate the effectiveness of different visual
features extracted from both contrastive-based backbones like CLIP [51] and classification-based
ones such as ResNet [31] and ViT-based networks [18] trained on ImageNet. Surprisingly, we find
out that high-level contrastive-based features learned on image and text pairs are very effective
in discriminating between real and generated images. We hypothesize that low-level perceptual
features also percolate into such descriptors, even though they are trained at a semantic level.

While these findings might be effective in defending us from current generators, we can expect
that tomorrow’s generators will increase their quality and become less detectable via low-level
features. Thus, we devise a contrastive-based disentanglement strategy that enables to remove
the contribution of low-level features. This approach establishes a more complex setting in which
generated images cannot be distinguished at a perceptual level. Under this setting, we propose and
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discuss a general procedure for discriminating between fake and real images based on semantic
information. To evaluate the effectiveness of the proposed method, we introduce a new dataset,
namely COCOFake, which comprises approximately 1.2M images generated from the original
COCO image-caption pairs using both Stable Diffusion v1.4 and v2.0 as text-to-image generative
models.
Contributions In summary, the main contributions of this work are as follows:

• We develop a framework that utilizes machine-generated variants of natural images to inves-
tigate the detectability of diffusion model-generated images at the semantic and perceptual
levels. By filtering the semantic content of natural images through natural language descrip-
tions, we create a dataset of machine-generated images that can be used to investigate the
performance of fake detection against modern diffusion models.

• We demonstrate that contrastive-based features can be effectively employed for fake detection
against modern diffusion models, with high recognition rates.

• We propose a contrastive-based disentanglement approach to distinguish between low-level
and semantic features in modern visual extractors. This allows us to distinguish between nat-
ural images and the generated ones using only semantic cues while neglecting the perceptual
ones. This is important for the future development of more realistic generators.

• We generate and release the COCOFake dataset1, which contains over 1.2M fake images
linked to natural images through captions. This dataset can be used to test and evaluate
the performance of fake detection algorithms against diffusion model-generated images
and assess their robustness in detecting fake images generated by different text-to-image
generative models.

2 RELATEDWORK
General Deepfake Detection. In recent years, with the growth and diffusion of generative models,
several research efforts [13, 67] have been made to effectively detect synthetic images generated by
GANs [25, 35, 36, 48, 75] and other deep learning-based architectures [39, 64]. While initial works
did not concentrate on the generalization capabilities of deepfake detectors [47, 56], subsequent
approaches [5, 11, 24, 26, 46, 68] focused instead on the development of generic detectors that
can be applied to different generators, thus avoiding the need to have a specific detector for each
generative model. On the same line, different solutions [19, 22, 73] proposed to detect deepfakes
based on the spectrum of GAN-generated images. In fact, CNN-based generative models usually
leave a distinguishable fingerprint over generated images, due to transposed convolutions [19, 73],
up-sampling operations [6, 22], and the spectral bias of convolution layers [20, 37]. Some works in
similar directions also focused on associating fake images to the corresponding generator among
several known GANs [33, 72] or extending deepfake detection to the video domain [12, 27–29, 71].
In the latter case, deepfakes are usually generated by partially manipulating original videos with
existing tools for face swapping and other sophisticated algorithms for audiomanipulation. Research
efforts in this domain have mainly been dedicated to improving deepfake detection performance
with the integration of multiple modalities, such as spatial rich model filters [28, 45] and audio
traces [7, 71] in both cases combined with RGB features.
Detection of Deepfakes Generated with Diffusion Models.While all aforementioned methods
are tailored for detecting deepfakes generated by GANs or other visual forgery tools, a few works
extended the analysis to deepfake images coming from diffusion models [15, 49, 52, 55, 58]. Among
them,Wolter et al. [69] proposed to detect fake images based on their wavelet-packet representations
taking into account features from the pixel and frequency space. Ricker et al. [54] evaluate the
1The dataset can be downloaded at this link: https://github.com/aimagelab/COCOFake.

https://github.com/aimagelab/COCOFake
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performance of state-of-the-art detectors and also tackle the frequency domain, analyzing different
factors that influence the spectral properties of these images, discovering that GANs and diffusion
models produce images with different characteristics that require adaptation of existing classifiers
to ensure reliable detection. Similarly, Corvi et al. [10] introduced an analysis of the forensics
traces left by common diffusion models and investigated whether deepfake detectors tailored for
GANs can also distinguish images generated by diffusion models. Finally, Sha et al. [63] analyzed
and compared deepfakes generated by different text-to-image diffusion models, investigating the
possibility of correctly attributing deepfake images to the diffusion model that generated them.
Overall, these studies highlight the need for developing detection methods that can effectively
detect deepfakes generated by various types of generative models, including diffusion models.

Datasets for Deepfake Detection. The availability of large datasets has played a crucial role in
the development of deepfake detection techniques. One of the most widely used datasets is Face-
Forensics++ [56], which contains videos of real and fake faces generated using several generative
models. The dataset provides both raw and manipulated videos with different compression rates
and resolutions, allowing the evaluation of deepfake detection methods under different scenarios.
Another popular dataset is Celeb-DF [41], which contains videos of celebrities manipulated using
different techniques including GANs and face swapping. Celeb-DF also provides several levels of
difficulty, ranging from low-quality to high-quality forgeries, making it suitable for evaluating
both traditional and advanced deepfake detection methods. Other datasets have been proposed,
such as DeeperForensics-1.0 [32], which contains manipulated videos generated using multiple
GAN-based models, and DFDC [17], composed of thousands of videos of real and fake faces.
Despite the availability of these datasets, there is still a need for more diverse and challenging

datasets that reflect the increasing sophistication of deepfake generation methods. In particular,
while current datasets mainly focus on faces, there is a lack of datasets for detecting deepfakes in
other types of images, such as natural scenes. The proposed COCOFake dataset aims to address this
limitation by providing a large-scale dataset of natural images and their corresponding synthetic
images generated by diffusion models, along with natural language captions linking them. This
allows for the evaluation of deepfake detection methods in a more complex and diverse context
and also enables the development of methods that can identify semantic inconsistencies between
natural and synthetic images.

3 PROPOSED METHOD
3.1 Notation and Preliminaries
We propose a framework for studying and detecting multimodal generated fake images, which
encompasses the identification and separation of their perceptual and semantic components. In
the rest of the paper, we will employ the following notation: 𝐼𝑅 will indicate a natural (real) image,
𝐶 a textual description (i.e., a caption), and 𝐼𝐹 will indicate a fake image produced by a generator.
Under this setting, a parent real image 𝐼𝑅 can be the seed for 𝑁 different children fake images 𝐼𝐹,𝑖
given a set of textual descriptions {𝐶𝑖 } of 𝐼𝑅 , with 𝑖 = 1, ..., 𝑁 , by using each of the descriptions as
prompt for the generator.

Semantic and Style Components of an Image. The information content of an image can be
credited to many factors. For simplicity, we assume that an image 𝐼 , regardless of its authenticity,
embodies two information contributions, namely a semantic component H𝑠𝑒𝑚 (𝐼 ) and a perceptual
or style component H𝑠𝑡𝑦 (𝐼 ). The former represents the content that could be expressed in a textual
sentence, while the latter describes the image appearance, encompassing elements such as colors,
textures, brightness, and low-level visual cues. Given a real image 𝐼𝑅 , we can therefore express its
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total information H as a function of its semantic and style components, as follows:

H(𝐼𝑅) = 𝑓 (H𝑠𝑒𝑚 (𝐼𝑅),H𝑠𝑡𝑦 (𝐼𝑅)). (1)

However, when an image is described through a natural language sentence, only a portion of its
semantics is actually conveyed inside the caption. In other words, natural language descriptions
act as a filter for the semantic content of the image. Hence, we introduce ΔH𝑠𝑒𝑚 (𝐼 ,𝐶) to represent
the portion of semantic information described by a caption 𝐶 . By analogy, we could say that the
textual descriptions of an image act as DNA fragments that can be utilized to generate an offspring
of images.
Generating Offspring with Natural Language Utterances. From an input image 𝐼𝑅 we can,
therefore, extract 𝑁 semantic information subsets ΔH 𝑖

𝑠𝑒𝑚 (𝐼𝑅, ·) and feed them to a generator
obtaining 𝑁 different fake images 𝐼𝐹,𝑖 , with 𝑖 = 1, ..., 𝑁 . We define semantic cluster the ensemble of
the starting real image 𝐼𝑅 and the offspring of 𝑁 fake images 𝐼𝐹,𝑖 generated from it. For instance,
given a real image dataset such as COCO [42], containing 𝐾 images, each represented by 𝑁 = 5
captions, we could create 𝐾 clusters of 𝑁 + 1 images with one parent and 𝑁 children.

3.2 Learning to Discriminate Real and Fake images
Once a dataset in the aforementioned form has been built, we first measure to what extent real and
generated images can be discriminated independently from their membership to a semantic cluster.
Instead of doing this by learning ad-hoc visual features, we investigate the usage of state-of-the-art
pre-trained visual models. In other words, given a dataset containing both real and generated
images, we develop a model that identifies real images by using visual features extracted with a pre-
trained backbone. Regarding the generation of the images, in the following, we will employ Stable
Diffusion [55], which is freely available and represents a state-of-the-art approach. Nevertheless,
the approach could be easily extended to other generators.
To evaluate the discriminative power of current pre-trained visual features, we model the

discriminator as a two-class linear classifier, so that input visual features are only linearly projected
before taking the final decision on their realism. Formally, given a real image 𝐼𝑅 ∈ R3×𝐻×𝑊 and an
image encoder 𝐸𝐼 : R3×𝐻×𝑊 → R𝐷 , we extract a vectorial image feature 𝐹𝐼 as

𝐹𝐼 = 𝐸𝐼 (𝐼𝑅). (2)

The features 𝐹𝐼 are then fed into a linear layer 𝐿 : R𝐷 → R, whose output is thresholded to classify
between real (i.e., 0) and fake (i.e., 1) images. As it will be discussed in the experimental section, our
findings indicate that this is (still) a relatively simple task even when employing a state-of-the-art
generator. This is, most likely, due to the fact that fake images are slightly different in terms of
low-level cues with respect to real images.

3.3 Semantic Preservation Analysis
As a second analysis, we investigate the preservation of semantic information across both real
and generated fake images. To do so, we consider a multimodal embedding space, in which both
images and texts can be projected. Specifically, we verify if, starting from a generated image, we
can retrieve the particular caption used as prompt during its generation. In other words, we test
if the subset of the real semantic information ΔH𝑠𝑒𝑚 (𝐼𝐹 ,𝐶) associated with a caption 𝐶 is still
recognizable in the visual features extracted from the generated image.
Formally, given a caption 𝐶 describing a real image 𝐼𝑅 , and a textual encoder 𝐸𝑇 , we tokenize

and extract the textual features 𝐹𝑇 as:
𝐹𝑇 = 𝐸𝑇 (𝐶). (3)
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Fig. 2. Schema of our approach for disentangling semantics and style for deepfake detection.

For each visual feature of a given fake image 𝐼𝐹 , we verify the ability to retrieve the corresponding
textual feature used to create 𝐼𝐹 through the generator model.
As it will be shown in the experimental section, we find out that (a) the alteration of low-level

cues induced by the generator does not affect the semantic contribution coming from the original
image, and (b) the semantic contribution of the generator does not obfuscate the original semantic
content.

3.4 Disentangling Semantics and Style
As the detection of fake images is likely promoted by the difference in low-level cues between
generated and real images, we finally investigate a more challenging setting in which the style
component induced by the generator is disentangled and removed. To do so, we learn a model
which identifies the style component of the generator which is common to all generated images. We
then measure whether, after eliminating such a component, the remaining semantic information
is sufficient to discriminate between real and fake images. Noticeably, this corresponds to a more
challenging setting where all the common low-level traits left by the generator are removed and not
employed to perform deepfake classification. In other words, this also corresponds to recognizing
fakes generated by an “ideal” generator that does not leave common low-level traits.
To perform this analysis, we propose a new contrastive-based learning model that can project

images in a semantic space and in a style space (Fig. 2). For a good style-semantic disentanglement
we expect that, in the style embedding latent space, the feature vectors of real images should be
separated from features of fake images in a cluster-agnostic way, while in the semantic embedding
latent space the cluster compactness should be preserved. Specifically, we train two separate linear
projections 𝑇 and 𝑆 , where 𝑇 focuses on style while 𝑆 on semantics. For the 𝑇 layer we aim at
increasing the distance between fake and real elements, regardless of their membership in a specific
cluster. For the 𝑆 layer, instead, we want to create compact clusters of elements sharing the same
semantic content, while increasing the distance among two fake elements or two real elements.
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We express these requirements through two loss components L𝑐 and L𝑓 𝑟 . The former attracts
elements of the same cluster, while the latter attracts elements having the same label (i.e., real and
fake). From here, we can define the losses needed to train 𝑇 and 𝑆 , respectively, as follows:

L𝑇 = L𝑓 𝑟 − L𝑐 ,

L𝑆 = L𝑐 − L𝑓 𝑟 .
(4)

To implement both L𝑐 and L𝑓 𝑟 , we leverage a Supervised Contrastive Loss [38], defined as follows:

L𝑆𝑢𝑝𝐶𝑜𝑛 =
∑︁
𝑖∈𝐼

−1
|𝑃 (𝑖) |

∑︁
𝑝∈𝑃 (𝑖 )

log
exp(F𝑖F ⊺𝑝 /𝜏)∑

𝑎∈𝐴(𝑖 )
exp(F𝑖F ⊺𝑎 /𝜏) , (5)

where 𝑖 ∈ 𝐼 ≡ {1, ..., 𝑁 + 1} represents the index of an arbitrary sample, F are ℓ2-normalized input
features of a given image, 𝜏 is a temperature parameter, 𝐴(𝑖) ≡ 𝐼/ {𝑖}. 𝑃 (𝑖) is the set of indices of
all items sharing the same label of 𝑖 , and |𝑃 (𝑖) | is its cardinality.

Depending on the nature of the labels used in the training of the supervised contrastive loss, we
can implement repulsive and attractive forces in the form of the loss components L𝑐 and L𝑓 𝑟 . In
L𝑐 , in particular, we assign the same label to elements belonging to the same cluster, while in L𝑓 𝑟

we assign the same label to all real samples, and the same label to all fake images. The objective of
L𝑐 is to attract elements of the same cluster, while L𝑓 𝑟 pushes real and fake images.

3.5 The COCOFake Dataset for Multimodal Deepfake Recognition
In literature, to the best of our knowledge, there are no multimodal datasets containing texts, real
and fake images that are compatible with our multimodal setting. Thus, we generate and release
the COCOFake dataset, an extension of COCO [42]. Each real image in COCOFake is paired with
five fake images that are conditionally generated based on each of the captions associated with the
same image. We employ the Stable Diffusion model [55] as our generator. Specifically, we create
two different versions of our dataset, one based on Stable Diffusion v1.42 and the other based
on Stable Diffusion v2.03. Both text-to-image generators have been pre-trained on the English
image-text pairs of the LAION-5B dataset [61] and finetuned on the LAION-Aesthetics subset4.
While Stable Diffusion v1.4 is based on the CLIP ViT-L/14 text encoder [51], the 2.0 version exploits
the OpenCLIP ViT-H/14 one [51]. During image generation, we employ the safety checker module
to reduce the probability of explicit images and disable the invisible watermarking of the outputs
to prevent easy identification of the images as machine-generated.
Overall, referring to the splits defined in [34] and typically employed in image captioning

literature [1, 4, 59], the COCO dataset comprises 113,287 training images, 5,000 validation, and
5,000 test images. Preserving the same splits, COCOFake is composed of 679,722 training images,
30,000 validation, and 30,000 test images for each version of Stable Diffusion, thus comprising
more than 1.2M generated images (i.e., around 600k for each version of Stable Diffusion). Sample
real-generated image clusters from the COCOFake dataset are shown in Fig. 3. For each example,
we present the real image alongside the five fake images generated from each of the five captions
from the original COCO dataset. As it can be seen, the generated images are generally coherent
with the corresponding caption. However, in some cases, the generated images are overly realistic
with brighter colors and a more professional photographic style than the real counterpart. This can
be attributed to the dataset employed in the finetuning phase (i.e. the LAION-Aesthetics subset)
of the Stable Diffusion model [55], used to generate fake images. In Fig. 4 we report less realistic
2https://huggingface.co/CompVis/stable-diffusion-v1-4
3https://huggingface.co/stabilityai/stable-diffusion-2-base
4https://laion.ai/blog/laion-aesthetics/

https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/stabilityai/stable-diffusion-2-base
https://laion.ai/blog/laion-aesthetics/
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three empty docks some 
water and some clouds

A lone person sits in a 
chair at one of three 
piers as the sun sits low 
in the distance. 

The sun sets over the 
trees beyond some 
docks. 

Three docks are empty 
at sundown by the 
water.

an empty harbor with a 
setting sun in the 
background

A man staring out the 
window at an ocean of 
water. 

A man is staring out of a 
boat window.

The boy is looking out 
the window at the 
water.

People are looking out 
of a window at water.

A man sitting in front of 
a window looking out 
onto water.

A boat moving along a 
river with tall mountains 
in the back.

three people riding in a 
boat at sunset

A cliffside town and 
beach with people at 
sunset.

A large body of water 
sitting below a 
mountain range.

Adults in long boat near 
populated area with 
rocky cliffs.

a man in a yellow jacket 
standing next to some 
skiiers

A group of people that 
are wearing snow skis 
and holding poles.

A group of skiers are 
preparing to ski down a 
mountain.

A group of people riding 
skis on top of a ski slope.

Everyone is ready to 
start the downhill run on 
the ski slope.

A man takes a picture of 
snowy mountains with 
his cell phone.

A man is holding a cell 
phone in front of a 
mountain.

a man looks out into the 
mountains 

A man looking at a vast 
mountain landscape.

An older man standing 
on top of a snow 
covered slope.

Group of elephants 
walking in muddy water 
today. 

A herd of elephants 
walking through a lake 
filled with water.

The elephants are 
standing beside each 
other near the water.

A group of elephants 
walking in muddy water.

A family of elephants 
washing up at a 
watering hole.

Fig. 3. Sample images from COCOFake. The leftmost column shows the original (real) image, while the
remaining ones show fake images generated by Stable Diffusion v1.4 from each of the five COCO captions.

examples from the COCOFake dataset, again showing the original image and the five fake images
with the corresponding captions. Failure cases include hallucinating the semantic content of the
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three bears outside in 
the woods in the bushes 

Three bears walking 
together in a wooded 
area.

A bear and two cubs are 
walking through a field.

An adult bear and two 
bear cubs wander 
through a field.

Two baby brow bears 
are close behind a larger 
bear in a wooded forest.

This photograph 
appears to be looking 
truly wonderful. 

a close up view of a 
keyboard and a mouse

A computer keyboard 
with a computer mouse 
on top of it.

A white mouse is on top 
of a white keyboard.

A computer mouse sits 
on a clean white 
computer keyboard.

A picnic table sits 
underneath a tree in the 
grass.

a brown wooden table 
some brown grass and a 
green tree

A large picnic table 
sitting beside a tree in 
the wilderness.

A picnic table sitting 
under a large green 
tree. 

Large tree with wooden 
picnic bench in 
wilderness area

A black and white shot 
of a city with a tall 
skyscraper in the 
distance.

A traffic light and street 
sign surrounded by 
buildings. 

some buildings a traffic 
light and a cloudy sky

A black and white 
photograph of a stop 
light from the street.

A traffic light over a 
street surrounded by 
tall buildings.

A man standing on a 
tennis court holding a 
racquet.

A guy jumping with a 
tennis racket in his 
hand.

A tennis player in mid 
air action on the court.

A guy holding a racket in 
a game of tennis.

A man in black shirt and 
blue shorts playing a 
game of tennis.

Fig. 4. Less realistic images from COCOFake. The leftmost column shows the original (real) image, while the
remaining ones show fake images generated by Stable Diffusion v1.4 from each of the five COCO captions.

caption (first two rows), incorrect understanding of the caption (third row), abstract rendering of
objects (traffic lights in the third row), and unrealistic rendering of human poses (last row).
In our experiments, we evaluate deepfake detection performance under a standard setting in

which we train the model on images generated by one Stable Diffusion version and test on images
generated by the samemodel. Furthermore, to assess the robustness of our analysis, we also consider
the generalization capabilities to images generated by a text-to-image diffusion model different
from the one used during training. Under this setting, we compare the performance of our method
on images generated by different versions of Stable Diffusion, providing insights into the impact of
the generative model on the deepfake detection performance.
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4 EXPERIMENTAL EVALUATION
4.1 Implementation Details
Image Encoders. We test two families of backbones: the first are trained for classification on
ImageNet [57], while the second are trained on a cross-modal setting on large-scale datasets using
contrastive-based loss functions. Due to the nature of the task these networks were trained for, only
the latter family provides also text encoders 𝐸𝑇 . Specifically, we employ a ResNet [31] model with
48 convolutional layers and a Vision Transformer (ViT) [18] architecture in its B/32 configuration.
The ViT encoder takes as input squared patches extracted from the input image and consists of
a sequence of multi-head self-attention layers [66]. Both these architectures are trained on the
ImageNet dataset [57] that contains around 1.3M images.
As cross-modal architectures, we use two models coming from CLIP [51]. In particular, we

employ CLIP RN50 and CLIP ViT-B/32 models, both pre-trained on the OpenAI WebImageText
(WIT) dataset, composed of 400 million image-text pairs collected from the web. Moreover, we
employ the open source implementation of CLIP (i.e., OpenCLIP [70]), trained with a post-ensemble
method for improving robustness to out-of-distribution samples. In our experiments, we consider
two versions of the OpenCLIP ViT-B/32 model: one trained on the LAION-400M dataset [62] that
contains 400 million CLIP-filtered image-text pairs crawled from the web and the other trained on
the larger LAION-2B composed of 2 billion image-text pairs [61].
Linear Probing Details. In our experiments, we also conduct linear probes. In this case, we follow
the approach of [51] and employ the features extracted from the backbones to train a logistic
regression model with ℓ2 penalty and LBFGS solver [3, 74]. To balance the training samples, we
employ one randomly extracted fake image for each cluster.
Disentanglement Architecture and Training Details.When disentangling semantics and styles,
we train the two linear layers 𝑆 and𝑇 , which perform a linear projection to the same dimensionality
of the backbone visual features. To train these layers, we employ AdamW [43] as optimizer with
𝛽1 = 0.9 and 𝛽2 = 0.999. We use a batch size of 1,024 and a learning rate of 0.001, training all models
for 25 epochs.

4.2 Metrics
To assess the performance of our proposed methodology and evaluate spatial relationships between
elements in the embedding spaces, we employ seven different metrics. These aim to quantify the
capability to discriminate between real and fake images and to quantify disentanglement.
Min and Max Intra-Cluster Distance Accuracy. These two metrics are employed to evaluate the
relative spatial positions of the elements inside a cluster. In particular, for each cluster, we measure
the distances between the real image and each of the fake images belonging to the cluster. We then
check how many times the real image is the item having the minimum or maximum distance with
respect to all the others in the cluster. In other words, for each cluster, the min distance accuracy
scores if the real image feature is on average the nearest to all the fake image features, while the
max distance accuracy scores if it is the most distant one.
Overall and Full Cluster Accuracy. These two metrics measure the real/fake classification accu-
racy both over the entire dataset and inside each cluster. The former metric is cluster-independent
and is computed using all the elements of a dataset split (i.e., validation, test). The latter, instead, is
a cluster-based metric that scores if all elements of a cluster are correctly classified as real or fake,
and the metric is then averaged across all clusters.
Overall AUC. As reported in previous deepfake detection literature [10, 46], this metric is used
along with accuracy to evaluate how well a deepfake detection model can distinguish between real
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Table 1. Minimum and maximum distance accuracy on validation and test sets of COCOFake, using different
visual backbones. Results are reported using images generated by both Stable Diffusion v1.4 and v2.0.

Validation Set Test Set Validation Set Test Set
(SD v1.4) (SD v1.4) (SD v2.0) (SD v2.0)

Min Dist. Max Dist. Min Dist. Max Dist. Min Dist. Max Dist. Min Dist. Max Dist.
Backbone Dataset Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

RN50 ImageNet 8.50 23.58 8.82 24.82 5.98 29.62 6.62 30.16
ViT-B/32 ImageNet 6.84 23.12 6.88 23.88 5.12 29.18 4.92 30.00

CLIP RN50 OpenAI WIT 3.72 38.48 3.60 41.24 2.40 46.72 2.20 48.28
CLIP ViT-B/32 OpenAI WIT 3.30 38.88 3.24 40.10 2.92 42.08 2.98 44.18

OpenCLIP ViT-B/32 LAION-400M 5.28 31.94 5.00 32.02 4.58 34.06 4.62 36.02
OpenCLIP ViT-B/32 LAION-2B 1.40 42.80 1.72 44.00 1.88 42.64 1.78 43.80

and fake images. In our setting, it is computed using all the elements of the validation or test set of
our dataset.
Exact Pair and Intra-Cluster Retrieval. These metrics are used to evaluate the goodness of the
retrieval task (see Sec. 3.3), in which given a generated image we seek to retrieve its parent caption.
The former metric is a recall@k computed considering as ground-truth, for each fake image, the
caption used for generating it. The latter, instead, is a recall@k that measures for a given fake
image if the retrieved caption matches one of the five captions of the cluster the image belongs to.

4.3 Performance of Visual Features
Unsupervised Classification. We start by assessing the capabilities of existing image features to
discriminate between real and generated images, in an unsupervised setting. We employ the min
and max distance accuracy metrics defined above and check the presence of spatial relationships
between real and generated images inside each cluster.
Results are reported in Table 1 on the test and validation sets of both Stable Diffusion v1.4 and

v2.0. We employ six different visual backbones, namely two ResNet-50 pre-trained on ImageNet and
OpenAI WIT and four ViT-B/32 pre-trained on ImageNet, OpenAI WIT, LAION-400M, and LAION-
2B. As it can be seen, according to the features extracted from the aforementioned backbones, the
real image of each cluster tends to be the one with maximum distance with respect to all the other
elements. This suggests that these features are discriminative for the task of deepfake classification
and that they percolate low-level features that allow for distinction between real and generated
items inside of each semantic cluster. Noticeably, the maximum distance accuracy increases when
considering backbones trained on multimodal datasets compared to backbones trained on classifi-
cation, suggesting that image-text matching promotes the percolation of perceptual features.

Comparing the results when using fake images generated by the two considered Stable Diffusion
versions, it can be noticed that Stable Diffusion v2.0 exhibits an improvement over v1.4 as evidenced
by an increase in the maximum distance metric and a decrease in the minimum distance metric.
This suggests that the features extracted from v2.0 are better separable and hence the generated
images are more easily detected.
Linear Probing. Following the approach popularized by [51], we train a linear projection through
logistic regression on top of the features extracted from the aforementioned backbones. We perform
this experiment by training on both Stable Diffusion v1.4 and v2.0 images, and testing either on
the validation and test sets containing images generated by the same Stable Diffusion version
used during training or on the validation and test sets containing images generated by the Stable
Diffusion model not used to train the linear projection.
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Table 2. Overall and full cluster accuracy results on the validation and test sets, using linear probing and
features of different backbones trained on the COCOFake training set. Results are reported using images
generated by both Stable Diffusion v1.4 and v2.0.

Validation Set Test Set Validation Set Test Set
(SD v1.4→ SD v1.4) (SD v1.4→ SD v1.4) (SD v1.4→ SD v2.0) (SD v1.4→ SD v2.0)

Overall Full Cluster Overall Full Cluster Overall Full Cluster Overall Full Cluster
Backbone Dataset Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

RN50 ImageNet 90.31 57.56 90.62 57.94 81.71 34.94 82.31 35.84
ViT-B/32 ImageNet 87.64 47.62 87.16 47.32 76.71 24.68 77.31 26.92

CLIP RN50 OpenAI WIT 99.07 94.60 99.17 95.30 93.54 69.08 93.74 69.64
CLIP ViT-B/32 OpenAI WIT 99.11 94.84 98.97 94.24 94.41 72.30 94.72 73.62

OpenCLIP ViT-B/32 LAION-400M 97.88 88.18 97.83 87.80 83.30 38.48 84.32 40.74
OpenCLIP ViT-B/32 LAION-2B 99.68 98.01 99.64 97.84 98.88 93.68 98.96 94.08

Validation Set Test Set Validation Set Test Set
(SD v2.0→ SD v2.0) (SD v2.0→ SD v2.0) (SD v2.0→ SD v1.4) (SD v2.0→ SD v1.4)

Overall Full Cluster Overall Full Cluster Overall Full Cluster Overall Full Cluster
Backbone Dataset Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

RN50 ImageNet 91.07 59.84 91.45 61.44 91.08 60.44 91.33 60.76
ViT-B/32 ImageNet 85.55 42.92 86.12 44.90 84.89 41.50 84.49 39.60

CLIP RN50 OpenAI WIT 98.67 92.56 98.68 92.60 98.57 91.94 98.66 92.48
CLIP ViT-B/32 OpenAI WIT 98.56 92.04 98.48 91.48 98.58 92.02 98.48 91.76

OpenCLIP ViT-B/32 LAION-400M 95.03 74.70 95.57 77.42 97.40 85.62 97.29 84.88
OpenCLIP ViT-B/32 LAION-2B 99.52 97.16 99.59 97.54 99.47 96.80 99.41 96.56

Results are reported in Table 2 in terms of overall accuracy and full cluster accuracy. As it can
be seen, all the selected visual features exhibit a significant capability in linearly discriminating
real and fake images, on the validation and test sets of the COCOFake dataset when considering
both Stable Diffusion v1.4 and v2.0. In continuity with the previous experiment, we observe that
contrastive-based visual backbones showcase significantly higher accuracy levels, up to 98.01%
and 97.16% of full cluster accuracy respectively on the validation set with Stable Diffusion v1.4
and v2.0 images, and up to 99.68% and 99.52% overall accuracy on the same split. This further
confirms the observation that contrastive-based backbones extract and project into their embedding
space, low-level and perceptual features that allow discriminating current deepfakes. To assess the
robustness of the method, we further test the trained classifiers on the data generated by the Stable
Diffusion model not used during training (i.e., Stable Diffusion v2.0 for the linear projection trained
on the 1.4 version, and Stable Diffusion v1.4 for the linear projection trained on the 2.0 version). As
it can be observed in the right part of Table 2, the trained classifier performs comparably also in this
setting with an overall accuracy close to or greater than 99% in all cases. In particular, training on
Stable Diffusion v2.0 images generalizes slightly better on images generated by Stable Diffusion v1.4
than the opposite direction with 99.47% and 96.80% of overall and full cluster validation accuracy
compared to 98.88% and 93.68% obtained when testing the linear projection trained on Stable
Diffusion v1.4 images on the validation set with images generated by the 2.0 version. Overall, these
experiments show that the pre-trained visual backbones exhibit high discrimination power when
identifying deepfakes.

In light of the high accuracy levels of the aforementioned experiment, in Fig. 5 we report sample
misclassified images. It can be noted, in particular, that fake images incorrectly classified as authentic
(right side of the figure) depict close-ups and artistic drawings, whose authenticity is visually harder
to guarantee.
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Real Images Fake ImagesReal Images Fake ImagesReal Images Fake Images

Fig. 5. Sample misclassification errors on both real (left) and fake (right) images, using OpenCLIP ViT-B/32
trained on LAION-2B as the visual encoder.

Table 3. Exact pair and intra-cluster retrieval results. Results are reported using images generated by both
Stable Diffusion v1.4 and v2.0.

Validation Set (SD v1.4) Test Set (SD v1.4)

Exact Pair Intra-Cluster Exact Pair Intra-Cluster

Backbone Dataset R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5

CLIP RN50 OpenAI WIT 31.33 49.05 56.93 41.91 58.46 66.01 30.98 48.38 56.42 42.09 58.35 65.93
CLIP ViT-B/32 OpenAI WIT 32.12 50.43 58.36 43.34 60.15 67.42 31.96 49.67 57.51 43.24 59.3 66.78
OpenCLIP ViT-B/32 LAION-400M 36.48 55.36 63.28 47.17 63.62 70.73 35.53 54.49 62.56 46.72 62.92 70.22
OpenCLIP ViT-B/32 LAION-2B 40.34 59.44 67.18 50.78 66.64 73.58 39.57 58.78 66.18 50.46 66.34 73.03

Validation Set (SD v2.0) Test Set (SD v2.0)

Exact Pair Intra-Cluster Exact Pair Intra-Cluster

Backbone Dataset R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5

CLIP RN50 OpenAI WIT 33.05 51.17 59.21 44.73 61.32 69.05 32.53 59.96 58.89 44.67 61.43 68.65
CLIP ViT-B/32 OpenAI WIT 34.70 53.48 61.31 46.73 .63.26 70.49 34.20 52.73 60.94 46.30 62.62 69.99
OpenCLIP ViT-B/32 LAION-400M 42.62 62.31 69.67 53.66 69.71 76.24 42.07 61.74 69.26 53.04 69.06 75.88
OpenCLIP ViT-B/32 LAION-2B 48.67 67.68 74.77 58.39 73.76 80.07 47.83 67.25 74.22 58.24 73.60 79.53

Semantic Preservation.We then conduct the retrieval-based analysis anticipated in Sec. 3.3, in
which we look for the original caption used to generate a particular image inside of a multimodal
embedding space. The objective of this experiment is to assess whether the semantic information
contained in the caption is preserved after the generation and to what extent the generation process
alters semantic features.
Results are reported in Table 3, using the exact pair and intra-cluster retrieval metrics and

considering validation and test sets containing Stable Diffusion v1.4 and v2.0 images. Surprisingly,
retrieving the exact caption used to generate an image is not always easy, and the process is
successful only in 40% of the cases when selecting a proper backbone. Even when considering
all captions of the same clusters as positives, moreover, we observe a recall@1 of around 50%,
again highlighting the difficulty of the task. The results are slightly higher when performing the
experiment on the COCOFake version with Stable Diffusion v2.0 images, achieving 48.67% and
58.39% in terms of exact pair and intra-cluster retrieval on the validation set of the dataset. This
suggests that the 2.0 version of Stable Diffusion can generate images more semantically aligned
with the corresponding captions than the 1.4 version, probably due to the more powerful text
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Table 4. AUC and accuracy results on the semantic space 𝑆 and on the style space𝑇 . These results are obtained
by training on the COCOFake training set with Stable Diffusion v1.4 images under the disentanglement
setting and evaluating on test set of the COCOFake dataset, using data extracted from both Stable Diffusion
v1.4 and v2.0.

Test Set (SD v1.4 → SD v1.4)

Overall Overall Full Cluster Overall Min Dist. Max Dist.
Backbone Dataset AUC 𝑆 Accuracy 𝑆 Accuracy 𝑆 AUC 𝑇 Accuracy 𝑇 Accuracy 𝑇

RN50 ImageNet 74.93 62.96 8.64 98.45 0.42 89.08
ViT-B/32 ImageNet 68.19 64.04 8.46 96.60 1.30 76.26

CLIP RN50 OpenAI WIT 80.73 74.76 21.40 99.87 0.00 98.46
CLIP ViT-B/32 OpenAI WIT 71.29 67.48 12.90 99.74 0.20 98.14

OpenCLIP ViT-B/32 LAION-400M 70.27 66.84 10.98 99.45 0.10 94.48
OpenCLIP ViT-B/32 LAION-2B 78.00 72.62 17.32 99.93 0.06 99.39

Test Set (SD v1.4 → SD v2.0)

Overall Overall Full Cluster Overall Min Dist. Max Dist.
Backbone Dataset AUC 𝑆 Accuracy 𝑆 Accuracy 𝑆 AUC 𝑇 Accuracy 𝑇 Accuracy 𝑇

RN50 ImageNet 74.05 58.53 6.62 98.15 0.52 89.48
ViT-B/32 ImageNet 68.46 63.00 8.86 94.92 1.78 72.84

CLIP RN50 OpenAI WIT 77.58 64.77 12.74 99.71 0.12 96.42
CLIP ViT-B/32 OpenAI WIT 70.98 62.66 10.06 99.30 0.26 94.60

OpenCLIP ViT-B/32 LAION-400M 70.87 68.32 12.02 98.25 0.52 83.98
OpenCLIP ViT-B/32 LAION-2B 76.49 71.92 16.98 99.86 0.04 98.70

encoder used in Stable Diffusion v2.0 (i.e., OpenCLIP ViT-H/14). Nonetheless, these results point
out that current generators produce images with partially altered semantic features, and are also in
line with the previous observation that contrastive-based extractors percolate low-level features.

4.4 Semantic-Style Disentangling Results
We then turn our attention to evaluating the semantic-style disentanglement approach, in which we
aim at training two separate embedding spaces, one storing semantic information and the second
focusing on style information. We evaluate the semantic projection in terms of overall AUC and
full cluster and overall classification accuracy, and the style projection in terms of overall AUC
and minimum and maximum distance accuracy. Specifically, this is done by performing linear
probing on top of the two disentangled projections 𝑆 and 𝑇 , following the approach described in
Sec. 4.3, and computing AUC and overall and full cluster accuracy scores. Instead, minimum and
maximum distance accuracy are directly computed on the 𝑇 projection, to evaluate the relative
spatial positions of the elements inside each cluster after disentangling semantics and style.

Results are reported in Table 4 and Table 5 on the COCOFake test set for all the aforementioned
backbones, training the semantic-style disentanglement on the training set respectively with Stable
Diffusion v1.4 and v2.0 images. In both cases, we observe that, in the𝑇 space which focuses on style,
real and fake images can be properly distinguished, as the real image is always far apart from the
generated ones. On the contrary, this does not happen in the 𝑆 space, which focuses on semantics,
and in which all elements belonging to the same cluster are pulled together, independently of their
authenticity. Still, the identification of deepfakes is feasible even in this more challenging space,
although with lower AUC and accuracy scores (i.e., with an AUC up to 86% and an accuracy of up
to 80%.) As this corresponds to testing a more challenging generator that leaves fewer lower-level
traces, we believe this result might offer interesting insights for future works. Similar but slightly
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Table 5. AUC and accuracy results on the semantic space 𝑆 and on the style space𝑇 . These results are obtained
by training on the COCOFake training set with Stable Diffusion v2.0 images under the disentanglement
setting and evaluating on test set of the COCOFake dataset, using data extracted from both Stable Diffusion
v1.4 and v2.0.

Test Set (SD v2.0 → SD v2.0)

Overall Overall Full Cluster Overall Min Dist. Max Dist.
Backbone Dataset AUC 𝑆 Accuracy 𝑆 Accuracy 𝑆 AUC 𝑇 Accuracy 𝑇 Accuracy 𝑇

RN50 ImageNet 79.30 68.01 13.04 98.43 0.54 89.58
ViT-B/32 ImageNet 69.20 66.31 11.40 95.80 1.94 72.94

CLIP RN50 OpenAI WIT 85.54 80.71 31.92 99.79 0.04 97.92
CLIP ViT-B/32 OpenAI WIT 74.51 68.98 14.20 99.76 0.08 97.60

OpenCLIP ViT-B/32 LAION-400M 72.64 68.51 12.80 99.02 0.38 90.52
OpenCLIP ViT-B/32 LAION-2B 82.69 76.60 23.94 99.87 0.04 99.20

Test Set (SD v2.0 → SD v1.4)

Overall Overall Full Cluster Overall Min Dist. Max Dist.
Backbone Dataset AUC 𝑆 Accuracy 𝑆 Accuracy 𝑆 AUC 𝑇 Accuracy 𝑇 Accuracy 𝑇

RN50 ImageNet 76.87 67.91 12.62 97.54 0.60 83.70
ViT-B/32 ImageNet 67.36 65.77 10.16 94.45 2.34 69.00

CLIP RN50 OpenAI WIT 83.00 78.67 27.10 99.76 0.06 97.66
CLIP ViT-B/32 OpenAI WIT 72.48 68.79 45.36 99.73 0.05 97.88

OpenCLIP ViT-B/32 LAION-400M 69.85 65.39 9.60 99.32 0.10 94.14
OpenCLIP ViT-B/32 LAION-2B 82.58 78.76 26.44 99.86 0.08 99.34

lower results can also be observed when testing on images generated by the Stable Diffusion version
not used during training, with an overall AUC up to 83% and an overall accuracy up to 79%. When
instead considering the overall AUC computed over the 𝑇 projection, we can notice that the best
results are above 99% across almost all settings, thus confirming the proper distinction between
real and fake images in the 𝑇 space.

The structure of the two spaces can be further visualized in Fig. 6, in which we report 2D t-SNE
visualizations [65] of the feature space of the OpenCLIP ViT-B/32 LAION-2B backbone, before
and after disentanglement and for both Stable Diffusion v1.4 and Stable Diffusion v2.0. In the
original embedding space, as provided by the backbone, real and generated samples appear to be
mostly overlapped, even if we do not observe a complete overlap – which is in line with the results
presented in Table 1 and Table 2. After the disentanglement, instead, the geometry of the 𝑇 and
𝑆 spaces appears completely different: the 𝑇 space clearly separates real and fake data (with the
exception of a few outliers), while in the 𝑆 space we can observe a complete overlap between real
and generated samples and a tendency to group into semantic clusters.
A closer visualization of the original feature space and the embedding spaces produced by the

two projections is reported in Fig. 7. In this case, we report, on each row, the relative positioning of
eight sample clusters from the COCOFake test set with Stable Diffusion v1.4 images. As it can be
seen, the two proposed projections are again effective both in separating real and fake images and
in promoting the clustering of images sharing similar semantics regardless of their authenticity.

4.5 Robustness Analysis to Image Transformations
As shown in recent literature [9, 21, 44], in addition to evaluating deepfake detection methods in a
standard setting, it is also important to assess their robustness to image transformations, which may
cause a severe performance degradation in some cases. To this aim, we replicate the experiment
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Fig. 6. t-SNE visualizations over the validation set using the original visual features from the OpenCLIP
ViT-B/32 LAION-2B backbone (left), the features projected on the 𝑇 space (style) after disentanglement
(middle), and the features projected on the 𝑆 space (semantics) after disentanglement (right), using Stable
Diffusion v1.4 (top) and v2.0 (bottom). Red dots indicate fake images, blue dots indicate real images.

described in Sec. 4.4 by testing on real and fake images that have undergone one of three considered
image transformation techniques (i.e., Gaussian blur, JPEG compression, and resize). Specifically,
we consider the disentangled spaces trained on non-transformed Stable Diffusion v2.0 images and
evaluate on the corresponding test set where one image transformation is applied to all real and
fake images, using a kernel size of 3 for Gaussian blurring, an image compression rate of 60 for
JPEG compression, and an image edge size equal to 64 pixels for resizing.

Results are shown in Table 6 in terms of the previously described AUC and accuracy evaluation
metrics. Notably, while all image transformations cause a slight deterioration in performance,
applying JPEG compression or scaling images to a lower resolution leads to the most drastic
degradation of the final results, especially considering the results on the 𝑇 space with an overall
AUC of 89% to 97% for JPEG compression and 87% to 94% for resizing. Conversely, Gaussian blur
does not significantly impact deepfake detection performance with an overall AUC above 98%.

4.6 Comparison with Other Methods
Finally, we compare our results with existing deepfake detection methods specifically tailored to
recognize fake images from GAN-based generators. Specifically, we include in the comparison the
models proposed by Wang et al. [68] which are based on a ResNet-50 model trained with different
image transformations (i.e., Gaussian blur and JPEG compression) and DetectGAN [46] based on
an ensemble of different CNNs. For both competitors, we use the pre-trained weights downloaded
from the official repositories provided by the authors.
Table 7 reports the results in terms of overall AUC, overall accuracy, and full cluster accuracy

on the validation and test sets of COCOFake, using images generated by both versions of Stable
Diffusion. Our results are obtained after disentangling semantics and style and by performing
linear probing on the style space 𝑇 which is in charge of distinguishing real and fake images. As it
can be seen, both competitors fail to effectively discriminate fake images from real ones with an
overall AUC around 40% for the model proposed in [68] and 55% for the DetectGAN approach [46],
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Fig. 7. t-SNE visualizations on sampled clusters from the Stable Diffusion v1.4 test set using features extracted
from the OpenCLIP ViT-B/32 architecture pre-trained on LAION-2B. We report the original features from
the visual backbone (left), the features projected on the 𝑇 space (style) after disentanglement (middle), and
the features projected on the 𝑆 space (semantics) after disentanglement (right). Dots indicate fake images,
triangles indicate real images. Images from the same cluster are shown with the same color.

when tested on Stable Diffusion v1.4 images. On the contrary, all versions of our model achieve
AUC scores greater than 99% confirming the effectiveness of the 𝑇 space in correctly detecting
deepfakes.

5 CONCLUSION
This paper proposes a multimodal setting for deepfake detection and analysis, in which real and
generated images sharing the same semantics are paired into semantic clusters. In our setting,
different semantic projections of a given image, expressed through captions, are employed to
generate fake images. Employing the popular Stable Diffusion model as generator, we investi-
gated the performance of contrastive and classification-based visual features, highlighting that
diffusion-based deepfakes share common low-level features that make them easily identifiable.
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Table 6. AUC and accuracy results on the semantic space 𝑆 and on the style space𝑇 . These results are obtained
by training on the COCOFake training set with Stable Diffusion v2.0 images under the disentanglement
setting and evaluating on test set of the COCOFake dataset, using different image transformations.

Gaussian Blur (SD v2.0→ SD v2.0)

Overall Overall Full Cluster Overall Min Dist. Max Dist.
Backbone Dataset AUC 𝑆 Accuracy 𝑆 Accuracy 𝑆 AUC 𝑇 Accuracy 𝑇 Accuracy 𝑇

CLIP RN50 OpenAI WIT 77.44 74.28 19.42 99.26 0.12 90.96
CLIP ViT-B/32 OpenAI WIT 70.41 59.65 7.72 99.48 0.16 94.70
OpenCLIP ViT-B/32 LAION-400M 71.20 68.75 12.52 98.27 0.56 86.28
OpenCLIP ViT-B/32 LAION-2B 79.31 75.16 21.38 99.80 0.12 98.50

JPEG Compression (SD v2.0→ SD v2.0)

Overall Overall Full Cluster Overall Min Dist. Max Dist.
Backbone Dataset AUC 𝑆 Accuracy 𝑆 Accuracy 𝑆 AUC 𝑇 Accuracy 𝑇 Accuracy 𝑇

CLIP RN50 OpenAI WIT 61.64 55.05 5.10 88.60 3.62 57.62
CLIP ViT-B/32 OpenAI WIT 64.77 57.14 6.00 89.38 4.04 54.30
OpenCLIP ViT-B/32 LAION-400M 69.22 62.01 8.26 96.97 0.82 82.56
OpenCLIP ViT-B/32 LAION-2B 69.06 69.75 13.62 93.32 2.28 65.66

Resize (SD v2.0 → SD v2.0)

Overall Overall Full Cluster Overall Min Dist. Max Dist.
Backbone Dataset AUC 𝑆 Accuracy 𝑆 Accuracy 𝑆 AUC 𝑇 Accuracy 𝑇 Accuracy 𝑇

CLIP RN50 OpenAI WIT 62.75 70.05 10.50 87.70 3.20 56.82
CLIP ViT-B/32 OpenAI WIT 67.78 31.70 0.36 90.85 2.70 62.28
OpenCLIP ViT-B/32 LAION-400M 71.61 41.34 1.74 94.32 2.16 72.50
OpenCLIP ViT-B/32 LAION-2B 75.12 30.71 0.70 86.72 6.00 40.54

Further, we proposed an approach to disentangle semantic and perceptual information, based on
supervised contrastive learning. Under this setting, we investigated the classification of authenticity
in a semantic space in which low-level cues left by the generator are removed, thus tackling a more
challenging scenario. As a complementary contribution, we also collected and released the COCO-
Fake dataset, containing about 1.2M images generated from COCO using both Stable Diffusion 1.4
and 2.0. We believe that our work can shed further light on the development of deepfake detection
strategies, also in consideration of the constant evolution of generator models.
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