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1 Introduction

Poverty can depend on a plurality of simultaneous disadvantages other than the short-
age of financial resources. For instance, a person who is not identified as poor in terms
of income or expenditure can still experience other types of deprivations, such as mal-
nutrition, little schooling or lack of clean water and electricity.

Alkire and Foster (2011) have proposed a methodology that considers a plurality
of not-perfectly-overlapping deprivation indicators, summarising the information into a
consistent parametric class of multidimensional poverty indices. These indices can be
used for a variety of policy-relevant issues, such as creating measures of well-being, mon-
itoring and evaluating anti-poverty programs and improving the targeting of in-kind and
cash benefits.1 The Alkire Foster (AF) measures build on the Foster-Greer-Thorbecke
(FGT) indices introduced in James Foster (1984) and, in the same way, they can be
perfectly decomposed by population sub-groups (e.g. ethnicity, geographic area, etc.)
and deprivation domains (e.g. education, income, health, etc.), a feature that makes
them suitable for policy evaluations. Similar to the FGT measures, the AF measures
depend on a parameter α that ensures they satisfy a broad range of multidimensional
poverty-measurement axioms, such as replication invariance, symmetry, poverty focus
and weak monotonicity.2

In this contribution, we review the AF method and show how to apply it in Stata
with the command mpi. An important feature of mpi is its flexibility: depending on the
type of data, mpi estimates the whole range of AF multidimensional poverty measures
for arbitrary values of α and computes their decomposition by deprivation indicators
and population sub-groups. The command allows for an indefinite number of indicators,

1. For a review of applications the reader can refer to the Oxford Poverty and Human Development
Initiative, the UNDP-HDRO Human Development Reports, Alkire (2013) and OECD (2015).

2. For α ≥ 0 the AF indices satisfy: decomposability, replication invariance, symmetry, poverty
and deprivation focus, weak and dimensional monotonicity, nontriviality, normalisation, and weak
rearrangement. For α > 0 they also satisfy monotonicity, and for α ≥ 1 the axiom of weak transfer.
See Alkire and Foster (2011) for definitions and proofs.
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2 AF poverty measures

with the possibility to use a flexible weighting structure for each of them. The survey
design is also fully taken into account when computing the indices and the corresponding
standard errors.

The remainder of this paper proceeds as follows. Section 2 overviews the Alkire
and Foster method; section 3 overviews the mpi command; section 4 concludes with an
empirical application based on the original data used in Alkire and Foster (2011).

2 The Alkire Foster method

In this section, we overview the main concepts used in the AF framework to derive the
related class of poverty measures. The AF method can be divided into two sequential
parts: the identification of poor individuals and the measure of poverty based on such
identification.

2.1 Identifying the poor

Let us consider a sample of N individuals and D ≥ 2 deprivation indicators. Indicators
related to the same area of deprivation can be grouped into deprivation domains. For
instance, the domain health can be identified in the data with two indicators, e.g. the
number of visits to the doctor and the distance to the closest medical center. Let Y
be a NxD matrix whose entry yij denotes the level of indicator j for individual i. The
1xD vector z = (z1, ..., zD) contains the deprivation cutoffs of the D indicators and is
used to determine if a person is deprived in each of the D dimensions. In this section,
for simplicity we assume that for a indicator j and individual i the deprivation occurs
when yij falls strictly below the respective cutoff, i.e. yij < zj .

Indicators can enter the analysis with different weights depending on their policy
relevance. Weights are collected in a 1xD vector w = (w1, ..., wD), with 0 < wj < 1 and∑D
j=1 wj = 1. For instance, if each indicator is viewed as having equal importance all

weights will be equal to 1/D.

Let g0 be the NxD matrix whose entry is wij if yij < zj and 0 otherwise. This
is called the deprivation matrix in the Alkire and Foster (2011) framework because for
each individual of the population it contains the policy relevance of each deprivation
when such deprivation occurs. The row sum of g0 is the number of weighted deprivations
faced by individual i: ci =

∑D
j=1 g

0
ij .

With cardinal indicators, the matrix of deprivations g0 can be complemented with
the matrix of normalised deprivation gaps, g1, whose entries are given by g1ij = g0ij

zj−yij
zj

.

In other words, g1ij represents a measure of the extent to which individual i is deprived
in dimension j whenever yij < zj . More generally, for any α, let us define the matrix gα

by raising each entry of g1 to the power of α: gαij = (g0ij
zj−yij
zj

)α. Hence, similarly to the

FGT class of poverty measures, the higher the value of α the higher the entries of gα

with the biggest gaps, i.e. the focus on the poorest among the poor in the calculation
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of the overall index.

Let us define 0 < k < 1 as the poverty cutoff. This value is key in the AF method
as it represents the minimum extent of weighted deprivations a person must suffer to be
considered poor. For example, if there are 10 indicators of equal importance and k = 0.4
a person is considered poor if she experiences 5 or more deprivations simultaneously.
The use of indicator and poverty cutoffs is what justifies the term dual-cutoff approach
when referring to the AF method.

Let us define the identification function ρk(yi, z), which takes values 1 when individ-
ual i with vector of deprivations yi is classified as poor given the selected poverty cutoff
k and indicator cutoffs z. The identification function ρk(yi, z) modifies the entries of
matrix gα as gαijρk(yi, z), so that if person i is not identified as poor then the row-vector
gαi is replaced with zeros. Alkire and Foster define to the resulting matrix as gα(k) and
call it the censored deprivation matrix.

2.2 Measuring multidimensional poverty

The simplest index of multidimensional poverty in the AF framework is the multidi-
mensional headcount ratio, which measures the incidence of poverty in the population:

H =

∑N
i=1 ρk(yi, z)

N
=

q

N

The numerator is the number of poor individuals identified with the identifica-
tion function defined above and N is the population size. Despite its simplicity and
widespread use in the policy debate, H does not have the desirable property of increas-
ing when a poor person becomes deprived in a new dimension.3 An index that increases
with the number of deprivations experienced by the poor individuals can be derived
from the censored deprivation matrix, g0(k). Let |g0(k)| be the sum of all entries of

matrix g0(k): |g0(k)| =
∑D
j=1

∑N
i=1 g

0
ij(k). Alkire and Foster define the index A as

the ratio between the weighted number of deprivations faced by the poor individuals,

|g0(k)|, and the number of poor individuals (q):4 A = |g0(k)|
q .

A poverty measure that simultaneously takes into account the incidence (H) and
the breadth (A) of simultaneous deprivations can be derived from the product of H and
A:

M0 = H ·A =
|g0(k)|
N

Alkire and Foster define M0 as the adjusted multidimensional headcount ratio, also

3. This is the measurement axiom of dimensional monotonicity in the Alkire and Foster framework.
4. The denominator of index A in the original Alkire and Foster contribution is qD. In the context

of the present paper, the use of indicator weights that sum up to 1 implies that the extent of all
possible deprivations for the generic individual i is also standardised to 1.
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known as the Multidimensional Poverty Index (MPI).

The MPI can be computed with binary, ordinal or real-valued data. However, when
ordinal or real-valued indicators are available, the measure M0 can be complemented
with other indices that also take into account the depth of each deprivation. Let |g1(k)|
be the sum of the poverty gaps of poor individuals. The average poverty gap across the

extent of all possible deprivations faced by the poor is G = |g1(k)|
|g0(k)| . A poverty measure

that considers jointly the incidence of poverty (H), the average range of deprivations
(A) and the average depth across deprived dimensions (G) can be computed as:

M1 = M0 ·G =
|g1(k)|
N

More importantly, M1 respects the traditional monotonicity axiom, i.e. it increases
as a poor person becomes more deprived in a given dimension.

Following James Foster (1984), ideal poverty measures should also respect the trans-
fer principle, i.e. they should increase at a faster rate when the depth of deprivation
gets worse for those individuals who are already highly deprived. An index with such
property can be easily derived within the AF framework by simply substituting |g1(k)|
with |g2(k)| in the computation of the G index. This leads to a measure of average

severity of deprivations: S = |g2(k)|
|g0(k)| .

A multidimensional poverty measure that jointly considers all the aspects defined
above can be derived from the product of M0 and S:

M2 = M0 · S =
|g2(k)|
N

More generally, the AF class of multidimensional poverty measures is given by:

Mα = M0 · Sα =
|gα(k)|
N

, α ≥ 0

A key property of the AF measures Mα is the perfect decomposability by population
sub-groups and indicators. Perfect decomposability into population sub-groups means
that the overall measure can be obtained as the weighted average of sub-group poverty
levels with weights given by the sub-group population shares.

Mα =

G∑
g=1

Ng
N
Mα,g

Where Mα,g is the index for sub-group g and Ng the corresponding population size.

The percentage contribution of group g is therefore: Cα, g =
Ng
N

Mα,g

Mα
.
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The AF class of poverty measures can be further decomposed by indicators of de-
privation. Let |gαj (k)| be the sum of the j−column entires of gα(k). Then, Mα =∑D
j=1 |gαj (k)|/N . The percentage contribution of each indicator to the overall measure

is therefore CIα, j =
|gαj (k)|
N ·Mα

. The contribution of a group of indicators follows simply as
the sum of the contributions of the individual indicators.

3 The mpi command

The command mpi estimates the AF poverty measures described in section 2.2 and pro-
vides the exact decomposition by deprivation indicators. It computes standard errors
taking into account the survey design and allows for a flexible weighting structure of
the indicators. It also provides the decomposition by population sub-groups and shows
the contribution of each deprivation indicator in each sub-group. When real-valued in-
dicators are available, mpi computes the whole parametric class of AF poverty measures
for arbitrary values of α and provides the decomposition by population sub-groups and
indicators for each Mα.

An important characteristic of mpi is the possibility to group indicators into policy
domains. This does not affect the statistical derivation of the AF measures but facilitates
the interpretation of the results. Let us consider 2 deprivation domains, say, monetary
poverty and health. The domain monetary poverty could be identified by 1 indicator, e.g.
household income, whereas the domain health by 2 indicators, e.g. the number of visits
to the doctor and the distance to the closest medical centre. In this example, there are
therefore 3 deprivation indicators for 2 policy domains and mpi provides information at
the indicator and domain level.

3.1 Syntax

The generic syntax for mpi is:

mpi d1(varlist)
[

d2(varlist) ... w1(numlist) w2(numlist) ... t1(threshold)

t2(threshold) ...
] [

if
] [

in
] [

weight
]
, cutoff(#)

[
by(varname) alpha

(numlist) svy level(#) categories(#) nosummary nodecomposition
]

3.2 Required options

d1(varlist), d2(varlist), ... denote deprivation domains, e.g. health, monetary
poverty, education, etc. Users can specify an indefinite number of domains and,
for each domain, an indefinite number of indicators. At least 1 indicator is required.
Indicators can be binary, ordinal or real-valued variables. When the indicator is bi-
nary, the variable can take only values one (deprived) and zero (not deprived). When
the indicators are ordinal or real-valued, the user must specify the related poverty
thresholds using the corresponding mpi option. If no thresholds are specified, mpi
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assumes that all indicators are binary and will give an error is that is not the case.
Observations with missing values are excluded from the estimation sample.

cutoff(#) is required and specifies a number between 0 and 1, above which the in-
dividual is considered poor. Following the approach outlined in section 2, for each
individual mpi computes the weighted sum of the indicators and the individual is
considered poor only if the resulting score is higher then the selected poverty cutoff.
Weights are specified in the corresponding mpi option (see below); if no weights are
specified, mpi assumes equal weights at the domain level and within each domain.
Hence, when the number of indicators is equal to the number of domains and the
indicators have equal weights the poverty cutoff will simply indicate the percentage
of simultaneous deprivations above which a person is considered poor.

Let us consider an example. The command line below uses three indicators and
a poverty cutoff of 0.66. Since no thresholds are specified, mpi assumes that the
indicators are all binary variables. Since no weights are specified, mpi assumes
equal weights between and withing domains. In the example below, a person is
therefore considered poor if she faces at least 2 deprivations, as the weighted sum of
2 deprivations would be just above the poverty cutoff.5

mpi d1(ind1 ind2 ind3), cutoff(0.66)

Let us consider now the case of 3 indicators and 2 deprivation domains, the first
containing 2 indicators (ind1 and ind2) and the second 1 indicator (ind3). Since
weights are not specified, mpi assumes equal weights between and withing domains.
In the example below, each domain has therefore a weight of 0.5 and the first 2
indicators each have a weight of 0.25. Given a poverty cutoff of 0.74, an individual
deprived in ind1 and ind3 would therefore be considered poor because the weighted
sum of their deprivations would be just above the poverty cutoff.

mpi d1(ind1 ind2) d2(ind3), cutoff(0.74)

t1(numlist), t2(numlist), ... denote the deprivation thresholds for the indicators
of each domain. This option is required only when using ordinal or real-valued
indicators. Depending on the indicator, the deprivation can occur for values below
or above the threshold. The user can therefore specify the direction of the deprivation
by typing the sign < or > in front of the threshold value. If no signs are specified,
mpi assumes that the deprivation occurs when the indicator is below the threshold.6

The command line below shows an example of different deprivation thresholds: for
ind1 and ind3, deprivation occurs for values strictly below 4 and 5 respectively,
whereas for ind2 the deprivation occurs when the indicator is strictly above 3.

mpi d1(ind1 ind2) d2(ind3) t1(<4 >3) t2(5), cutoff(0.74)

5. Note that the commands: mpi d1(ind1 ind2 ind3), cutoff(0.66) and mpi d1(ind1) d2(ind2)

d3(ind3), cutoff(0.66) are equivalent.
6. Individuals are considered deprived for values strictly above or below the thresholds. No empty

spaces between the signs < or > and the threshold value are allowed. mpi considers the absolute
value of the poverty gaps; this affects the computation of the sole M1 index in the special case of
a negative threshold.
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3.3 Other options

w1(numlist), w2(numlist), ... denote the weights of the indicators. Weights are
numbers between zero and one and they must sum up to 1; when this is not the case,
mpi gives an error. It is required to use as many weights as the number of indicators
and the list of weights must follow the same structure of the corresponding list of
indicators. The default option is equal weighs between and within domains. The
two command lines below are therefore equivalent:

mpi d1(ind1 ind2) d2(ind3), cutoff(0.74)

mpi d1(ind1 ind2) d2(ind3) w1(0.25 0.25) w2(0.5), cutoff(0.74)

by(varname) computes the decomposition of the AF measures by categories of varname.
The variable must be numeric. Missing values are excluded from the estimation
sample.

svy allows taking into account complex survey designs. The data have to be svyset

before using mpi. When the only information about the survey design relates to
the sampling weights the user can supply svyset with such information and use the
svy option of mpi. Equivalently, the user can specify the sampling weights in the
command line using the standard syntax.7

alpha(numlist) triggers the computation of additional, non-standard indices Mα in
the case of ordinal and real-valued indicators. The M1 and M2 indices are always
computed.

level(#) changes the confidence levels for the estimation of the confidence intervals.

categories(#) changes how mpi detects ordinal indicators by counting the number of
different observational values characterizing the variable. The default is 20. When
a variable has less than 20 different values mpi shows an alert. This is important
because mixing ordinal and real-valued variables is possible but not advisable: ordi-
nal variables automatically receive a higher weight than real-valued variables in the
calculation of the AF measures based on the normalised poverty gaps.8

nosummary suppresses the display of the summary table at the beginning of mpi’s output.

nodecomposition suppresses the computation and the display of the decompositions
along the lines of the domains and indicators. This slightly increases the execution
speed.

7. Since mpi is not a standard estimation command, in the sense that it does not imply estimating a
covariance matrix, the Stata svy prefix in front of the command name, i.e. svy: mpi ..., is not
allowed.

8. The same happens when mixing binary and real-valued indicators: in this case the binary indicators
receive a higher weight in the analysis simply because the poverty gaps are always the highest
possible. See Alkire and Foster (2011) for a discussion about mixing variables of different type in
the calculation of the AF measures with α ≥ 1. When this is necessary the indicator weights can
be used to counterbalance the implicit higher weight of binary indicators.
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3.4 Returned values

Scalars
r(H) Multidimensional Headcount Ratio
r(M0) Adjusted Multidimensional Headcount Ratio
r(A) Multidimensional Poverty Intensity
r(M1) Adjusted Multidimensional Poverty Gap
r(G) Average Poverty Gap
r(M2) Adjusted Foster-Greer-Thorbecke Measure
r(S) Average Severity
r(N) Number of used observations

Matrices
r(mpi) Indices as in ‘Scalars’ r(mpi se) Std.-Err. thereof
r(ind) Indicator contribution (%) r(ind se) Std.-Err. thereof
r(dom) Domain contribution (%) r(dom se) Std.-Err. thereof

by-Matrices
r(by mpi) Indices, by subgroups r(by mpi se) Std.-Err. thereof
r(by mpi pc) Contribution of subgroups r(by ... se) Std.-Err. thereof
r(by ind) Indicator contrib, by subgroups r(by ind se) Std.-Err. thereof
r(by dom) Domain contrib, by subgroups r(by dom se) Std.-Err. thereof

Functions
e(sample) Marks estimation sample

4 Empirical applications

For the empirical application of mpi we use the 2000 Indonesian Family Life Survey
(IFLS). Alkire and Foster (2011) use the same data, which can be freely downloaded
with the related Stata codebook.9

The analysis applies the same settings of the original Alkire and Foster contribution:
we consider all adults above 19 years old and 3 deprivation indicators: household ex-
penditure (exp), the Body Mass Index (BMI) and the years of schooling (educ). Expen-
diture variables are adjusted by the square root of the household size. The deprivation
thresholds are the following: expenditure below 150,000 Rupiah, a BMI lower than 18,5
kg/m2 and less than 6 years of schooling. The final sample consists of 17,678 individ-
uals, whereas in the original Alkire and Foster contribution the sample is 19,752. The
difference is arguably due to the calculation of the years of schooling from the raw data
and the related treatment of implausible and missing values. The next table shows the
first 5 rows of the dataset.

. list hid id sex BMI exp ex_food ex_nofood educ weights in 1/5, table

hid id sex BMI exp ex_food ex_nof~d educ weights

1. 1 1 Female 21 482947 462731 20217 3 0.85
2. 1 2 Male 23 482947 462731 20217 7 0.60
3. 2 3 Female 17 133736 131532 2205 0 0.95
4. 2 4 Male 20 133736 131532 2205 3 0.91
5. 3 5 Male 22 165981 154333 11647 4 0.95

9. Strauss et al. (2004), material available at http://www.rand.org/labor/FLS/IFLS/ifls3.html.

http://www.rand.org/labor/FLS/IFLS/ifls3.html
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The variables hid and id are the household and the person identifiers, weights

represents the survey weights, ex food and ex nofood the food and non-food household
expenditures. In the first application, we show how to use mpi with binary indicators.
We therefore construct 3 binary indicators using the deprivation thresholds defined
above and then estimate the AF measure with a poverty cutoff equal to 0.66. This
means that only persons with at least 2 simultaneous deprivations are considered poor.

. generate exp_i = (exp < 150000)

. generate educ_i = (educ < 6)

. generate BMI_i = (BMI < 18.5)

. mpi d1(exp_i) d2(educ_i) d3(BMI_i) [pw=weights] , cutoff(0.66)

Summary of mpi indicators

Indicator Type Weight Deprived

Domain 1
exp_i Binary .33 31.477 %

Domain 2
educ_i Binary .33 38.318 %

Domain 3
BMI_i Binary .33 16.006 %

Index Estimate Std Err [95% Conf Interval]

Main
M0 0.166 0.003 0.161 0.172

Additional
H 0.229 0.004 0.222 0.237
A 0.725 0.002 0.720 0.729

Note: Adjusted Multidimensional Headcount M0 = H*A

Indicator M0

domain 1
exp_i 0.383

domain 2
educ_i 0.412

domain 3
BMI_i 0.204

Total 1.000

Contribution of each indicator (%)

The first part of the mpi output is a table with a summary of the deprivation
indicators. Indicators are organised in deprivation domains and for each of them mpi

shows the type (binary, ordinal or real-valued), the policy weight (equal weights in this
example, the default option) and the share of deprived individuals.

The second table shows the AF poverty measures with the related standard errors.
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This table is divided in two parts containing the estimated Mα parameters (upper part)
and the related sub-indices (bottom part). Since in this example there are only binary
indicators, mpi computes only M0, which is derived as the product of sub-indices H (the
incidence of the poor in the population) and A (the average intensity of simultaneous
deprivations among the poor).

The third table shows the percentage contribution of each indicator to the overall
index. In this example the deprivation in household expenditures accounts for 62.3% of
the overall value of M0.

The next example shows how to allow for a different weighting structure in the
relevance of each deprivation indicator and the decomposition of the AF measures by
population sub-groups:

. mpi d1(exp_i) w1(0.5) d2(educ_i) w2(0.3) d3(BMI_i) w3(0.2) [pw=weights], ///
> cutoff(0.66) by(sex)

Summary of mpi indicators

Indicator Type Weight Deprived

Domain 1
exp_i Binary .5 31.477 %

Domain 2
educ_i Binary .3 38.318 %

Domain 3
BMI_i Binary .2 16.006 %

Index Estimate Std Err [95% Conf Interval]

Main
M0 0.159 0.003 0.153 0.164

Additional
H 0.191 0.003 0.185 0.198
A 0.829 0.002 0.826 0.833

Note: Adjusted Multidimensional Headcount M0 = H*A

Indicator M0

domain 1
exp_i 0.603

domain 2
educ_i 0.317

domain 3
BMI_i 0.080

Total 1.000

Contribution of each indicator (%)

Decomposition by subgroups
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MPI by: sex

Male Female Total

H 0.160 0.217 0.191
M0 0.131 0.181 0.159

pop share 0.454 0.546 1.000

Indices by subgroup (absolute)

Male Female Total

H 0.380 0.620 1.000
M0 0.376 0.624 1.000

Contribution of subgroups to indices (%)

Male Female Total

M0
exp_i 0.610 0.599 0.603

educ_i 0.298 0.328 0.317
BMI_i 0.093 0.073 0.080

Total 1.000 1.000 1.000

Contribution of each indicator (%)

The indicator exp enter the analysis with a relevance of 0.5, whereas educ amd BMI

have a weight of 0.3 and 0.2 respectively. The different weighting structure affects both
the identification of the poor and the measurement of poverty: H, the share of poor
in the population, is now lower whereas A is slightly higher, implying an overall lower
value of M0.

When the user specifies the by(varname) option, mpi computes the related decom-
position by categories of varname. In this example, mpi provides the decomposition by
gender.

Three tables relate to the decomposition by population sub-groups. The first table
shows the absolute value of the indices in each sub-group and, in the last row, the
related population shares. In this example, 54.6% of the population are women. In this
sub-group the incidence of poverty is significantly higher (21.7% against 16.0%), as well
as the overall level of M0 (0.181 against 0.131). The last column of the table shows the
overall value of the indices in the population, which is given by the weighted sum of
the indices in the two sub-groups with weights given by the related population shares:
0.131 ∗ 0.454 + 0.181 ∗ 0.546 = 0.159

The second table shows the percentage contribution of each sub-group. In this
example, 62.4% of the overall value of M0 is attributable to the group of women. The
values in this table are computed by dividing the weighted indices of each sub-group by
the overall index, with weights given by the related population share.
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The third table shows the percentage contribution of each indicator in each sub-
group. As can be seen, the significantly different contribution of educ is driving the
differences between M0 in the two groups.

The next example shows an application with real-valued indicators and with more
than one indicator in the first deprivation domain. Specifically, the indicator of house-
hold expenditure is replaced with two indicators: household food expenditures and other
non-food expenditures. The overall relevance of this domain is kept at 0.5 and equal
weights are assigned to the two indicators, which implies that each indicator of this
domain enters with a weight of 0.25 in the mpi analysis. The relevance of the other two
domains is also the same as before: 0.3 for the years of education and 0.2 for the BMI.

When using ordinal or real-valued indicators, the user has to specify the related
deprivation thresholds in the syntax. In what follows, the chosen thresholds for the first
domain are 100,000 Rupiah for food and 12,000 Rupiah for non-food expenditure. The
thresholds for the other domains are as before: less than 6 years of schooling and a BMI
lower than 18,5 kg/m2. With real-valued indicators, mpi computes the whole class of
the AF poverty measures: M0,M1 and M2; the user can specify additional values of α
by using the related option (alpha(3) in the example below).

. mpi d1(ex_food ex_nofood) t1(<100000 <12000) w1(0.4 0.1) ///
> d2(educ) t2(6) w2(0.3) ///
> d3(BMI) t3(18.5) w3(0.2) ///
> [pw=weights], cutoff(0.66) alpha(3)

Summary of mpi indicators

Indicator Type Weight Threshold Poor if Deprived

Domain 1
ex_food Real-valued .4 100000 below 19.941 %
ex_nofood Real-valued .1 12000 below 25.709 %

Domain 2
educ Real-valued .3 6 below 38.318 %

Domain 3
BMI Real-valued .2 18.5 below 16.006 %

Index Estimate Std Err [95% Conf Interval]

Main
M0 0.094 0.002 0.089 0.098
M1 0.043 0.001 0.041 0.045

M(2) 0.031 0.001 0.029 0.033
M(3) 0.026 0.001 0.025 0.028

Additional
H 0.117 0.003 0.111 0.122
A 0.804 0.003 0.799 0.809
G 0.460 0.004 0.451 0.468

S(2) 0.330 0.005 0.321 0.339
S(3) 0.279 0.005 0.270 0.288

Note: Adjusted Multidimensional Headcount M0 = H*A
Adjusted Poverty Gap M1 = H*A*G
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Adjusted Foster-Greer-Thorbecke (FGT) Measure M(a) = H*A*S(a)

Indicator M0 M(1) M(2) M(3)

domain 1
ex_food 0.497 0.318 0.194 0.122

ex_nofood 0.080 0.091 0.083 0.072
domain 2

educ 0.346 0.579 0.721 0.806
domain 3

BMI 0.076 0.012 0.002 0.000

Total 1.000 1.000 1.000 1.000

Contribution of each indicator (%)

Domain M0 M(1) M(2) M(3)

domain 1 0.578 0.409 0.277 0.194
domain 2 0.346 0.579 0.721 0.806
domain 3 0.076 0.012 0.002 0.000

Total 1.000 1.000 1.000 1.000

Contribution of each domain (%)

The summary table at the top now shows that the indicators are real-valued, together
with the related thresholds and the direction of each deprivation, which in this example
is always for values below the threshold (the default).

The second table shows the values of the AF class of poverty measures with the
related sub-indices. Since the command line includes the option alpha(3), the table
shows also the value of M3 and the related sub-index S3 as defined in Section 2.2.

The third table shows the contribution of the indicators to each poverty measure,
M0,M1,M2 and M3, whereas the last table provides the contribution of the deprivation
domains.
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