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Abstract: A principled approach to the analysis of eye movements for behavioural biometrics is laid
down. The approach grounds in foraging theory, which provides a sound basis to capture the unique-
ness of individual eye movement behaviour. We propose a composite Ornstein-Uhlenbeck process for
quantifying the exploration/exploitation signature characterising the foraging eye behaviour. The rel-
evant parameters of the composite model, inferred from eye-tracking data via Bayesian analysis, are
shown to yield a suitable feature set for biometric identification; the latter is eventually accomplished
via a classical classification technique. A proof of concept of the method is provided by measuring
its identification performance on a publicly available dataset. Data and code for reproducing the
analyses are made available. Overall, we argue that the approach offers a fresh view on either the
analyses of eye-tracking data and prospective applications in this field.

Keywords: biometric recognition; behaviour characteristics; gaze identification; foraging theory;
visual attention; eye movements; stochastic processes; Bayesian inference; machine learning

1. Introduction

The problem we are confronting in this article, eye movement-based biometrics, is
best introduced by considering Figure 1. The figure presents an excerpt from the data
to illustrate some characteristics of gaze dynamics that motivate our analyses and the
proposed model.

The coloured traces unfolding over the image depict the wandering gaze of three
different observers, recorded through an eye-tracking device, while they were scrutinising
the imaged scene in the free viewing condition for a 2 second presentation. The wandering
pattern of gaze trajectories puts on view that where observers choose to look next at any
given moment in time is not completely deterministic, but neither is it completely ran-
dom [1]. Indeed, under such circumstances, observers’ attention is by and large deployed
to semantically relevant parts of the scene [2], e.g., the person’s face; yet, each beholder
betrays a personal, somehow idiosyncratic viewing behaviour (Interestingly enough, the
term “wandering” has been used in recent research (e.g., [3–5]) to characterise eye move-
ments as a marker of mind wandering (self-generated thoughts that are irrelevant to the
current task). The prevalence of episodes in daily life of disengagement of attention from
external information to internally directed cognition is likely to have practical implica-
tions for eye movements biometrics, given its tight connection to the individual’s self and
personality [6]).

The rationale behind behavioural biometrics, in general, and particularly the recourse
to eye movement analysis as a viable route to a subject’s identification, conceals deep roots
beyond its deceptively obvious and, to a great extent, instrumental practice (overviewed
in Section 2). All in all, each individual is somehow a bit different than the other one (a
difference that might be formalised in terms of physical complexity [7–10]). Indeed, the
individual’s self ontogenetically changes as the result of his/her intimate experience; it
sediments going through an active assimilation-accommodation process in which the world
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(and the social environment) is internally organized in a model that reflects current knowl-
edge about it and the individual’s role in it. The ensuing actions are part of this process
and hence altogether incomparably personal, unique, and infinitely individual [10–13]: the
seamless dance of gaze makes no exception [9,14].

Figure 1. Gaze dynamics of three different observers while scrutinising for 2 secs the image and
recorded through an eye-tracking device. The unfolding of gaze deployment of each observer is
displayed as a coloured trajectory (blue, yellow and red, respectively) overlapping the viewed image.
The onset of gaze unfolding is approximately located at the center of the image for all viewers. Image
and eye-tracking data are publicly available from the FIFA dataset [15].

An intimate alliance is thus established between the uniqueness of the self and the
gaze, inasmuch as it might be surmised that the way to capture the ineffable something
which differentiates qualitatively each of us, as Marcel Proust awesomely phrased it, is to
“possess other eyes, to see the universe through the eyes of another, of a hundred others, to see the
hundred universes that each of them sees, that each of them is” [16].

In this paper, we argue that by unearthing these roots, a sound foundation is offered
to eye movement-based biometric methods blossoming under the behavioural umbrella,
which paves the way to novel, explainable and principled methods and techniques.

In a crude summary, the chief concern of the work presented here boils down to the
following research objectives:

1. To lay down a principled approach to exploit eye movements in behavioural biometrics;
2. To derive, in the context of such a framework, a computational model suitable to

operationalize biometric assessment.

The first goal is spelled out in terms of foraging theory as a sound approach to capture
the uniqueness of individual eye movement behaviour (see Section 3).

The second is shaped in the compact form of a composite (local and global) Ornstein-
Uhlenbeck (O-U) process, whose relevant parameters provide a suitable feature set for bio-
metric identification. The O-U parameters are inferred from eye-tracking data via Bayesian
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analysis (Sections 4 and 5). This sets the fundamental research question of this article: is
such a succinct phenomenological model of gaze behaviour adequate for biometrics?

A proof of concept is thus put forward in Section 6, by using a publicly available
eye-tracking dataset [15]. A typical example of the kind of data we are dealing with has
been presented in Figure 1. Data and code for reproducing the analyses reported in this
Section are made publicly available.

Eventually, a discussion of results so far achieved is given in Section 7.
To start this journey, the forthcoming section briefly overviews the state of the art of

current techniques.

2. Related Works

Biometrics deals with the exploitation of unique, identifiable and quantitatively mea-
surable characteristics of humans in order to authenticate and/or identify them.

In the last decade, biometrics has been spreading in our daily life, just consider
finger and face recognition in common electronic devices (smartphones, tablets, laptops
etc.). Traditionally, biometrical methods have focused on physical characteristics, namely
personal physical traits such as fingerprints [17,18], face [19,20], iris and retina [21].

More recently, behavioural traits have been considered as well. Behavioural biomet-
rics explores what kind of behaviour might be unique to a user, resulting in methods
generally less intrusive than physical biometrics and well-suited for continuous authen-
tication. Among those behavioural-based approaches, eye movement biometrics (EMB)
has proven to have great potential in a variety of contexts. In stimulus-dependent sce-
narios we can include reading [22,23], static point gazing [24] or jumping point track-
ing [25–27], virtual reality tasks [28–30], free viewing of static images [31,32], including
faces [33,34]. The more challenging task-independent scenario has been explicitly investi-
gated by Kinnunen et al. [35], whereby no assumptions that the same stimulus appears in
training and testing are made. In this direction, other works have exploited the potential of
virtual reality (VR) for the emerging use of reliable eye-tracking sensors [29,30].

The first attempt to introduce eye movements in biometrics was undertaken by the
pioneering work of Kasprowski and Ober [36]. Support vector machine (SVM), k-nearest
neighbors (KNN), decision trees and Bayes classifiers were applied to selected cepstral
coefficients of eye movement signal with promising results supporting the endeavor. Still,
the analysis was limited to raw trajectory signals, without an explicit classification of
eye movement signals into physiologically-grounded events. In [37] eye movements
were considered from a higher-level perspective. Fixations and saccades-related features
were combined and fed to a probabilistic neural network to extract match scores. In the
same vein, Holland and Komogortsev [22] extract a broader set of high-level features then
compared using a Gaussian kernel. Moreover, a graph-based model has been proposed with
good results [34]. Grounded in statistical analysis as well, the STAR approach by Friedman
et al. [38] is considered the state of the art within the framework of hand-crafted features.
Following event classification, the method draws on principal component analysis (PCA)
and intraclass correlation coefficient (ICC), an index of the temporal persistence and stability
of a single biometric feature.

Yet, latterly, the best results have been achieved by deep learning methods, using
convolutional neural networks [39–42], residual networks and densely connected convolu-
tional networks [30]. Jia et al. [39] utilised long short-term memory cells (LSTM) to build
a recurrent neural network (RNN) that relies on raw data. Instead, the method proposed
by Jäger et al. [40] requires an initial transformation of raw eye movement signals to isolate
desired micro eye movements according to their characteristic velocities, with the resulting
scaled values fed into a CNN with two separate subnets. Other works, after an initial
feature extraction step, explored metric learning for eye movement biometrics [30,42]. The
current state-of-the-art model is DeepEyedentificationLive (DEL) [41] which discerns “fast”
(e.g., saccadic) and “slow” (e.g., fixational) eye movements then fed into two separate con-
volutional subnets. Another recent model, Eye Know You (EKY) [30], uses exponentially
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dilated convolutions to achieve reasonable biometric authentication performance with a
relatively small (∼475 k learnable parameters) network architecture.

By and large, the above methods treat eye tracking data by crudely relying on classical
analyses (e.g., dwelling time, distance and direction changes between fixation points,
spatial distribution of saccades [43]) of the scan paths—i.e., sequences of fixations and
saccades, as parsed by some algorithm from the original gaze trajectories. This limitation
holds, independently of the subsequent classification techniques (either classic or deep
learning-based) adopted. Further, the richness of processes giving rise to gaze behaviour
is scarcely acknowledged. As a matter of fact, this approach overlooks a great deal of
information that can be useful for determining the uniqueness of behaviour hiding behind
the individual’s gaze dynamics.

3. Background and Motivation

Individual-based approaches in ecology seek a mechanistic understanding of how
variation among individual organisms generates or contributes to patterns at population,
community and ecosystem levels (but for an in-depth discussion, see [44]). What makes
an organism unique? Why does this animal have this unique set of traits? Clearly, an-
swering such questions involves describing highly specific, idiosyncratic properties and
causal histories.

Individuality in behavioural ecology is defined as the phenotypic and ecological
uniqueness of single individuals; namely, what makes an individual phenotypically unique
is generally not a single phenotypic property, but rather the possession of a whole set
of phenotypic traits together with unique sets of ecological relations [44]. Features like
behaviour, habitat use, feeding preference, social relations, and so on, are core to what
makes individuals unique.

In this broad perspective, one remarkable example is foraging behaviour [45,46].
Foraging is a term that includes where animals search for food and which sorts of food
they eat. According to optimal foraging theories (OFT), the forager continuously faces four
problems [47]:

1. patch-choice: the forager has to make a decision concerning what type of patch (a
clump of food) to search for (e.g., good bushes full of berries);

2. patch-finding: the forager wanders through a landscape where certain resources are
available and makes a choice on how to move between patches (optimal movements);

3. target/prey-finding: once a patch is located, the forager should decide what prey to
take and handle (optimal diet choice);

4. patch-leaving: the available resources in the patch decrease over time spent handling
preys; eventually, a forager makes the decision of leaving the current patch to search
in a more profitable patch, or just to finish the task (giving up or departure times from
patches).

All in all, the forager, in order to solve the above problems, engages in a recurrent
cycle of successive local exploitation of the patch alternated with exploration, i.e., relocation
between patches. While engaged in the foraging cycle, the forager also learns about the
profitability of the individual patches and the environment after visiting each patch. Such
exploitation/exploration pattern is the genuine fingerprint of animal’s foraging behaviour.

In recent research, consistent individual differences in behaviour (animal personality)
and food resource use (individual specialization) have emerged. Animal personality
and individual specialization are patterns of individual-level phenotypic variation, both
describing similar concepts of temporally consistent individuality in behavioural and
food web ecology [48]. Personality is a motif which accounts for consistent behavioural
differences or traits in animals (tipically: exploration, activity level, sociability, boldness and
aggressiveness); indeed, research in behavioural ecology provides evidence that personality
traits can be detected in a vast collection of invertebrate and vertebrate taxa [48]. Individual
specialization involves significant individual differences in the animal’s diet arising within a
population. Most important here, differences in both personality and specialization remain
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consistent over time and across ecological contexts; namely a steady variation is observed
among individuals, as opposed to a strikingly low variability within the individual [48].

Given that foraging behaviour provides an important marker of animal individuality,
how does then foraging link to cognition and, in turn, to eye movement behaviour?

In a nutshell, it has been argued that ancestors’ foraging for material resources in a
physical landscape evolved over time in foraging for information in cognitive space [49–53];
when the individual specifically engages in a cognitive visual task, then gaze foraging
over a visual scene is by far the fundamental action to sample and gauge the visual
input [14,54–57].

At the psychological level, goal-directed foraging has been related to relevant cognitive
skills [49]: spatial memory (the ability to recall the location of resources and navigate
efficiently between them), value-based decision-making (to choose the best course of action
given all the available alternatives, what is), and executive control (the versatile guidance
of behaviour, overriding reflexive, automatic responses). Even self-awareness, deliberation,
and free will can be subsumed under this view.

At the brain level, the neuro-molecular architectures and mechanisms that support the
foraging mind are nothing but the evolutionary response to the exploration/exploitation
dilemma that must be faced in the external, physical environment [49]. For instance, it
has been surmised by Hill [53] that in both animal and cognitive foraging, dopamine acts
as a modulator between two behavioural extremes: when dopaminergic activity is high,
behaviour is focused, and eventually, stereotypic; by contrast, when dopaminergic activity
is low, behaviour becomes unfocused and fails to endure [53]. Noticeably, Hill’s dopamine
hypothesis fits comfortably in recent perspectives on visual foraging based on the active
inference account [14,58], an influential framework in current theoretical neurobiology.
Here, in a Bayes-optimal behavioural view, dopamine controls the precision or salience of
(external or internal) cues that engender actions, either exploitative (i.e., risk minimising)
and explorative (i.e., ambiguity minimising) [14].

To sum up, foraging as exploration/exploitation trade-off is an appealing and princi-
pled framework for dealing with gaze at different explanation levels [14,55–57].

This statement can be intuitively appreciated at a glance by considering the single
trace in the left panel of Figure 2: gaze dynamics unfolds by alternating explorative,
long relocations between semantically relevant image patches (e.g., the face), and local
movements to “exploit” the selected patch. Importantly, these trajectories represent the
microscopic, fine resolution scale of gaze dynamics. At a coarser scale, this explore/exploit
pattern can be parsed into a “saccade and fixate” discrete sequence [59] or scan path (right
panel of Figure 2), which is most often chosen as the input for further analyses in either
the visual attention/eye movement and the behavioural biometrics fields. Saccades are
thus functionally defined as the fast movements that redirect gaze to a new part of the
surroundings; each fixation summarises fixational movements that occur within intervals
between saccades, in which gaze is held almost stationary, so as to keep onto the fovea (the
central part of the retina) the circumscribed region of interest (RoI) within the viewed scene.

To make the connection clear beyond the intuition, Table 1 lays down the relationship
between deployment of attention through gaze over a scene and animal foraging behaviour.

It is important to note that the given task and the stimulus exteroceptive properties
are not the only constraints to the visual exploration/exploitation pattern exhibited by the
perceiver. Interoception—the observer’s own perception of his/her internal state of the
body, matters too, and, consequently, the perceiver’s affective state and feelings: it is no
surprise that in everyday life, gaze is of service to cogently capitalize on visual information
that includes social information; markedly, others’ emotions and intentions [60–62].
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Figure 2. The dynamics of one observer’s gaze while visually foraging on the image landscape as
recorded through an eye-tracking device. Left: the “raw data” represented as a time-sequence of
spatial coordinates (red dots) displayed as the red trace overlapped on the viewed image. Right:
the observer’s scan path, namely, the continuous raw data trace parsed into a discrete sequence
of fixations (yellow disks) and saccades (segments between subsequent fixations); disk radius is
proportional to fixation time. Image and eye-tracking data are publicly available from the FIFA
dataset [15].

Table 1. Relationship between Visual Attention and Foraging.

Visual Attentive Processing of a Scene Patchy Landscape Foraging

Perceiver Forager

Perceiver’s gaze shift Forager’s relocation

RoI/object Patch

RoI/object selection Patch choice

Deploying attention to RoI/object items Patch/prey handling

Disengaging from RoI/object Patch leave or giving-up

All in all, the exploration/exploitation pattern springing from the gaze sampling
endeavour provides a signature of the individual’s plans, goals, interests, likely sources of
rewards and expectations about future events, [63,64], social traits and personality [61,65].

Further, in addition to the exteroceptive/interoceptive properties of the stimulus
coupled with the pursued goal/task, one should consider biomechanical factors and motor
uncertainty (affecting, for instance, oculomotor flight time and landing accuracy) as relevant
sources of systematic tendencies or “biases” [66]. The latter, albeit often neglected in the
literature, can be conceived as those regularities that are common across all instances of,
and manipulations to, behavioural tasks [66,67]. One remarkable example is the amplitude
distribution of saccades and microsaccades (ocular movements occuring within a fixation)
that typically displays a positively skewed, long-tailed shape [66–69].

Such a multifactorial drive gives rise to a tiny probability that two subjects will fixate
exactly the same location of the visual scene at precisely the same time. Such variability
is easily detected in a variety of experimental conditions, especially under a free-viewing
or a general-purpose task: e.g., when looking at natural images, movies [69], or even
dynamic virtual reality scenes [70]. Interestingly enough, this effect is more pronounced
when free-viewing static images (but see [68], for a discussion), as it has been shown in
Figure 1: consistency in fixation locations selected by observers decreases over the course
of the first few fixations after stimulus onset. Crucially, variations in individual scan paths
(as regards chosen fixations, spatial scanning order, and fixation duration) still keep on
when the scene embeds semantically rich “objects" and get to be idiosyncratic [68].
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On the other hand, recent studies considered the variability of eye movements between
observers marking off the characteristics that are stable and reliable; these should be
conveniently handled as a trait of the observer rather than be downgraded to “noise” [71,72].
For example, Guy et al. [61] have shown that the amount of time subjects fixate on others’
faces differs between individuals in a consistent manner; this has been identified as a novel
gaze-related trait

In these terms, gaze behaviour is apt to unveil individual characteristics tantamount to
gait and speech. Different from gait and speech, however, gaze behaviour ineluctably con-
trols the visual input processed by the brain, hence making such variability an important
factor in determining and reflecting the individual’s inner world [9,14]. Given such cir-
cumstances, the forthcoming Section is devoted to spelling gaze dynamics in mathematical
terms so that the gauging of its individual peculiarities can be eventually operationalised.

4. Modelling Eye Movements Dynamics

Consider the gaze trajectory shown in Figure 3. Each gaze position at time t can
be represented by the time-varying location vector x(t) (screen coordinates). Thus, each
observed trajectory {x(t), t = 0 . . . T} can be intended as a realization of a stochastic
process {X(t), t = 0 . . . T}, with X(t) = x(t), namely a random walk (for simplicity, in the
sequel, with some abuse of notation, we will use x to denote both the random variable (RV)
X(t) and its realization).

Figure 3. A zoom-in on fixations and saccades as recorded by high frequency eye-trackers.

The dynamical law governing the evolution in continuous time of such process can
be described at the most general level through the Langevin Stochastic Differential Equa-
tion (SDE):

dx(t) = A(x, t)dt + D(x, t)dL(t) (1)

Notably, Equation (1) is composed by a deterministic component A(x, t), usually
called drift, and a stochastic one D(x, t), called diffusion. Here L(t) =

∫ t
0 η(t′)dt′ is the noise

process driven by a suitable probability density function η ∼ P(η).
The idea of modelling eye movements as stochastic processes is not new; among others,

two interesting examples are the modelling of fixational eye movements by [73–76] and the
study of saccades amplitude by Brockmann and Geisel [77]. Engbert and colleagues [73–76]
analyzed the random walk behaviour of fixational eye movements (FEMs) by describing it
via the mathematical formalism of fractional Brownian Motion.

Brockmann and Geisel [77] proposed a phenomenological model where gaze shifts
are accounted for by Lévy Flights (LF); these are a class of stochastic processes whose
innovation term is represented by a distribution with infinite variance (typically an α-
Stable distribution).

The microscopic description of a pure LF is straightforward; these are Markov pro-
cesses with stochastic increments sampled from an α-Stable distribution. The SDE de-
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scribing a LF can thus be obtained from Equation (1) by setting A(x) = 0, and setting
dL(t) = ψ(t)dt with ψ(t) ∼ f (ψ; α, β, γ, δ), where f (ψ; α, β, γ, δ) represents an α-Stable dis-
tribution:

x(t) = D(x, t)dL(t) (2)

The different parameters are, respectively, the skewness β ∈ [−1; 1] (a measure of
asymmetry), the scale γ > 0 (width of the distribution), the location δ ∈ R and, most
important, the index of the distribution (or characteristic exponent) α, that specifies the
asymptotic behaviour of the distribution [78,79]. Notably, by setting α = 2, γ = 1√

2
, δ = 0

and b(x, t) =
√

2D, standard Brownian Motion is recovered.
The approach was operationalised by Boccignone and Ferraro [80]. Actual gaze be-

haviour was modelled as a Constrained Lévy Exploration (CLE), where the drift component
of Equation (1) is written in terms of the gradient of a potential from the saliency map and
the noise component is sampled from a Cauchy distribution (i.e., α = 1). Albeit the sim-
plicity of the model, a recent review by Kummerer et al. [81] shows that CLE outperforms
a number of more complex models, given an appropriate saliency map. Strikingly, CLE
still exhibits a remarkable performance even in the case a constant salience is provided as
input [82].

4.1. Observers as Foraging Animals

Crucially, such view allows to connect eye guidance modelling to the theories of
animal foraging in the ecology literature, by means of what has been referred to as the Lévy
Flight Foraging Hypothesis (LFFH) [83]. According to LFFH since Lévy Flights maximize the
amount of space covered in a fixed time period, they optimize random searches. Hence,
natural selection should have led to adaptations for LF foraging. This is due to their
super-diffusive nature arising from the power-law decay of the tails of the step amplitude
distribution. Stated differently, as anticipated in Table 1, one could think of the eye (or the
brain networks controlling eye behaviour) as a forager searching for valuable information
(preys) in a given (and possibly time varying) scene (foraging landscape). The LFFH
has been applied as modelling choice in different studies concerning eye movements, for
simulation or descriptive purposes (see [84], for an in-depth discussion).

Despite being compelling and grounded on first principles, the LFFH approach
presents at least two issues:

1. Coarse-grained representation of saccadic movements: saccades are assumed to be
ballistic motions, i.e., the path from two successive fixations points is assumed to be a
straight line. This assumption is clearly oversimplified (e.g., see again Figure 3).

2. Mathematical hindrances: LFs rely on the use of α-stable distributions as the innova-
tion term; such representation involves dealing with infinite variance and the absence
of a closed-form probability density function (PDF).

More on the methodological side, in spite of the large success of the LFFH in the
ecological literature, the general applicability of such theory is still the subject of some
controversy [85,86]. In fact, many of the observed patterns that are attributed to Lévy
processes can be generated by a simpler composite random walk process where the turning
behaviour is spatially dependent [85,87,88].

In particular, [85] argued about the fact that even if the observed patterns of movement
might resemble those of LFs (step length frequency distribution well fitted by a straight
line in a log-log plot), the real generating process need not be a LF process. The author
shows how the Composite Brownian Walks (CBW) process generates search patterns that
mimic those generated by LF processes; moreover, under specific circumstances the former
are more efficient than LFs [85].

CBWs are obtained as a mixture of two “classical” random walks, i.e., stochastic
processes characterized by a step length distribution whose variance is finite, which act
jointly to mimic the intensive and extensive search of foraging animals. One of such
processes is in charge of producing frequent and exponentially distributed steps with
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relatively small mean, while the other produces more sporadic exponentially distributed
steps with relatively large mean.

In the same vein of [85], one could argue about the plausibility of considering eye
movement dynamics (the alternating of fixations and saccades) as generated from a mixture
of simpler random walks, rather than LFs.

In support of such claim, consider again the scan path depicted in Figure 3. It is
worth noticing how the saccades are not ballistic displacements but exhibit some curvature
and randomness (Figure 3, right), hence these can be conceived as biased random walks
towards the arriving location (the attractor). The same observation holds for fixational
movements, which can be seen as stochastic processes with an attractor represented by
the center of the fixation location (Figure 3, left). Interestingly enough, it has been argued
that a single model of oculomotor behavior, yet enacted at different scales, can explain the
continuum from saccadic exploration to fixation [89–91].

4.2. Observers as Random Walkers—The Ornstein-Uhlenbeck Process

A compact description of both fixational movements and saccadic displacements in
terms of a particle randomly wandering but being pulled towards an attractor can be
formalised via the Ornstein-Uhlenbeck (O-U) process [92,93]. This can be obtained from
Equation (1) by setting the drift A(x, t) = B(µ− x(t)), the diffusion D(x, t) = Γ and the
innovation term η ∼ N (0, 1). Thus,

dx(t) = B(µ− x(t))dt + ΓdW(t). (3)

Here x(t) represents the position of the trajectory in a 2-dimensional space, which
is pulled towards the steady state represented by the 2-dimensional vector µ, called the
attractor. The latter represents the arriving point of a saccade to the selected fixation
location. The adjustment to the attractor is now determined by the 2× 2 matrix B providing
the magnitude of the attraction effect,

B =

[
Bii Bij
Bji Bjj

]
. (4)

Bii and Bjj represent the drift of the process towards the attractor in the i (horizontal) and j
(vertical) dimensions, respectively, while the off-diagonal elements Bij = Bji = ρB

√
BiiBjj

encode the cross-correlation between drift in both dimensions. For high values of Bii
or Bjj a faster change will occur in the direction of the attractor. For high values of the
cross-correlation, an increasing value of the drift in one dimension will positively affect the
drift in the other, producing more curved trajectories towards µ. Based on this properties,
the parameter is often called the dampening force or centralising tendency. In order to
ensure the stability of the process (convergence to the stationary distribution) the matrix B
is supposed to have all positive eigenvalues [94].

On the other hand, the 2× 2 covariance matrix Γ controls the variances and covari-
ances of the two driving white noise processes described by dW(t). Higher values of
variances/covariances will produce noisier/more anisotropic gaze trajectories.

Notably, such view allows to treat fixations and saccades as realisations of processes
exhibiting the same dynamics, namely an O-U process. Following [95,96], the sequence of
fixations and saccades composing a scan path can be described via a state-dependent SDE
defining a 2D process.

Denote st ∈ [ f ix, sac] the state variable indicating whether at time t either a fixation or
a saccade is performed [95,96]; in other words, st is a switching binary RV accounting for the
transition from the current fixation to the next saccade and vice versa. Then, Equation (3),
can be written in the state-dependent form:

dx(t) = Bst(µst − x(t))dt + Γst dWst(t), (5)
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where Bst , µst , Γst and noise dWst(t) are now the state-dependent parameters and noise
process, respectively; in simple terms, depending on st, Equation (5) can describe either
local fixational dynamics or global, saccadic displacements.

Recently, theoretical models have been proposed to simulate gaze behaviour based on
composite O-U processes in the framework of either a stochastic version of the Marginal
Value Theorem [95] or of multi-alternative perceptual decision making [96]. However, the
advantage of having general solutions derived from first principles is mitigated by both
the complexity in determining the parameters and the computational cost that are likely to
burden biometric applications.

Here, differently, we propose a method which simply relies on a straightforward
Bayesian inference of process parameters, which is detailed in the following Section.

5. Proposed Approach

In the previous Section we have seen that gaze dynamics x(t) → x(t′), with t′ >
t + δt, δt being an arbitrary time step, unfolds in time according to the law described
by Equation (5). Given the set of parameters θ = {st, Bst , Γst , µst}, the simulation of
a sequence of eye movements can be obtained by solving Equation (5). In generative
form, the solution can be written as the conditional sampling of x(t′) given x(t), i.e.,
x(t′) | x(t) ∼ P(x(t′) | x(t)), where the distribution P(·) is the Normal distribution N (·)
(see e.g., [97,98]):

x(t′) | x(t) ∼ N (µst + e−Bst δt(x(t)− µst), Ψst), (6)

where Ψ = Dst − e−Bst δtDst e−BstTδt; Bst and D = Γ2

2 B−1 are 2× 2 matrices and the form
e−M denotes the matrix exponential.

The inference of model parameters θ makes available a concise description of the
dynamics of the observer’s gaze. Crucially, the chief research question of the present work
is indeed related to the possibility that one such description is predictive of the observer’s
identity.

The estimate of the parameters of Equation (6) can be carried out in two steps:

1. Gaze event classification; namely, parse the raw gaze data of one trajectory, in order to
identify the sequence of fixations and saccades in that trajectory (usually defined as a
scan path, in the literature).

2. SDE parameter estimation for each identified event along the trajectory/ scan path.

5.1. Gaze Event Classification

To classify raw gaze data into fixation and saccade events, we do not rely on the event
data provided in the dataset. More generally, a functional definition of such events [99] is
exploited. We consider a fixation as a period of time during which a static or a moderately
displacing part of the visual stimulus (the patch) on the screen is gazed at and that in a
human observer would be projected to a relatively constant location on the retina. This
corresponds to local dynamics in the exploitation stage. Accordingly, saccades are the gaze
shifts for redirecting the line of sight to a new patch of interest, as performed along the
exploration stage.

This is operationalised using the Naive Segmented Linear Regression (NSLR), a
method for eye-movement signal denoising and segmentation, and a related event classi-
fication method based on Hidden Markov Models (NSLR-HMM) [100]. The algorithm is
used with default settings; the original implementation is available from the online reposi-
tory (https://gitlab.com/nslr/nslr-hmm, accessed on 21 January 2023). The NSLR-HMM
method, which is suitable to operate on image sequences, classifies fixations, saccades,
smooth pursuits and post-saccadic oscillations (PSO). Smooth pursuit is not present in
our case (static images) and saccades embed PSOs. This allows clustering the raw gaze
trajectories into a sequence of L events, each one being either a fixation or a saccade.

https://gitlab.com/nslr/nslr-hmm
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5.2. Bayesian Estimation of SDE Parameters

Since the time step δt of recorded trajectories depends on the sampling frequency of
the eye-tracking device, assume a unitary time step δt = 1, without loss of generality [101].
Thus, the observed gaze trajectory is represented by the discrete sequence {xi, i = 0, · · · , n}
evolving through steps xi → xi+1. A corse-grained description of such trajectory can
be provided in terms of scan path, that is the discrete sequence of events (fixations and
saccades). The set of parameters defining an event is thus the basic descriptor we are
addressing; formally, such descriptor can be inferred as follows.

The gaze trajectory x(t), as parsed by the NSLR-HMM algorithm [100], is composed
by F fixational events e f ix = [e f ix

1 , ..., e f ix
F ] and S saccadic events esac = [esac

1 , ..., esac
S ]. Define

ξ = [e f ix|esac].
Consider now the slice xe = [xm, ..., xq] of the sample x(t) , with m > 0 and q 6 n; xe

represents a generic event e ∈ ξ as classified by the gaze parsing algorithm. Note that the
event e identified at time t takes the role of the switching variable st in Equations (6) and (5).

Thanks to the Markovian and Gaussian properties germane to the O-U process, the
likelihood of the slice, given the parameters {Be, Γe} is:

P(xe | Be, Γe) =
q−m−1

∏
i=1

P(xe
i+1 | xe

i , Be, Γe). (7)

Here, Be, Γe represent the event specific set of O-U parameters. Note that here we
exclude the µe parameter from the inference set, due to the fact that it represents either the
arriving point of a saccade or the center of a fixation, hence it does not deliver per se any
contribution to the description of the gaze event dynamics. The posterior probability of the
O-U parameters of the event e given the gaze trajectory slice follows from Bayes’ theorem:

P(Be, Γe | xe) =
P(xe | Be, Γe)P(Be, Γe)

P(xe)
. (8)

In order to ensure the matrix Be to have all positive eigenvalues, we force it to be a
covariance matrix; therefore, the Lewandowski-Kurowicka-Joe distribution [102,103] is
adopted as the prior for the Be matrix. The same holds the Γe matrix.

The posterior inference of the distribution of Equation (8) cannot be computed analyti-
cally, but an approximation can be found. In this work we use Automatic Differentiation
Variational Inference (ADVI) [104] to compute the approximate posterior distribution.

The inference output for each event in each scan path performed by a given subject
are the posterior PDFs over the covariance matrices Be and Γe. Such distributions are
summarised by computing their sample average and Highest Density Interval (HDI). The
distribution summaries related to the diagonal and one of the off-diagonal components of
the matrices (recall that B and Γ are symmetric matrices) are joined together, thus yielding
the vector ve

(id) for each subject id ∈ [1, ..., ID], ID being the total number of subjects:

ve
(id) = [Bavg,e

ii , Bhdi,e
ii , Bavg,e

ij , Bhdi,e
ij , Bavg,e

jj , Bhdi,e
jj , Γavg,e

ii , Γhdi,e
ii , Γavg,e

ij , Γhdi,e
ij , Γavg,e

jj , Γhdi,e
jj ]. (9)

In simple terms, any fixation or saccade is compactly described through the inferred
means of parameters Bii, Bij, Bjj, Γii, Γij, Γjj and related uncertainties (Bhdi,e

ii , etc.; but see
Table 2, for a summary). Such information is then collected for each event composing the
scan path.
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Table 2. Summary of the proposed features and related physical interpretation.

Dimension Description

Bavg,e
ii (Bhdi,e

ii )

The element in position ii of the posterior distribution mean of the
inferred Be matrix. It represents the drift (strength of the attraction)
towards the attractor point (arriving/current fixation) in the horizontal
direction. High Bavg,e

ii values denote higher velocity saccades or less
pronounced physiological drift (see [108]) in fixational eye movements
(FEMs) in the i dimension. (Bhdi,e

ii : uncertainty of the estimation)

Bavg,e
ij (Bhdi,e

ij )

The element in position ij of the posterior distribution mean of the
inferred Be matrix. It represents the cross-correlation between the drifts
in the horizontal and vertical dimension. High Bavg,e

ij values denote more

curved saccades/FEMs. (Bhdi,e
ij : uncertainty of the estimation)

Bavg,e
jj (Bhdi,e

jj )

The element in position jj of the posterior distribution mean of the
inferred Be matrix. It represents the drift (strength of the attraction)
towards the attractor point (arriving/current fixation) in the vertical
direction. High Bavg,e

jj values denote higher velocity saccades or less
pronounced physiological drift (see [108]) in FEMs in the j dimension.
(Bhdi,e

jj : Uncertainty of the estimation)

Γavg,e
ii (Γhdi,e

ii )

The element in position ii of the posterior distribution mean of the
inferred Γe matrix. It represents the amount of diffusion exhibithed by a
fixation/saccade in the horizontal direction. High Γavg,e

ii values denote
higher noise in saccades/FEMs in the i dimension. (Γhdi,e

ii : uncertainty of
the estimation)

Γavg,e
ij (Γhdi,e

ij )

The element in position ij of the posterior distribution mean of the
inferred Γe matrix. It represents the covariance of the diffusion between
horizontal and vertical dimension. High Γavg,e

ij values denote more

anisotropic saccades/FEMs. (Γhdi,e
ij : uncertainty of the estimation)

Γavg,e
jj (Γhdi,e

jj )

The element in position jj of the posterior distribution mean of the
inferred Γe matrix. It represents the amount diffusion exhibited by a
fixation/saccade in the vertical direction. High Γavg,e

jj values denote more

noise in saccades/FEMs in the j dimension. (Γhdi,e
jj : uncertainty of the

estimation)

In brief, we eventually have at hand the characterisation of the visual behavior of
observer id while scrutinising the stimulus k (image), captured as a sequence of events (the
fixations and saccades composing the scan path), each event e being summarised by the
vector ve

(id),k.

5.3. Identity Recognition from Gaze Dynamics

The identity recognition procedure is depicted at a glance in Figure 4. After the event
classification and O-U SDE parameters inference described above, two different models for
fixational and saccadic movements are trained separately from the inferred O-U parameters
to discriminate between identities. The predictions from the two models are then fused at
the score level, thus achieving the final classification.
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OU SDE
Parameters
Inference

Fixation Model
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Score Fusion ID

Figure 4. The proposed approach at a glance.

More specifically, in the present work a Support Vector Machine (SVM) is employed
for both the fixation and saccade models. SVMs are trained to discriminate between the ID
identities from the ve

(id) vectors describing the dynamics of each event.
For a One vs. Rest SVM the id-th decision function on the event e is:

D f e
(id) = wT

(id)φ(v
e) + b(id), (10)

where w(id) is parameter vector for the id-th classifier (b(id) being the bias) and φ(.) is the
kernel function. Let Dve = [D f e

(1), ..., D f e
(id), ..., D f e

(ID)
] be the decision vector collecting the

decision function values at each class for the event e. Define

〈Dv f ix〉 = 1
F

F

∑
a=1

Dve f ix
a ; 〈Dvsac〉 = 1

S

S

∑
a=1

Dvesac
a (11)

the average decision vectors for all the fixations and saccades composing one trajectory. The
final classification of the identity Id associated to the trajectory is obtained as (score fusion):

Id = argmaxid{〈Dv f ix〉+ 〈Dvsac〉} (12)

6. Experimental Results and Analyses

Here we provide a quantitative evaluation of the method in order to address the
research question pinpointed in Section 1: is such a method based on a minimal, albeit
general, phenomenological model of gaze behaviour adequate for biometrics?

• First, a straightforward standard evaluation in terms of identification performance is
provided.

• Second, an analysis is carried out, which aims at gaining a deeper insight into the
features made available by the method and the identification results so far achieved.

The experimental assessment of the method exploits the Fixations in Faces (FIFA) eye-
tracking dataset [15] that is briefly described below.

6.1. Dataset

The FIFA dataset consists of eight subjects whose eye movements are recorded during
the free-viewing of 200 1024x768px images for 2 seconds each. Eye movements are recorded
by an Eyelink 1000 eye-tracker with a sampling frequency of 1000 Hz.

In spite of the modest size of the subjects’ sample, this dataset is appealing for our
purposes as regards the type of stimuli, the task, and the duration of the recording ses-
sion. As previously discussed, under a free-viewing task, static images are susceptible to
elicit idiosyncratic behaviour from the observer [68]. In addition, the stimulus presents
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elements of semantic complexity suitable to trigger high-level cognitive control of visual
attention [15]. Images include salient objects and many different types of faces. This data
set was originally intended to quantify the attractiveness of human faces for observers and
to test salience models including face detectors.

Two-second recordings at 1000 Hz sampling frequency represents a viable trade-
off between collecting a gaze trajectory of informative length and biometrics time con-
straints [36,43]

6.2. Identification Performance

The proposed approach has been evaluated via a 10-fold cross validation procedure;
Table 3 reports the results in terms of 4 evaluation metrics, namely Accuracy, F1 Score, Equal
Error Rate (EER) and Area Under the Curve (AUC). For comparison, the same procedure
has been adopted for the algorithms proposed in [105,106].

In [105], George and Routray extract a large number statistical features (12 features for
each fixation and 46 features for each saccade) from the position, velocity and acceleration
profiles of the gaze sequence plus the computation of features related to the duration,
dispersion, path length and co-occurrence of fixations and saccades. Such high-dimensional
feature set is then necessarily reduced via backward feature selection, which retains 9 and
43 features for fixations and saccades, respectively. The obtained feature set is then fed into
a Gaussian Radial Basis Function Network (GRBFN).

Schröder et al. [106] improved on the results obtained by George and Routray [105]
using their original feature set and a Random Decision Forest as the classification algorithm.
Notably, Schröder et al. [106] released the implementation code for their approach and the
one proposed in [105].

Table 3. The obtained results in terms of the Accuracy, F1 Score, Equal Error Rate (EER) and Area
Under the Curve (AUC) metrics.

Accuracy F1 Score EER AUC

Proposed 93.75%± 3.4 93.68%± 3.5 0.046± 0.01 98.98± 0.4

[105] 92.06%± 3.2 91.95%± 3.3 0.048± 0.01 98.88± 0.4

[106] 92.93%± 2.4 92.73%± 2.5 0.039± 0.01 99.25± 0.2

Table 3 shows the 10-fold cross-validated results of the proposed method and those
adopted by [105,106]. Notably the proposed approach exhibits performances comparable
to the others, despite the adoption of a more succint feature set. Indeed, the composite
O-U model is fully specified by the parameters Be and Γe (with e ∈ [ f ix, sac]): no feature
selection stage is needed and each parameter has a clear interpretation (cfr. Table 2). The
posterior distribution summaries (mean and HDI) of these matrices, collected into the
ve vector, yield a feature set whose dimensionality, if compared with [105,106], is more
than halved.

Figure 5 depicts the micro-averaged ROC Curve on the validation sets of one of the
10 folds. AUC and EER are reported on the bottom-right. The confusion matrix on the 8
available identities is shown in Figure 6 (left), while the Cumulative Match Score (CMS)
curve is displayed on the right. The latter demonstrates the ranking capabilities of the
proposed methodology, as the correct identity is found in the first 3 ranked predictions
with remarkable accuracy (Demo code and data is available on the website: https://github.
com/phuselab/Gaze_4_behavioural_biometrics, accessed on 21 January 2023).

https://github.com/phuselab/Gaze_4_behavioural_biometrics
https://github.com/phuselab/Gaze_4_behavioural_biometrics
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Figure 5. Receiver Operating Characteristic (ROC) curve.
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Figure 6. Confusion matrix (left) and Cumulative Match Score (CMS) curve (right).

For what concerns the computational cost of the whole process, it is clearly dominated
by the Bayesian inference procedure adopted for the estimation of the O-U SDE parameters
associated to each event (crf. Equation (8)). The computational cost of scan path event
classification via SVM can be considered negligible. In our experiments processing a
single event (i.e., approximate posterior inference via ADVI) took on average ∼ 9 seconds
adopting the following hardware configuration: Intel Core i7-8700K 4.70 GHz CPU, 16GB
of RAM, while the software implementing approximate inference relies on the pyMC3
library [107]. The cost of processing an entire scan path grows linearly with the number
of events composing it. Significant speed-up improvements could be eventually obtained
by employing dedicated hardware (e.g., GPUs) and optimised software implementation,
e.g., adopting JIT compilation and state of the art computational back-ends (e.g., JAX).
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Yet, a broad inquiry about the hardware/software optimisation choices for speed-up
improvement is out of the scope of this work.

6.3. Analysis of Results

A classic bare evaluation of the identification performance does not fully make justice
of the role played by the parameters/features in the end-to-end scheme outlined in Figure 4.
This section presents some questions weighing the model-based parameters in the service
of biometrics and assessments aimed at addressing them.

To this end, recall that for each subject id, and for each image k in the dataset, we have
a corresponding scan path defined as the collection of events e (fixation, saccade), each
event being described by the vector ve

(id),k as defined in Equation (9). For clarity’s sake, the
physical meaning of vector components is summarised at a glance in Table 2.

Denote:

• 〈v f ix
(id),k〉 the average fixation feature vector and 〈vsac

(id),k〉 the average saccade feature
vector associated to the scan path k:

〈v f ix
(id),k〉 =

1
F

F

∑
a=1

ve f ix
a
(id),k, 〈vsac

(id),k〉 =
1
S

S

∑
a=1

vesac
a
(id),k; (13)

• v(id),k the descriptor of scan path k obtained by concatenating the two vectors above:

v(id),k =
[
〈v f ix

(id),k〉|〈v
sac
(id),k〉

]
; (14)

• 〈v(id)〉 the summary descriptor of the visual behaviour of observer id, over the set of
the K observed stimuli:

〈v(id)〉 =
1
K

K

∑
k=1

v(id),k. (15)

How do the model-based descriptors differentiate subjects? A preliminary description of
how the proposed model captures the attentive behaviour of the individual observer id is
provided by the summary vector 〈v(id)〉 defined in Equation (15). Qualitatively, this can be
compared against the vector describing the other observers through the heatmap presented
in Figure 7.
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Figure 7. Heatmap contrasting the model-based descriptors of observers’ visual behaviour. Each row
of the map renders the summary vector 〈v(id)〉 for subject id; numeric values of vector components
are associated to colours as depicted in the side bar.
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The rows of the heatmap show how the vector components/features vary between
subjects. It can be easily appreciated how each row captures a behavioural “thread”,
a signature that is unique to each observer (this straightforward view can be further
analysed to some extent, e.g., through the violin plots of each feature per subject as in the
Supplementary Materials).

What is the degree of differentiation between individuals? Beyond visual evaluation,
one may question whether such individual signatures do or do not correlate with one
another. This information is summarised in Figure 8 through a coloured Hinton diagram
(named after Geoff Hinton, who used this type of display to plot the weight matrix of a
neural network).

In the diagram, the size of each square represents the magnitude of the correlation
between two subjects, say id = i and id = j, i 6= j, in terms of the correlation ρ(〈v(i)〉, 〈v(j)〉),
while the colour renders the correlation/anticorrelation spectrum. Overall, this result shows
that, for the data we are dealing with, there is a low correlation among individuals’ visual
behaviour when gauged via the proposed model-based descriptors.

Are the individual descriptors stable with respect to different stimuli? The degree of
feature correlation that can be measured between different observers is one aspect. The
other, which is deemed to be important for biometric purposes, is the observer’s parameter
consistency or low behavioural variability over the set of viewed stimuli.
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Figure 8. Hinton diagram for the correlation coefficients calculated over the average feature vectors
of the subjects. The square size is proportional to the magnitude of the correlation; the colour denotes
the degree of the correlation coefficient in the range depicted in the side bar.

This second aspect (within- or intra-subject variability) can be evaluated in terms of
the distributions of correlation coefficients calculated for subject i over different stimuli k
and l of the stimulus set; namely, ρintra(〈v(i),k〉, 〈v(i),l〉), k, l = 1 · · ·K, k 6= l.
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Between- or inter-subject variability is similarly characterised by considering the
distribution of correlation coefficients ρinter(〈v(i),k〉, 〈v(j),l〉), k, l = 1 · · ·K, k 6= l, i 6= j,

For either ensemble of correlation coefficients an empirical estimate of the ensem-
ble distribution can be obtained via Kernel Density Estimation (KDE), say P̃(ρintra) and
P̃(ρinter). The outcome of this analysis is presented in Figure 9.

By and large, it is shown how inter-subject correlation is described by a wide, Gaussian-
like distribution (denoting high variability) as opposed to intra-subject correlation that is
captured by a remarkably peaked distribution (low variability).

What is learnt from individuals’ parameters given a set of stimuli? For a group of
subjects and a finite set of stimuli eliciting viewing behaviours, an overall representation
of such behaviours can be attained by considering each vector v(id),k a point on a high
dimensional manifold. To gain understanding of such manifold, what we need first is to
construct a topological representation of the high dimensional data. Subsequently, we need
to project such manifold on a lower dimensional one for providing a suitable visualization
of the manifold’s patterns and structure.
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Figure 9. Kernel density estimation (KDE) plots for the distributions of the correlation coefficients
calculated over all the stimuli for each subject (Intra-subject) and between subjects (Inter-subject). See
text for explanation.

Uniform Manifold Approximation and Projection (UMAP) is one suitable tool for
this purpose. Based on Riemannian geometry and algebraic topology [109,110], it aims
to preserve local and global structure in the data; in this respect UMAP provides better
results than other sophisticated dimensionality reduction techniques such as t-SNE [111].
The preservation property is helpful when exploring relationships within the data that
may otherwise be lost in other data transformations. To such end, UMAP first constructs
a graph-based topological representation of the high-dimensional data and uses it to
optimise its equivalent low-dimensional topological representation [110]. This implies a
low-dimensional data projection that is highly correlated to the original high-dimensional
representation. Within this optimisation, key hyperparameters are selected that alter the
weighting of global or local data preservation. For this study, we first adopted the semi-
supervised version of UMAP to perform dimensionality reduction in order to visualize
the subjects’ behaviours (points v(id),k) in the high dimensional feature space. UMAP
parameters were chosen as n neighbours = 20, min dist = 0.99, and the lower order
dimension was set to 2. The semi-supervised approach exploited only a fraction (50%) of
the available labels (subject ids). The procedure has been repeated by learning the manifold
for a varying dimensionality of the feature vector v(id),k. In three trials, we considered the
20%, the 50% and the full set of vector components; in the first two cases, components have
been selected by sampling from a uniform distribution. Results presenting the projected
2-D manifolds are depicted in Figure 10.
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As expected, the adoption of a subset of features yields more uncertain (Figure 10b) or
even indistinguishable borders (Figure 10a) circumscribing subject’s representations in the
manifold. This result relates to the completeness of the proposed model-based feature set.

In spite of the fact that in the present work the choice of the classifier is instrumental
in providing a testable system in terms of standard benchmark metrics, it is interesting to
exploit the manifold representation for visualising the effect of the classification step.

This can be achieved by learning the manifold of the classified subjects’ behaviours.
In this case, a point in the manifold is represented by the decision vector over a stimulus k
obtained at the Score Fusion stage on the test set (cfr. Equation (12)).

Since classification results are obtained going through the train/test stages, the out-
come vectors of the testing stage have been directly used for learning the manifold via
the unsupervised version of the UMAP. The result is presented in Figure 11b; it can be
compared with the original manifold in Figure 11a (already shown as Figure 10c.
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Figure 10. (a) Semi-supervised UMAP 2D projection of a subset of 20% of the original O-U parameters.
(b) Semi-supervised UMAP 2D projection of a subset of 50% of the original O-U parameters. (c)
Projection obtained by using the full feature vector. In the (a) and (b) cases, the subset of features is
constructed by selecting features at random via uniform distribution sampling. Each point represents
a subject (identified by a colour in the side bar) observing a specific image.
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Figure 11. (a) Semi-supervised UMAP 2D projection of the concatenation of Fixations and Saccades
O-U parameters. Each point represents the parameters extracted from one subject on an image of
the FIFA dataset; the different point of the same color indicate the same subject observing different
images. (b) UMAP 2D projection of vectors from the Score level fusion representation. Each point
represents a subject (identified by colour in the side bar) observing a specific image.

The latter result provides a tangible account for both the classifier effect on the topo-
logical structure of the manifold and its suitability for learning subjects’ separation hyper-
surfaces within the classifier induced manifold.

7. Discussion and Conclusions

In this paper we laid down a principled approach to the analysis of eye movements
for behavioural biometrics and derived, in the context of such framework, a computational
model suitable to operationalise biometric assessment. The approach grounds in foraging
theory, which provides a sound basis to capture the uniqueness of individual eye move-
ment behaviour; further, it is appropriate to pave the way for deriving models of gaze
behaviour analysis. In particular, we proposed a composite Ornstein-Uhlenbeck process for
quantifying, at the phenomenological level, the exploration/exploitation signature charac-
terising the foraging eye behaviour. The relevant parameters of the composite O-U model,
inferred from eye-tracking data via Bayesian analysis, are shown to yield a suitable feature
set for biometric identification; the latter here, for demonstration purposes, is eventually
accomplished via a classical classification technique (SVM).

To the best of our knowledge, the work presented here is novel in aiming at a sound,
model-based approach to the exploitation of eye movements for biometric purposes. We
argue that understanding the principles that underlie the deployment of gaze in space
and time is important for offering this field a fresh view on either the analyses of data and
prospective applications.

7.1. Advantages of the method

The merit of the method stems from straightforwardly confronting the very question
of visual attention deployment through gaze: Where to look next?. Crucially, the “where”
part concerns the selection of what to gaze at—features, objects, actions—and their location
within the scene; the “next” part involves how we gaze at what we have chosen to gaze, a
fundamental issue by and large neglected in the literature concerning the computational
modelling of attention (but for a critical discussion, see [68,95,112–114]).

It is no surprise that exactly the how problem was posed since the earliest proposal
by Kasprowski and Ober [36] that considered eye movements for biometrics. In order to
retain information on how the individual looks, while factoring out details concerning
where the person is looking, they exploit a simple “jumping point” kind of stimulation.
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Clearly, such choice has the drawback to rule out, as the authors lucidly pointed up,
important individual information, somehow collapsing brain activity behind gaze to the
crude oculomotor system activity. On the other hand, it has the advantage of avoiding,
to some extent, the learning/habituation effect (the brain learns the stimulation and acts
differently after several repetitions of the same visual stimulus [36]).

Here, in a different vein, rather than simplifying the stimulus, we put effort on a
principled modelling of the how dynamics. Hence, the presented results have been achieved
by considering free-viewing observation of a number of different static images per subject,
depicting complex scenes embedding a variety of “semantically rich” objects/regions.

7.2. Limitations

The overall quantitative outcome of our proof of concept encourages future effort in
this direction. Yet, the present study is not innocent of limitations, first of all, the number of
subjects involved in the dataset we employed. Motivation for this choice was discussed in
Section 6.

Provided that not only classified event data (fixations and saccades) but raw eye-
tracking data are available, a number of publicly available datasets could be adopted to
the purpose of widening the sample size, e.g., DOVES [115], EMOd [116] and, recently,
GazeBase [117], EyeT4Empathy [118]. Such datasets collect a variety of data as regards
the recording duration, kinds of stimuli and given task. For example, GazeBase includes
data recorded through a battery of seven tasks and related stimuli (fixation task, horizontal
saccade task, oblique saccade task, reading task, free viewing of cinematic video task,
and gaze-driven gaming task); EyeT4Empathy considers free exploration of structureless
images and gaze typing (writing sentences using eye-gaze movements on a card board).
Obviously, given a dataset, one could barely choose to benchmark the method under
investigation against a specific task/stimulus type. However, more appealing would be the
comparison across tasks, either to assess the generalisability of the method or to select the
optimal stimulus in view of a practical application. What are the precise metrics for such
conditions is far from obvious. Further, one might consider a cross- or multiple-dataset
evaluation, a cogent methodological problem that has been recently raised in machine
learning and computer vision [119–123] together with the growing quest for appropriate
statistical procedures in performance assessment. In the field of gaze-based biometrics, this
issue turns into an open research question per se.

Beyond benchmarking aspects, it is clear that there is yet an engineering gap between
the modelling effort and the practice of eye movement analyses in real world biometric
applications. Performance is not the only criterion that is to be taken into account. Biometric
systems should be easy to use, have low cost, be easy to embed and integrate in the target
security application and be robust and secure [124]. This, in turn, involves again the factors
we have mentioned (stimuli, tasks, etc.), and in what follows they are discussed and to
some extent related to the work presented here.

7.3. Session duration

To be useful in biometric identification, a single experiment/session should be as
short as possible [36,43]; more precisely, it has been recommended that check time duration
should be less than 12 secs [43]. Here, we used 2 secs recording sequences; however, from
a general standpoint, further work is needed to assess the dependency of check time on
kinds of stimuli and task requested to the user. As a matter of fact, the kind of stimulus
and task to be adopted are still open questions in this field.

7.4. The stimulus problem

We have previously touched on some implications of the nature of the stimulus that
concern the nuances of the information eventually inferred. Eye movements, in their
what component, are strongly correlated with the kind of scene the subject is looking at.
More sophisticated stimulation could be in the form of a dynamic one (e.g, a short clip or
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animation). The method presented here, both in the initial parsing of gaze raw data via the
NSLR-HMM algorithm [100], and in the subsequent O-U analysis is capable of handling, in
its present form, dynamic sequences (that also bring forth smooth pursuit gaze shifts). In
the perspective laid down in this work, this choice would provide further information to
unveil the distinctive, subjective nature of gaze deployment. But again, it should depend
in turn on the choice of the specific biometric application. Interestingly enough, even
data collected through a wearable eye-tracker could in principle be employed in specific
contexts; an opportunity—beyond the mere evaluation of fixation points collected while
the user is scrutinising a screen-, which has not yet been considered in this field.

7.5. The task problem

It is well known that gaze is not generically deployed to objects but allocated to
task-relevant objects within the scene; thus deployment may or may not correlate with
the salience of regions of the visual array [1,125–128]. In this respect, recent theoretical
perspectives on active/attentive sensing [14,129] have highlighted the fundamental role of
the exploitation/exploration pattern, which is a fundamental tenet grounding the research
presented here. The analyses we have discussed rely on recordings under a free-viewing
condition. Free-viewing is generally defined as an experimental paradigm where the viewer
is given no specific instructions during the experiment other than to look at the images.
Yet, the approach is deemed to be controversial in classical eye-movement studies [68].
It has been argued that free-viewing simply gives the subject free license to select his or
her own internal task/goal/priorities [68]. As a consequence, viewing behaviour is not
studied while free of task, but rather while having no real knowledge of the subjective
purposes of looking. But interestingly, the individual’s idiosyncrasy that arises from this
experimental choice, which is problematic in classical visual attention studies, paves the
way, for biometric aims, to capture the individual’s uniqueness, as we have discussed
from the beginning. Indeed, defining what is a goal is far from evident. The classic visual
attention dichotomy between top-down and bottom-up control assumes the former as
being determined by the current “endogenous” goals of the observer and the latter as
being constrained by the physical, “exogenous” characteristics of the stimuli (e.g.,flashes
of light, loud noises, independent of the internal state of the observer). The construct of
“endogenous” attentional control is subtle since it conflates control signals that are ”external”
(induced by the given current task voluntarily pursued) “internal” (such as the motivation
for paying attention to socially rewarding objects/events), and selection history (prioritising
items previously attended in a given context). In terms of the exploitation/exploration
pattern, which is generally related to maximize expected rewards, or, equivalently, to
minimize the future expected surprise [14,129], a distinction should be acknowledged
between “external” rewards (incentive motivation, e.g, monetary reward) and reward
related to “internal” value. The latter has different psychological facets [130] including
affect (implicit “liking” and conscious pleasure) and motivation (implicit incentive salience,
“wanting”). Eliciting these aspects can be strategic for biometric purposes.

On the other hand, the choice of an external task/goal might offer novel avenues for
biometrics. In point of fact, the choice needs not to be reduced to viewing instructions
provided to the user. It has been suggested that, for real-life applications, in the future,
eye-movement biometrics should be applied jointly with some other biometrics, such
as face or pupil images or fingerprints [131]. Further, rather than limiting to some kind
of multi-modal fusion, the task might consider, in an appropriate application context,
the specification of an actual joint activity involving both gaze and other gestures. For
instance, eye-hand coordination, e.g., in a drawing/copying task, could provide a suitable
visuo-motor signature to characterise the subject [132,133].

7.6. Handling collected eye-tracking data

A comment is deserved to the parsing step used to transform raw gaze trajectories
into a discrete sequence of events, namely fixations and saccades (for static images; smooth
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pursuit should also be considered for image sequences). Albeit eye movements have been
measured since the early 1900s, the event classification step conceals subtleties either at
the conceptual level (how to define fixations and saccades) and at the algorithmic level
that operationalises the previous (but for an in-depth discussion, the reader is urged to
refer to Hessels et al. [99]). Unfortunately, this issue is by and large overlooked in the
biometric literature with few exceptions, e.g., [134] who devoted effort to analise the effect
on final identification due to the widely adopted, baseline parameters, namely velocity
threshold and minimum fixation duration. This attitude is somehow surprising, given
the circumstances, as noted in Section 3, that the vast majority of methods barely rely on
saccade/fixation data. As to the work presented here, on the one hand we adopt the NSLR-
HMM algorithm [100] that differs in concept from the traditional workflow of pre-filtering,
event detection and segmentation; it allows for experiments with complex gaze behaviour
and can be used on both high-quality lab data and more challenging mobile data on natural
gaze behaviour, while requiring minimal parameter setting.

On the other hand, in our approach, event classification is instrumental for a coarse-
grained segmentation of gaze dynamics into exploration/exploitation phases, whilst pa-
rameter inference is primarily based on raw trajectories. Overall, the approach mitigates
the dependency of the final identification results on the initial event parsing algorithm and
its constitutive, most often empirically chosen thresholds/parameters.

A conclusive note concerns the generality of the method and the derived parame-
ters/features. The fact that the method yields a “behavioural signature” in terms of a set of
explainable parameters that compactly recapitulate the individual’s gaze dynamics, paves
the way for potential applications in research fields where one such signature is needed. A
clear example is psychiatry [135] where eye movement analysis can potentially be used and
applied to help refining or confirming a psychiatric clinical diagnosis. In this realm, internal
consistency and temporal stability of gaze events (e.g., saccades) have gained currency to
define endophenotypes of specific disorders [136]; furthermore, a signature in terms of
explainable parameters is likely to help interpreting distorted eye movements in psychiatric
patients in terms of functional brain systems. Other examples can be easily gathered from
recent developments in emotion [137–139] and personality research [72,140–143].
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