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Abstract— The usage of Multi Instance Learning (MIL)
for classifying Whole Slide Images (WSIs) has recently
increased. Due to their gigapixel size, the pixel-level
annotation of such data is extremely expensive and time-
consuming, practically unfeasible. For this reason, multiple
automatic approaches have been raised in the last years
to support clinical practice and diagnosis. Unfortunately,
most state-of-the-art proposals apply attention mechanisms
without considering the spatial instance correlation and
usually work on a single-scale resolution. To leverage the
full potential of pyramidal structured WSI, we propose
a graph-based multi-scale MIL approach, DAS-MIL. Our
model comprises three modules: i) a self-supervised feature
extractor, ii) a graph-based architecture that precedes the
MIL mechanism and aims at creating a more contextual-
ized representation of the WSI structure by considering
the mutual (spatial) instance correlation both inter and
intra-scale. Finally, iii) a (self) distillation loss between res-
olutions is introduced to compensate for their informative
gap and significantly improve the final prediction. The effec-
tiveness of the proposed framework is demonstrated on two
well-known datasets, where we outperform SOTA on WSI
classification, gaining a +2.7% AUC and +3.7% accuracy
on the popular Camelyon16 benchmark.

Index Terms— Whole slide images (WSIs), multiple
instance learning (MIL), (self) knowledge distillation, weakly
supervised learning.

I. INTRODUCTION

ANALYZING histological tissues is crucial for the diag-
nosis and treatment planning of multiple human body

lesions and diseases [1], [2]. Fortunately, modern micro-
scopes allow to scan of conventional glass slides into digital
Whole Slide Images (WSIs), keeping the information in a
multi-resolutions pyramidal structure (Fig. 1). This representa-
tion allows to store a large amount of information, preserving
the ability to quickly analyze the tissue from different per-
spectives, i.e., from higher scales to observe the cellular
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Fig. 1. This figure depicts the pyramidal structure of WSIs, highlighting
the information available at different scales which ranges from structure
level at lower resolutions to cellular interaction at higher resolutions
(i.e. lower levels).

morphology and the different cellular compartments, and from
lower ones to identify distinct tissues, such as tumor, stroma,
and immune system cells, and their location.

However, due to their gigapixel size, the manual analysis
of WSIs requires specific tools [3] and is usually expensive
and time-consuming for pathologists. For these reasons, sev-
eral methodologies have been recently proposed to support
clinicians with fast, accurate, and automatic analysis [4],
[5], [6].

Feeding modern neural networks with the entire gigapixel
image is not feasible, as it requires significant computa-
tional resources and time. Therefore, researchers have focused
on developing algorithms that can analyze WSIs efficiently
by cropping them into smaller patches. Additionally, since
pixel-level annotation is time-consuming, annotation is gen-
erally provided at WSI level. As a consequence, an effective
solution to analyze the WSIs is the use of weakly supervised
paradigms such as Multiple Instance Learning (MIL) [7], [8],
whose application is becoming increasingly popular in WSI
learning-based analysis [9], [10], [11], [12], [13]. In MIL, each
WSI is considered a “bag” composed of many patches called
instances. By restricting the rule to a binary classification
setting (e.g., tumor/not tumor), if at least one instance (patch)
is positive, the image (bag) is marked as positive [14].

Recent proposals integrate multiple resolutions extracted
from the WSI in the MIL learning representation mechanism
employing a mere features concatenation [10], arguing its
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effectiveness w.r.t. single-resolution algorithms. Other very
recent approaches [9], [15], [16] resort to more complex hier-
archical structures by adapting Vision Transformers (ViT) [17]
and Graph Neural Networks (GNN) [18]. However, we argue
that such methods do not take advantage of the full potential
of the WSI pyramidal structure. As an example, the flat
concatenation of features extracted at different resolutions [10]
does not consider the substantial difference in the informative
content they provide. On the other hand, in [15] many efforts
have been spent to model intra-scale structural connection
through a cluster-based pooling layer while overlooking inter-
scale patterns.

A proficient learning approach should instead consider the
differences in the information content available at different
scales, including global structures and local cellular regions.
Our proposed approach aims to leverage this heterogeneity by
preserving the scale diversity of the input data. This paper
proposes a pyramidal Graph Neural Network combined with
(Self) Knowledge Distillation to leverage the multi-resolution
structure of WSI in a MIL classification setting. In this context,
the graph message passing brings information from higher
to lower scales. More specifically, the proposed framework
employs a 2-tiers GNN to provide a more contextualized
representation. The first tier processes each input scale sepa-
rately, preserving the scale diversity in terms of information
content and acting as an adapter. The second tier allows for
full communication between scales, making the information
flow between all the considered resolutions and capturing their
relationships.

The contextualized features generated by our GNN module
are transmitted to individual (one for each scale) attention-
based MIL to derive bag labels. The (Self) Knowledge Distil-
lation mechanism is introduced to encourage agreement across
the predictions delivered at different resolutions. At the same
time, individual scale features are learned in isolation to pre-
serve the diversity in terms of information content. By trans-
ferring knowledge across scales, connected by the GNN, the
model self-improves as information flows during training.
Our main contributions can be resumed as follows:

• We propose the use of GNNs to naturally exploit the
heterogeneous information contained in WSI images,
employing the message passing for sharing the informa-
tive content provided at different scales;

• We devise a learning strategy based on (Self) Knowl-
edge Distillation, that promotes the agreement across the
predictions delivered by different scales. This approach
allows valuable secondary information, which can only be
inferred from a specific resolution, to be transferred to the
other resolutions. Since connected through a GNN, the
agreement between scales enables for self-improvement
of the teacher module;

• An exhaustive set of experiments on two publicly avail-
able datasets, Camelyon-161 [19] and TCGA-Lung,2

validate and confirm the effectiveness of our proposal

1https://camelyon16.grand-challenge.org/
2https://www.cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga

for analyzing a variety of WSI and supporting clinical
decision;

• The source-code is available on GitHub3 to ensure exper-
iment reproducibility and future comparisons.

II. RELATED WORK

A. MIL for Disease Detection in WSI

Existing MIL approaches for WSI classification can be clus-
tered based on two different aspects: the number of resolutions
employed and the aggregation mechanism used to provide the
final prediction. With the former, we can distinguish single-
scale algorithms [10], [12], [20], where the tiling process is
done at a unique resolution, and multi-scale approaches [10],
[21], [22].

Regarding the aggregation mechanism, a further distinction
between instance-level predicting algorithms [23], [24] and
those that deal with bag-level [10], [11], [12], [20], [21],
[22] predictions can be highlighted. In the first case, the
patch probability is employed to produce the final result (e.g.,
mean or max pooling), while bag-level approaches aggregate
instances into bag representation and feed a classifier with
it. The main difference between recent proposals concerns the
attention mechanisms employed for aggregating instance-level
information.
Single Scale. Regarding the single resolution, the classical
AB-MIL [11] is based on a side-branch network to calculate
the attention scores. In [20] a similar attention mechanism
is employed as support for a double-tier feature distilla-
tion approach, which distills features from pseudo-bags to
the original slide. Those features are selected by relevance
as MaxMin [20] or by aggregation as AFS [20]. Another
approach proposed in the literature, DS-MIL [10], is to apply
non-local attention aggregation measuring the distance with
the most relevant patch. In 2021, Lu et al. [25] proposed
an algorithm based on a clustering loss applied on single or
multiple branches (CLAM-SB and CLAM-MB), a variant of
the classic AB-MIL. In Trans-MIL [12], a typical transformer
architecture is used. The issue related to all the aforementioned
solutions is that they miss to consider the mutual instance
correlation. In [9], the authors leverage the well-performing
Dino [26] feature extractor, proving its effectiveness also
in this scenario. Beyond the classical attention mechanism,
there are also algorithms based on Recurrent Neural Networks
(RNNs) [22] and GNNs [27], [28] able to solve the same task.
Also, these proposals miss to consider multiple resolutions and
ignore the pyramidal structure of the WSIs.
Multi Scale. Recently, different authors focused on multi-
resolution approaches. DSMIL-LC [10] concatenates represen-
tations obtained at different resolutions (e.g., a low instance
representation is concatenated with all the ones obtained at a
higher resolution). MS-RNNMIL [22], instead, fed an RNN
with instances extracted at different scales. In [29], a self-
supervised hierarchical transformer is applied at each scale.
In MS-DA-MIL [21], multi-scale features are included in the
same attention algorithm. In H2MIL [15] the multi-resolution

3https://github.com/aimagelab/mil4wsi
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is exploited by a GNN architecture and the information is
aggregated through a specifically designed iterative pooling
layer based on patches’ location. The proposed aggregation
uses the WSI pyramidal structure, but forcing a local attention
that may affect performances. Previously, Chen et al. [30]
proposed the PTree-Net that selects patches at different res-
olutions based on the thumbnail level attention map. Those
patches are then connected in a tree structure, later investigated
through a relevance-enhanced GNN. However, this approach
misses considering the hierarchical structure of patches and
their heterogeneity [15].

B. Knowledge Distillation

Distilling knowledge from a more extensive network
(teacher) to a smaller one (student) has been widely investi-
gated in recent years [20], [31], [32], [33], [34]. Typically, the
loss evaluates the mimic capabilities of the student observing
the teacher. Recent self-supervised representation learning
approaches have also used this idea. In [26], [35], and [36],
knowledge distillation is used to realize an agreement between
networks that receive as input variants of the original image.
In literature, knowledge distillation has been applied to dif-
ferent fields ranging from model compression [37] to WSI
analysis [20], [31]. In [20], distillation is used to transfer
the knowledge between MIL tiers applied on different sub-
sampled bags. In [38], a self-distillation term is used in
a regression task where the student model is trained on
soft labels provided by the teacher. Moreover, [39] includes
the weighted-ground truth targets in the loss term to better
guide the student. In [40], the authors analyze the impor-
tance of teacher diversity and they provide a series of label
smoothing methods to directly increase predictive diversity.
Differently, our model applies (self) knowledge distillation
between WSI scale resolutions. This way, improving the worst
scale benefits the best one since they are connected through the
GNN layer.

III. METHOD

Our proposal aims to enhance the information flow through
WSI resolutions. In this respect, while existing works [10],
[12], [25] take into account the interactions between scales
by mostly leveraging trivial operations (such as concatena-
tion of related feature representations), we instead provide
a novel technique that builds upon: i) a GNN module that
propagates patches’ representation taking into account the
natural multi-resolution structure of WSI; ii) a regulation term
based on (self) Knowledge Distillation. This regulation term
guides the most effective resolution to train the others more
effectively self-improving at the same time. In the following
section, we will discuss the proposed architecture in detail.

A. Architecture

Our approach can be decomposed into three main stages:
• Feature Extraction. Given the whole slide image, we re-

sample it at various resolutions; for the i-th scale,
we divide the resulting image into regular patches

x i
1, x i

2, . . . , x i
N , which are then fed into a self-supervised

feature extractor f (·; θi ). This way, we obtain multiple
grids of latent representations;

• Context Enrichment. The representations are then
re-arranged as nodes of a multi-Graph Neural Network
(GNN), which spreads the information between resolu-
tions through a message passing mechanism;

• Multiple Instance Learning. An auxiliary module
weights the contribution of each instance to the represen-
tation of the whole slide used to perform classification.

Feature Extraction. Recent studies have shown the effec-
tiveness of self-supervised learning techniques in capturing
patch-level characteristics. For instance, the authors of [10]
resorted to SimCLR [41], an approach that aims to align
the representations of positive pairs and keep the represen-
tations of negative pairs distant. This approach suffers from
a slow convergence rate and has a huge memory footprint.
To address the shortcomings of self-supervised learning, our
work advocates for Dino [26], which has recently shown
promising results in the field of image understanding. In par-
ticular, it does not reckon on forging negative pairs during
optimization, but rather, the training objective focuses solely
on aligning the representations of positive pairs. In more detail,
the latter is computed by two distinct networks, playing the
roles of teacher and student. This way, the training is faster
and requires lower computational resources, thus obtaining
excellent representations in a few days. Similarly to [36], the
risk of collapsing solutions is avoided through slower teacher
network updates obtained through the Exponential Moving
Average (EMA).

The authors of Dino introduced additional enhancements
such as the exploitation of the Vision Transformers [42] in
the design of the backbone networks. However, we refer the
reader to the original paper for a deep understanding of Dino.
Concerning our work, we devise an initial stage where multiple
feature extractors f (·; θ1), . . . , fM (·; θM ) are trained, each of
which ends up being an expert of one of the M zoom scales
of interest. On top of that, we freeze the weights of these
networks and use them as patch-level feature extractors during
the next step.

In our analysis, we focus only on two resolutions at the
time (e.g. the 10× and 20× magnitudes) so that M = 2, but
the approach can be extended to consider even more scales.
Therefore, the overall input X for the subsequent layers can
be summarized as follows:

X =

[
X 1,X 2

]
=

[
[ f (x1

1 ; θ1), . . . , f1(x1
n1

; θ1)]︸ ︷︷ ︸
Low-level representations

,

[ f2(x2
1 ; θ2), . . . , f2(x2

n2
; θ2)]︸ ︷︷ ︸

High-level representations

]
.

Enabling Message Passing Between Scales Through Graph
Neural Networks (GNNs). Although the representations gen-
erated by Dino offer a detailed portrait of local patterns in
individual patches, they need to gain knowledge about the
surrounding context. For this reason, a Graph Neural Network
module is introduced to enable information exchange among
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Fig. 2. Overview of the proposed DAS-MIL framework. The features extracted at different scales are connected considering both the image (as
depicted in this Figure) and similarity space, by means of different graphs. The nodes of both graphs (A1 and A2) are later fused into a third one
(A1∪2), respecting the relation “part of”. The contextualized features generated by the GNN module are passed to distinct attention-based MIL
blocks (one for each scale) that extract bag labels. (Self-) Knowledge Distillation mechanism encourages agreement across the predictions delivered
at different scales, both at bag (LKD) and instance level (LCRIT ).

local patches. In general terms, such a module takes as input
multi-scale patch-level representations X and produces the
resulting Y through a cascade of two neural sub-networks
GNN1 and GNN2:

Y = GNN(X ;A1,A2,A1∪2, θGNN)

= GNN1(X ;A1,A2) ◦ GNN2(X ;A1∪2)

where A1,A2 and A1∪2 identify the adjacency matrices used
within this block and later described in this paragraph.

The former module, GNN1, focuses only on intra-scale
relations and no interactions are hence allowed between nodes
from different sub-graphs. The computation of the resulting
hidden activations H can be summarized as follows:

H =

[
H1,H2

]
=

[
X 1

+ GAT(X 1
;A1

; θ1),X 2
+ GAT(X 2

;A2
; θ2)

]
,

where GAT identifies the graph attention layer proposed
in [43]. As can be understood, the two sub-graphs are pro-
cessed through two independent graph layers. To explain
such a design choice, we recall that the input embedding
spaces X 1 and X 2 originate from different feature extractors.
This way, individual scale features are learned in isolation
to preserve the diversity in terms of information content.
However, a direct shared vertex-wise transformation would
clash with that input distribution shift.4 For this reason, we ask
the two independent modules to act as adapters, projecting the
representations into a shared embedding space. The second
module, GNN2, allows for inter-scale relations. In particular,
data are no longer considered as two distinct sub-graphs but
rather as a unique and complex structure in which nodes from
different scales can interact. This way, we aim to propagate
neighborhood information across low and high resolutions.

4The presence of such a distribution shift has been verified by applying a
simple classifier to recognize the origin scales from the embedding.

Briefly:

Y =

[
Y1,Y2

]
= H+ GAT(H;A1∪2). (1)

We obtain the adjacency matrix A1∪2 by preserving the edges
already in A1 and A2 and adding those connections between
a parent WSI patch (lying in the low resolution, we call this
relation “part of”) and its children, i.e. the higher-scale patches
it contains.

For what concerns A1 and A2, we propose to use two types
of distances for the grid calculation:

• Chessboard distance. In this case, a patch neighborhood
is defined by the 8-connectivity, i.e., its surrounding
8 patches in image space.

• Similarity distance. The similarity distance is calculated
as (X i ) · (X i )T , and each node is linked to its K
closest neighbors. This way, semantically similar nodes
are connected in feature space.

A visual representation of the proposed multi-layer graph
structure is provided in Fig. 2.
Bag-Level Representations via Critical Instance Selection.
Following existing and well-established works [10], [15], [20],
we compute the overall representation for the whole slide
through a technique based on Multiple Instance Learning. Our
model is inspired by DSMIL [10] and employs a self-attention
mechanism that provides bag-level feature vectors, one for
each of the two WSI scales involved in the pipeline. Such
a module is based on self-attention [33] and builds upon
the prior individuation of the critical patches YCRIT =

[y1
CRIT, y2

CRIT], selected in a winner-takes-it-all fashion:

y1
CRIT = Y1

∗

s.t. ∗ ≡ arg max
i≤n1

z1(Y1
i )

where z1(·) = W1
CRIT g(Y1

i ; W2
CRIT) is a scoring projection

network (with weights matrices W1
CRIT and W2

CRIT) that
assigns a single scalar weight to each patch. It is noted that the
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same equation holds for the selection of the critical instance
y2

CRIT of the high-level resolution. Once these instances have
been individuated, the bag-level representations y1

BAG and
y2

BAG are computed as:

y1
BAG = WCLS

n1∑
i

U (Y1
i=1,Y

1
CRIT)︸ ︷︷ ︸

Attention scores w.r.t.
the critical patch.

∗ V(Y1
i ; W1

V︸ ︷︷ ︸
Patch-level value.

). (2)

For an in-depth description of how self-attention weights and
values have been calculated, we refer the reader to [44].

B. Aligning Scales With (Self) Knowledge Distillation

We have hence obtained two distinct sets of predictions for
the two resolutions: namely, a bag-level score (e.g., a tumor
is either present or not) and a patch-level one (e.g., which
instances contribute the most to the target class). However,
as these learned metrics are inferred from different WSI
magnitudes, a disagreement may emerge: indeed, as previously
observed in this Section, the higher resolutions generally yield
better classification performance w.r.t. lower ones. In this
work, we exploit such a disparity to introduce two additional
optimization objectives, which exploit the predictions of the
high scale as a teaching signal for the low one. Further
than improving the results of the low scale, the aim is to
propagate the benefits of such an improvement to the shared
message-passing module and back to the high resolution.

To achieve this goal, we propose extending the transfer
by promoting consistency between scales. As the poorer
scale is additionally encouraged to chase the richer one, the
message-passing module placed in the middle turns out to be
crucial in discovering valuable patterns and relations, which
could help not only the lower scale but also, the higher one.
In formal terms, we propose extending the training objective
with a twofold term. The former asks the predictions from
the two scales to be close as much as possible via (Self)
Knowledge Distillation (KD) [45]:

LKD = τ 2 KL(softmax(
y1

BAG
τ

) ∥ softmax(
y2

BAG
τ

)) (3)

where KL identifies the Kullback-Leibler divergence and τ is
a temperature that lets secondary information emerge from
the teaching signal. Under the light of Bayesian statistical
inference, the probability distribution given by the higher scale
represents the prior distribution we enforce while fitting the
lower one.

The second aligning term regards the scores computed
through Eq. (3). More in detail, it encourages the two res-
olutions to assign criticality scores in a consistent manner:
intuitively, if a low-resolution instance has been considered
critical, then the average score attributed to its children
instances should be likewise high. Such desiderata are car-
ried out by minimizing the Euclidean distance between the
low-resolution criticality grid map z1(Y1) and its sub-sampled
counterpart computed by the high-resolution branch:

LCRIT = ∥z1(Y1) − GraphPooling(z2(Y2))∥2
2 (4)

Fig. 3. Examples of WSI pre-processing. Green contours represent the
considered tissue, the blue ones are holes the algorithm will discard.
In this examples, the holes are mainly composed by fat tissue.

In the equation above, GraphPooling identifies a pooling layer
applied over the higher scale: to do so, it considers the relation
“part of” between scales.
Overall Objective. To sum up, the overall optimization
problem is formulated as a mixture of two objectives: the
one requiring higher conditional likelihood w.r.t. ground truth
labels y (e.g. a tumor is either present or not) and carried out
through the Cross Entropy loss LCE(·; y); the other one based
on (Self) Knowledge Distillation:

min
θ

(1 − λ)LCE(y2
BAG) + LCE(y1

BAG) + λLKD + βLCRIT,

(5)

where λ is a hyperparameter weighting the trade-off between
the teaching signals provided by labels and the higher reso-
lution, while β balances the contributions of the consistency
regularization introduced in Eq. (4).

IV. EXPERIMENTS

Datasets. The proposed framework is evaluated on two differ-
ent benchmarking datasets: the Camelyon16 [19] and a Lung
dataset from The Cancer Genome Atlas (TCGA) project [10],
which are widely employed for the evaluation of state-of-the-
art proposals for WSI analysis [10], [20], [25].

More specifically, the Camelyon16 dataset —which derives
from the homonym challenge that took place at the Interna-
tional Symposium on Biomedical Imaging (ISBI) in 2016—
is designed for the automatic detection of metastases in
Hematoxylin and Eosin (H & E) stained WSIs of lymph
node sections [19]. It contains 398 WSIs, 128 of which are
part of the official test set. Images have been acquired with
two different slide scanners, named RUMC and UMCU, with
20× and 40× objective lenses, respectively, and comparable
specimen-level pixel sizes, i.e. 0.243 µm × 0.243 µm for
the RUMC and 0.226 µm × 0.226 µm for the UMCU.
In this respect, the knowledge about the specimen-level pixels
sizes allows to combine data acquired with different scanners
and resolutions: we exploit this metadata to extract different
scales from the original whole-slide images. To evaluate the
performance of our proposal, we have adhered to the official
training/test sets.

The second dataset —the TCGA Lung dataset— is publicly
available on the GDC Data Transfer Portal and comprises
two subsets of cancer: Lung Adenocarcinoma (LUAD) and
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TABLE I
MEAN NUMBER OF PATCHES PER WSI OBTAINED BY OUR

PRE-PROCESSING ALGORITHM AT DIFFERENT MAGNIFICATION

LEVELS FOR BOTH THE CONSIDERED DATASETS

Lung Squamous Cell Carcinoma (LUSC), counting 541 and
513 WSIs respectively. The task tackled in this case is the
classification of LUAD vs LUSC. To split the dataset into
training and test, we have followed what has been devised
by DSMIL [10], also removing ten corrupted slides from the
dataset, according to [10].
Pre-Processing. Before feeding our framework, WSIs are
pre-processed to extract and filter background patches: to
this aim, we adopt the CLAM framework [25]. In partic-
ular, after an initial segmentation process based on Otsu
[46], non-overlapped patches within the foreground regions
are considered. The original WSI is memory-loaded with a
down-sampled resolution, usually 32×, and converted into
the HSV color space. The saturation channel of the image
is filtered with median blur to smooth edges and then thresh-
olded to produce a binary foreground map of tissue regions.
Additional morphological operators [47] and connected com-
ponents labeling [48] are employed to fill gaps and holes
within the map. Eventually, the foreground objects are filtered
based on their area to remove spurious noise blobs. Examples
of the filtering process are depicted in Fig. 3. 256×256 patches
are finally extracted within the segmented contours, ensuring
no overlap between patches. The process is repeated multiple
times for each slide at different target resolutions (5×, 10×,
and 20× in this study). When changing the resolution, the
number of patches can vary significantly (from a hundred
to hundreds of thousands). Moreover, given that the process
is independently performed at different scales, the number
of patches at different levels does not necessarily respect a
fixed ratio (e.g., 4:1 between 20× and 10× magnification
levels). To provide a summary, Tab. I reports the average
number of resulting patches per WSI at different magnification
levels.
Metrics. The performances of our model have been measured
through the AUC (Area Under the Curve) and the accuracy.
The AUC measures the area under the ROC (Receiver Opera-
tor Characteristics) curve by varying the probability threshold.
The accuracy is evaluated by selecting the best threshold
suggested by the ROC.

Additionally, as proposed for the Camelyon16, the detec-
tion/localization performance is measured by means of the
Free Response Operating Characteristic (FROC) curves. FROC
differs from the ROC analysis since it substitutes the false
positive rate on the x-axis with the average number of false
positives per image. Specifically, a detection is considered a
true positive, if the location of the detected region is within
the ground truth lesion. If there are multiple findings for a
single ground truth region, they are counted as a single true

TABLE II
COMPARISON WITH STATE-OF-THE-ART SOLUTIONS. RESULTS

MARKED WITH “†” HAVE BEEN CALCULATED ON OUR PREMISES AS

THE ORIGINAL PAPERS LACK THE SPECIFIC SETTINGS; ALL THE

OTHER NUMBERS ARE TAKEN FROM [10] AND [20]. DAS-MIL
PERFORMANCE ARE OBTAINED WITH T = 1.5, β = λ = 1

TABLE III
COMPARISON BETWEEN SCALES. THE TARGET COLUMN INDICATES

THE FEATURES PASSED TO THE TWO MIL LAYERS: THE “∥” SYMBOL

INDICATES THAT THEY HAVE BEEN PREVIOUSLY CONCATENATED

positive. Moreover, all the detections not within a specific
distance from the ground truth annotations are considered false
positives.
Implementation Details. We leveraged the Pytorch-
Geometric codebase [49] to build the graph structure
proposed in this paper. To train our models, we used the
Adam [50] optimizer with a learning rate of 2 × 10−4 and
a cosine annealing scheduler with a 1 × 10−5 decay without
warm restart [51]. The Dino [26] feature extractor has been
trained with two NVIDIA RTX5000 GPUs and all subsequent
experiments have been performed on a SLURM server [52]
with a single NVIDIA RTX2080 GPU.

A. Comparison With the State-of-the-Art
Tab. II compares the results obtained by the proposed

framework with the state-of-the-art architectures, considering
both single-scale and multi-scale alternatives. Whenever avail-
able, the results published in the official papers are reported,
otherwise, the experiments are replicated on our premises,
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TABLE IV
3-FOLD CROSS-VALIDATION FOR SELECTING THE BEST SCALE

COMBINATION ON THE TUMOR/NOT TUMOR TASK

ON CAMELYON16 DATASET

TABLE V
COMPARISON BETWEEN DAS-MIL WITH AND W/O (✗) THE GRAPH

CONTEXTUALIZATION MECHANISM, AND THE MOST RECENT

GRAPH-BASED MULTI-SCALE APPROACH H2 -MIL, WHEN

USING DIFFERENT RESOLUTIONS AS INPUT (5× AND 20×)

using the code provided by the original authors. We com-
pare our architecture with six different single resolution MIL
mechanisms, i.e., MILLRNN [22], ABMIL [11], CLAM [25],
Trans-MIL [12], DTFT [20] and DS-MIL [10], as well as multi
resolution proposals MS-DA-MIL [21], MS-MILRNN [22],
DSMIL-LC [10], HIPT [29] and H2-MIL [15].

As can be observed: i) the joint exploitation of multiple
resolutions is generally more efficient; ii) DAS-MIL, the
approach proposed in this work, yields robust and compelling
results (especially on Camelyon16, where it provides 3.7%
and 2.7% more than the SOTA accuracy and AUC, respec-
tively). We acknowledge that methods reported in that table
are based on different feature extractors, thus influencing
the overall performance. The following subsection reports
exhaustive ablation studies that shed light on the advantages
of our technical contributions, disentangling the contribution
of the feature extractor. Comparing C16 and TCGA datasets,
there is a significant difference in the signal intensity. The
former has roughly < 10% of tumor tissue, while the latter
has > 80% of tumor regions per slide. In this sense, the
contextualized representation provided by our DAS-MIL is
much more effective in the first case.

B. Model Analysis

This section reports multiple ablation studies that detail the
contribution of each component, highlighting their strengths
and weaknesses.
Single-Scale vs Multi-Scale. Let’s start by analyzing the
contribution of different scales (see Tab. III). For single-scale
experiments, we fed the model only with patches extracted
at a single reference scale and the corresponding adjacency
matrix. For what concerns multi-scale, instead, magnitudes can

TABLE VI
IMPACT OF EQ. 5 HYPERPARAMETERS ON CAMELYON16

TABLE VII
IMPACT OF KD TEMPERATURE (EQ. 3) ON CAMELYON16.

RESULTS ARE OBTAINED WITH α = β = 1.0

be combined in different ways.5 The experiments revealed that
the best results are obtained when the model is trained with
10× and 20× input resolutions. Tab. III also highlights that 5×

magnitude is less effective and presents worse discriminative
capabilities: we ascribe it to the type of samples in the WSIs
(e.g. untreated tumor samples) and the specimen-level pixel
size, underlying that different datasets and classification tasks
may benefit from different scale combinations.

At this point, the reader may wonder how to choose the
scales to be employed without running all the possible com-
binations on the final test set. For this purpose, we highlight
that such a selection may depend upon prior analyses of the
domain and the nature of the task at hand, considering the
peculiarities of the specific biological structure under analysis.
In practice, it constitutes an hyperparameter; as such, common
techniques based on Cross Validation (CV) can be employed
to choose the proper resolutions: as reported in Tab. IV, the
results on the validation set suggest and confirm our previous
outcomes.

Interestingly, while [10] needs to concatenate the represen-
tations from different scales to attain satisfactory performance,
such an operation has a negligible impact on our framework.
In order to merge information from different resolutions, our
approach already devises graph layers. While the concatena-
tion assigns the same importance to the input representations,
we argue that our mechanism can more effectively weight
the contributions of patches since it can learn to route
valuable features through the message-passing algorithm
dynamically.
The Impact of Feature Extractors and Graph-Based
Fusion. We refer the reader to Tab. V for an investigation
of these aspects. In more detail, we consider both SimCRL
and Dino, as well as the recently proposed graph mechanism

5Since the 20× resolution is experimentally proved to be the most effective
one for tumor identification, all the considered combinations includes it.
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Fig. 4. FROC curves on Camelyon16. Attention scores are re-scaled
from [min, max] to [0, 1] at slide level.

H2-MIL [15]: in doing so, we fix the input resolutions to 5×

and 20×, according to our previous analysis. We can draw the
following conclusions: i) when our DAS-MIL feature propaga-
tion layer is used, the selection of the optimal feature extractor
(i.e. SimCLR vs Dino) has less impact on performance, as the
message-passing can compensate for possible lacks in the
initial representation; ii) DAS-MIL appears a better features
propagator w.r.t. H2-MIL. On this latter point, we conjecture
that our approach has a characteristic that better captures
the peculiarities of WSIs, i.e., how the global representation
of the slide is computed. Indeed, H2-MIL exploits a global
pooling layer that fulfills only the spatial structure of patches.
Consequently, if non-tumor patches surround a tumor patch, its
contribution to the final prediction is likely to be outweighed
by the IHPool module of H2-MIL. Differently, our approach
is not restricted in such a way, as it can dynamically route
the information across the hierarchical structure (also based
on the connections with the critical instance).
On the Role of (Self) Knowledge Distillation and
Consistency Regularization. To assess the merits of the reg-
ularization objectives discussed earlier, we conducted several
experiments varying the values of the corresponding balancing
coefficients and present their results in Tab. VI. Lowering their
values (even reaching λ = 0 i.e. no distillation is performed)
negatively affects the performance. Notably, such a statement
holds not only for the lower resolution (as one could expect),
but also for the higher one, thus corroborating the claims
we made in Sec. III-B on the bidirectional benefits of (Self)
Knowledge Distillation in our multi-scale architecture.

We have also performed an assessment on the temperature τ ,
Tab. VII, which usually controls the smoothing factor applied
to the teacher’s predictions. We found out that the lower
the temperature, the better the results, thus suggesting that
the teacher scale is naturally not over-confident about its
predictions but rather well-calibrated.
Max vs Mean Pooling with Different Graph Topologies. The
results presented in Tab. VIII indicate that (self-) knowledge
distillation across different resolutions typically yield better

TABLE VIII
EXPLORING THE EFFECTIVENESS OF GraphPooling, EQ. (4),

IMPLEMENTED AS mean OR max POOLING WHEN USING DIVERSE

GRAPH TOPOLOGIES. OUR ANALYSIS FOCUSES ON GRAPHS BUILD

UPON THE IMAGE SPACE CONSIDERING THE chessboard
DISTANCE (8-CONNECTIVITY) OR K TOP NEAREST

NEIGHBORS IN FEATURE SPACE

results when mean pooling is used. Employing mean-pooling
prevents knowledge transfer from misleading isolated samples,
ensuring greater accuracy. However, when computing the
8-similarity graph in feature space, max pooling becomes more
relevant. Not only it is more robust to overfitting (achieving
0.94% AUC at the last epoch), but it also outperforms the
graph build on image space using the same pooling strategy.
This is likely because using the feature space ensures the
graph homophily property, dramatically reducing noise related
to outlier instances.
Localization. In clinical scenarios, a discriminative model has
to provide not only good predictive capabilities but also a
reasonable explanation for its final prediction. The proposed
architecture can provide such an explanation, highlighting the
disease-positive patches extracted by the framework. An exam-
ple is depicted in Fig. 5 where the model’s output is compared
with the ground-truth provided for a small subset of WSIs in
the Camelyon dataset.

Moreover, the chart in Fig. 4 compares the localization prop-
erties (FROC curves) of DAS-MIL with different graph types
and DSMIL. Notably, the use of a similarity graph can have
a positive impact on the localization task. In particular, when
the number of connected neighbors K is low (e.g., K = 4),
the model detects a high number of true positive instances
at the cost of a few false positives. On the other hand, when K
is high (e.g., K = 16), although the number of false positives
is higher, the model achieves higher sensitivity. We can stress
that K implicitly regulates the smoothing operation performed
on the attention scores by the graph.

V. CONCLUSION

This paper proposes a novel way to exploit multiple
resolutions in the domain of histological WSI. We con-
ceive a novel graph-based architecture that learns correlations
between different WSI resolutions. Specifically, a GNN cas-
cade is used to extract a context-aware and instance-level
feature considering the spatial relationship between scales.
This connection is further boosted during the training pro-
cess by a distillation loss, asking for an agreement between
scales.
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Fig. 5. Localization Example. From left to right we have (a) the original image, (b) the tissue segmented with pre-processing algorithm, (c) the
positive-disease annotation provided by Camelyon16, and (d) the attention map extracted with DAS-MIL.

On the one hand, an extensive set of experiments shows the
effectiveness of the proposed distillation approach Tab. VI,
Tab. VII, and of the graph mechanism employed Tab. V.

On the other hand, a few criticisms about the proposed
architecture can be highlighted: i) while the criticality-based
two-stage MIL approach is well suited for localization-related
tasks (such as tumor detection), scenarios like tumor stag-
ing/survival prediction may require a deeper analysis across
multiple critical regions [53]; ii) our DAS-MIL relies on a
separate feature extractor for each target scale. While this is
advantageous in terms of overall accuracy, it would require
additional training stages for introducing new magnification(s)
or adapting those already available for targeting a new task;
iii) as currently devised, the patch-level feature extractors are
trained in a self-supervised fashion and frozen in the sub-
sequent supervised stages of our pipeline. However, it could
be beneficial to envision end-to-end training, which could
promote representations more aligned with the task under
consideration.

In addition to tackling the aforementioned issues, future
works will explore proper and profitable ways to leverage
on more than two scales. Such an analysis will focus not
only on mere technicalities but also on the rationales behind
using deeper pyramidal structures: which medical imaging
tasks would effectively benefit from such an approach? Are
all the scales equally crucial for all the tasks?
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