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Abstract. Gene fusion is a genomic alteration where two genes after
a break event are juxtaposed to form a new hybrid gene, leading to
possible cancer development and progression. However, identifying gene
fusions is not a trivial process as it requires the management and pro-
cessing countless amounts of data. Genomic data (particularly DNA and
RNA) can reach up to 300 GB per sample. Furthermore, specific software
and hardware architectures are required to correctly process this type of
data. Although many tools are available for detecting gene fusions, to
date, systematic workflows that are free and easily usable even by non-
specialists are hardly available.
This paper presents an integrated system for identifying gene fusions in
RNA and DNA genomic samples, focusing on hardware and software ar-
chitectural aspects. The proposed workflow is easy-to-use, scalable, and
highly reproducible. It includes five gene fusion detection tools, three
mainly intended for RNA samples (EricScript, Arriba, FusionCatcher)
and two for DNA samples (INTEGRATE and GeneFuse). The workflow
runs on servers exploiting Nextflow (a DSL for data-driven computa-
tional pipelines), Docker containers, and Conda virtual environments.

Keywords: Gene Fusions · Gene Fusion Detection · genomic samples.

1 Introduction

Gene fusion is a phenomenon that occurs when two or more genes become jux-
taposed, forming a single hybrid gene or transcript. Gene fusions remarkably
contribute to the evolutionary process by providing a continuous source of new
genes. However, at the same time, they often lead to genomic disorders or can-
cer. Numerous gene fusions have been recognized as essential drivers for various
cancer types. Thus, the discovery of novel gene fusions can better comprehend
tumour development and progression [29]. For these reasons, gene fusion identifi-
cation employing gene fusion detection tools has become crucial in bioinformatics
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research [30]. Recent advances in deep learning and convolutional networks[3, 6,
4, 23, 22, 9, 8, 10, 21] have also progressively spread to tools for gene fusion detec-
tion [19, 17].

Although many gene fusions detection tools have been developed over the
past years, it is still challenging to use them. In addition, the RNA-seq arte-
facts, introduced by library preparation and sequence alignment, make gene
fusions predictions hardly reliable [15].
The typical practice is executing multiple tools and using the union or intersec-
tion of their results. Unfortunately, this approach is computationally demanding.
There are several limitations in traditional tools usage:

– each tool has specific installation requirements and version dependencies that
must be precisely adhered to;

– downloading files and databases and executing tools is time-consuming;
– distinct tools can require different input data formats;
– multiple complementary fusion detection tools are needed to improve sensi-

tivity.

During the last years, bioinformatics workflows (which consist of a wide array of
algorithms executed in a predefined sequence) were developed to deal with mul-
tiple bioinformatic issues (e.g., RNA data processing and CNA detection) [24].
However, only a limited number of gene fusion detection workflows is available,
and no one of them can simultaneously handle both RNA and DNA sequencing
data [28].
This paper presents FusionFlow, an easily reproducible and scalable bioinfor-
matics workflow for detecting gene fusions from RNA and DNA data. It pro-
cesses numerous sequence data and their associated metadata through multiple
transformations using a series of software components, databases, and operation
environments (hardware and operating system). It includes five gene fusion de-
tection tools executed through multiple processes. The processes are built using
Nextflow Groovy/JVM-based framework exploiting Docker and Conda technolo-
gies. Indeed, Nextflow allows running tools downloads, installation, and execu-
tion concurrently in the interest of time constraints. At the same time, Docker
and Conda engines are used to create virtual environments precisely configured
for each tool. Finally, the pipeline inputs standard data formats and eventually
converts them directly inside specific converter processes.

2 The workflow

FusionFlow includes five fusion detection tools: EricScript [5], Arriba [26], Fu-
sionCatcher [20], GeneFuse [7] and Integrate [32]. Three of them, EricScript, Ar-
riba, and FusionCatcher, accept as input just RNA-seq data. Concerning DNA
tools, GeneFuse takes just DNA data, while Integrate has two input options: 1)
just RNA data or 2) both RNA and DNA data. All gene fusion detection tools
are made up of three steps: 1) preliminary alignment of the reads (a row in the
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genomic input files) to the transcriptome to build specific gene fusion references;
2) alignment of previously unmapped reads to gene fusion references to sup-
port the gene fusion detection; 3) cleaning filters to discard false positives. The
main differences between the tools consist of the alignment type (e.g., BLAST vs
BWA) and the properties of the cleaning filters. Although a proper gold standard
procedure for gene fusion detection has not been established, the most widely
used approach involves applying multiple gene fusion detection tools, unifying
the results obtained. Ericscript, FusionCatcher, and Arriba have been selected
for this workflow due to their spread and unique characteristics. Ericscript and
FusionCatcher have been selected due to the differences in the cleaning filters.
The former exploits, among the others, heuristic filters to remove analysis arte-
facts, while the latter removes false positives using known and novel criteria,
which make biological sense. In the end, Arriba has been chosen since it can
find aberrations that the competitors hardly find (e.g. intragenic and intergene
duplications/inversions/translocations). Since the DNA sequencing method has
only recently spread on a large scale [16], the panorama in DNA gene fusion
detection tools includes a few software available. GeneFuse and INTEGRATE
deserve to be mentioned for their user experience. GeneFuse can detect gene
fusions from DNA samples alone, while INTEGRATE requires both RNA and
DNA data from the same sample to provide the gene fusion list. At the same
time, it can reconstruct gene fusion junctions and genomic breakpoints by split-
read mapping in a complete way.

In order to make the pipeline usage as simple as possible, the only mandatory
inputs are the RNA or DNA files to be analyzed. In this case, the workflow looks
for tools’ required files in default paths. The gene fusion detection tools start
processing data if the files are present. Otherwise, the pipeline downloads and
installs all the necessary tools and files before the tools’ execution. FusionFlow
receives input RNA only, DNA only, or both RNA and DNA data.

The FusionFlow pipeline produces several files divided into two categories:
tools’ required files and gene fusions’ output files. The first category includes
all the files needed to execute the tools. These files can be directly provided to
the workflow, skipping their downloads processes, or can be downloaded while
running the workflow for the first time. Then, the files will be saved in a specific
path to be available to the pipeline for the subsequent runs.
The second category of output includes the files produced as output from the
gene fusion tools. Each tool gives as output one or more files in specific formats.
The most diffused formats are Tab Separated Value (TSV), Variant Call Format
(VCF), and standard text format [2].

In the following, the general workflow architecture is described.

2.1 Architecture

The general workflow structure is based on Nextflow, a dataflow programming
model that simplifies writing complex distributed pipelines.
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Nextflow Groovy/JVM-based framework is selected among a series of work-
flow management systems (e.g., Galaxy[11], Toil[27], Snakemake[14], Bpipe) due
to its peculiar features. In particular it allows:

– the existence of several processes written in different languages. Nextflow
recognizes the script’s language automatically, and it generates a launch file
per process dynamically;

– to process data as stream step by step. Indeed, each process can communicate
through the input/output channel definition. These channels can also be used
for synchronization mechanisms in order to make the pipeline sequential;

– integration with sharing platforms such as GitHub. Nextflow can notice if
the repository is not installed and, in that case, it downloads all the require-
ments, environments included;

– integration with the most famous containers as Docker and Singularity. This
feature is crucial for gene fusion tools since they often require conflicting
packages. The current pipeline has considered each process in a separate
environment;

– integration with several schedulers as SLURM. Due to the substantial mem-
ory boundaries requested by the gene fusion tools, the pipeline can be ex-
ecuted basically on large systems servers. Rarely are they used without a
scheduler.

The workflow is composed of fifteen processes. These processes can be divided
into three main categories:

– downloaders: they are responsible for the tools installation and download
input files. The downloaders processes are: referenceGenome downloader,
arriba downloader, ericscript downloader, fusioncatcher downloader,
integrate downloader and genefuse downloader ;

– converters: they are responsible for the file preparation and format conver-
sion if needed. The converters processes are: integrate converter and genefuse
converter ;

– runners: they allow the code and tools execution. The runner processes are:
arriba, ericscript, fusioncatcher, integrate, genefuse, referenceGenom index,
integrate builder.

The fifteen processes are structured into six main parallel lines shown in
green in Figure 1.

Executing the script with Nextflow, the algorithm will look for the required
files in the paths specified in nextflow.config configuration file or the paths speci-
fied in the command line. The associated downloader is skipped if the files exist,
and the following processes can start processing.
Nextflow processes usually are executed concurrently. Nextflow queue channels
are used to execute downloaders, converters, and runners sequentially and pro-
vide inter-communication between processes. A queue channel creates an asyn-
chronous unidirectional FIFO queue and allows to connect processes or opera-
tors. Using a combination of queue channels permits the creation of predefined
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sequences of processes. The processes expect to receive input data from the chan-
nels specified in the input block. When the inputs are emitted, the processes run.

Fig. 1. Pipeline architecture parallelization: each tool is composed of multiple sub-
units (shown in blue) executed concurrently through six main parallel lines (shown in
green) to optimize the workflow performances.

The five fusion detection tools included in FusionFlow are managed through
Nextflow queue channels that provide inter-communication between the work-
flow processes. All processes have the same structure since they are triggered
by input and, after the script block execution, provide output to trigger the
subsequent processes. As illustrated in fig 2, for each channel, the first step con-
sists of describing the channel configuration (e.g., DNA files, RNA files, the tool
installation path, and further databases necessary for gene fusion tools). If the
user does not define tool databases, a separate channel is used to download it. A
data channel passes the database to the next process triggered at the moment.
Then, the tool/database is installed if not present yet, and the data is converted
in the correct format if the user requests it. Finally, the data is passed to the
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gene fusion tool for the tool execution.

In the end, the workflow provides as output the list of candidate gene fusions
for each tool to be investigated by the user.

Fig. 2.General flow for each tool. Given the data as input, 1) the required configuration
is set; 2) the tool/database is installed if not present; 3) the data is converted if with
the wrong format; 4) the data is passed to the gene fusion tool.

3 Workflow test and discussion

The files used to test the pipeline are the same proposed in the FusionCatcher
tool and publicly available both at https://github.com/ndaniel/fusioncatcher/tree/master/test
and in the FusionFlow GitHub repository.
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They are fastq compressed paired-end files (a standard file data format used
to store genetic information) where the reads were manually selected to cover
17 already known fusion genes: FGFR3 - TACC3, FIP1L1 - PDGFRA, GOPC
- ROS1, IGH - CRLF2, HOOK3 - RET, AKAP9 - BRAF, EWSR1 - ATF1,
TMPRSS2 - ETV1, EWSR1 - FLI1, ETV6 - NTRK3, ETV6 - NTRK3, ETV6 -
NTRK3, BRD4 - NUTM1, CD74 - ROS1, CIC - DUX4, DUX4 - IGH, DUX4 -
IGH, EML4 - ALK, MALT1 - IGH, NPM1 - ALK.

Initially, each tool was tested separately on a linux operating system and in-
side a docker environment checking the setup (e.g. paths, files, profiles, libraries).
Then, after making sure that all the tools worked, the entire Nextflow workflow
was tested inside a single docker environment. In the scenario without docker,
Conda virtual environments were manually created. Otherwise, with docker the
setup is prepared automatically through the use of the dockerfile. The test files
and the local profile were specified in the command line to execute these tests.

Each gene fusion detection tool gives output one or more files in specific
formats. Generally, a summary file is produced in output to allow a quick pre-
dictions overview.
The outputs obtained from the tools are concordant with the gene fusions previ-
ously specified. All the tools in the pipeline recognize at least ten predictions out
of seventeen fusions, except for GeneFuse, which recognizes just three of them.
Although GeneFuse performances should be investigated on additional data,
the poor result could be explained by the specific DNA filters implemented in
GeneFuse.
In order to select the final gene fusions prediction drivers, different approaches
can be used. The typical practice is to use the union or intersection of tools
predictions. The union of the results gives numerous sets of predictions. This
approach increases the probability of including the real drivers of cancer pro-
cesses. However, it enhances the possibility of incorporating false positives or
passenger mutations. Using the intersection approach, conversely, decreases the
number of predictions radically. This approach allows discarding false positives
and passenger mutations. However, this selection could also cause the discarding
of the cancer drivers.
In this test case, the union of the results contains nineteen gene fusions pre-
dictions, while the intersection includes just two of them (ETV6-NTRK3 and
GOPC-ROS1).

4 Conclusions

FusionFlow is an easy-to-use, flexible, highly reproducible, and integrated work-
flow. The workflow includes five gene fusion discovery tools that input both RNA
and DNA data. Docker and Conda technologies allow performing tools instal-
lations, avoiding version conflicts. In addition, the Nextflow framework allows
the execution of the five tools in parallel, optimizing time and resources usage
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and managing the tool’s installations and the file allocation. The workflow was
tested using publicly available test files. The tests were performed using a lo-
cal profile in two conditions: on a private server and the private server inside a
docker container. In both cases, the outputs were satisfactory. Thus, the Fusion-
Flow pipeline is available for further validation over additional DNA and RNA
genomic data.

This work represents a foundation on which improvements and future works
can be built. Indeed, one of the main problems related to gene fusion detection
is determining which gene fusions are drivers of cancer processes and not just
passenger mutations. The fusion detection tools already provide a first step for
solving this problem. Indeed, fusion detection tools filter the candidate gene fu-
sions based on the sample’s reads, trying to decrease as much as possible the
number of false positives. However, generally, this step is insufficient to deter-
mine the cancer drivers, and an additional step can be required. It consists of
post-processing tools (called prioritization tools) that can predict a gene fusion’s
oncogenic potential. There is a high number of prioritization tools such as On-
cofuse, Pegasus, DEEPrior, and ChimerDriver [25, 1, 19, 17, 18]. These tools are
based on machine learning (ML) algorithms trained with the protein domains of
the fusion proteins and allow the selection of the most probable cancer drivers.
The post-processing step could also be completed by adding a different algo-
rithm. This algorithm performs comparisons between the outputs of the tool
and selects the more probable driver of cancer processes by analyzing the union
and the intersection and taking into account the different characteristics of the
gene fusion detection tools.
Another crucial question is related to visualization tools. Humans can efficiently
distinguish true positives from false positives if the evidence is provided in an
easily interpretable form. These tools also better interpret the potential conse-
quence of gene fusion events. Several visualization tools were released in the last
years, such as INTEGRATE-vis [31], FGviewer [13], and FuSpot [12].
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