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Chapter 1

Introduction

Attention mechanism and Transformer-based architectures have recently revo-
lutionized the artificial intelligence landscape in almost every field. Ever since
their first introduction, they have become ubiquitous components of any deep
learning breakthrough, from Natural Language Processing to Computer Vision
and Bioinformatics. This boils down mainly to their superior abilities in dealing
with long-range interactions across data. In this thesis, I investigate the frontier
of Transformer-based architectures at the intersection of Vision and Language,
where machines are required to replicate the human ability to semantically connect
different domains.

In the first part, we present state-of-the-art solutions for the image captioning
task, which consist of automatically describing images with natural language
sentences, from the understanding of the visual content, objects and their interac-
tions, to the creation of a syntactically and semantically correct sentence. We first
discuss a thorough literature survey in the deep learning era, and we propose a
novel image captioning model among the firsts embracing self-attention in place
of recurrent networks. Experimentally, our architecture reaches a new state of
the art, achieving the first place of the public leaderboard on the most important
captioning benchmark.

Further, we explore new training strategies proposing a method based on
the interplay between two distinct language models, using the mean teacher
paradigm and knowledge distillation, providing state-of-the-art caption quality
with a reduced number of parameters. Despite the remarkable results obtained
by captioning models, switching to real-life scenarios constitutes a challenge due
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CHAPTER 1. INTRODUCTION

to the larger variety of visual concepts not covered in existing datasets. For this
reason, we propose a novel approach for novel object captioning, that learns to
select the most relevant objects of an image, regardless of their presence in the
training set, and constrains the generative process accordingly.

In the following, we present solutions for cross-modal retrieval, another task
related to vision and language that consists of finding images corresponding to a
given textual query and, vice versa, retrieving texts which describe a given query
image. Since both images and texts are usually encoded as sets or sequences of ele-
ments, we propose an attentive reduction method that transforms a set of elements
into a single response, leading to a performance increase. Moreover, we propose
an efficient Transformer architecture to fill in the gap between effectiveness and
efficiency by learning a shared embedding space and distilling fine-grained scores
previously aligned. Our approach competes with state-of-the-art large models
while being almost 90 times faster. Switching to more complex and challenging
scenarios, we also investigate visual-semantic models in the artistic and digital
humanities domain. To this aim, we propose a cross-modal retrieval method that
also identifies if sentences describe the visual content or the context of a painting
and a visual-semantic embedding that can automatically align illustrations and
texts without paired supervision.

Finally, we expand the scope of attentive models to the language of life:
the genetic code. We propose a new class of deep learning models based on
the Perceiver architecture, built upon Transformer, which leverages asymmetric
attention and can scale to longer sequences. We present a model able to predict
the gene expression (mRNA level) given its DNA sequence, and a model for the
first time predicting the protein expression given its amino-acid sequence. We
demonstrate the effectiveness of our methods and promising future opportunities.

Activities carried out during the Ph.D.

Beside the research activities described in this thesis, I also took part in other
teaching and service activities, which are reported below together with a list of
attended conferences and schools. The complete list of my publications is instead
reported in Appendix A.
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Teaching activities
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Chapter 2

Image captioning

A fundamental challenge in artificial intelligence and computer vision is that of
creating a system able to replicate the human ability of understanding a visual
stimuli and describing it in natural language. Indeed, this would open up to new
advancements in human-machine interaction and collaboration, bringing a great
impact on society. Recent improvements in computer vision and natural language
processing, along with the availability of larger datasets, have made it possible,
today, to automatically generate sentences describing images with an incredibly
high efficacy and reliability.

This task, called image captioning, has recently gained lots of attention thanks
to the adoption of deep learning approaches, which improved the performances
of algorithms and can effectively describe images in natural language [311, 159,
341, 312, 65, 196]. Image captioning architectures are capable of learning a
correspondence between an input image and a probability distribution over time,
which can be sampled to generate captions either using a greedy decoding [312],
or more elaborated procedures like beam search and its variants [6].

Contributions

In this chapter, we first present a thorough overview of the literature on the image
captioning task from the advent of the deep learning era; in the following, we
present two different solutions to address the task itself. The first method is based

This chapter is related to publications [4, 6, 7, 8] reported in Appendix A, by the author of the
thesis. See Appendix A for details.
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on the Transformer model, thus replacing the recurrent relations in favour of the use
of fully-attentive mechanisms. The proposed architecture, called Meshed-Memory
Transformer, improves both the image encoding and the language generation
steps: it learns a multi-level representation of the relationships between image
regions integrating learned a priori knowledge, and uses a mesh-like connectivity
at decoding stage to exploit low- and high-level features. Experimentally, we
investigate the performance of our solution and different fully-attentive models
in comparison with recurrent ones. We show that our model achieves a new state
of the art on the most important dataset for image captioning (i.e. COCO [201])
reaching the first place on the leaderboard of the online test server1.

While a typical model for image captioning is composed by one language
model, our second approach is instead based on the interaction of two intercon-
nected language models, that learn from each other during the training phase.
Our approach, called CaMEL, leverages the interplay between the two language
models following a mean teacher learning paradigm with knowledge distillation.
Experimentally, we assess the effectiveness of our solution in conjunction with
different visual feature extractors. When comparing with existing methods, we
demonstrate that our model provides state-of-the-art caption quality with a sig-
nificantly reduced number of parameters. According to the CIDEr metric, we
obtain a new state of the art on COCO [201] when training without using external
data. Further, although captioning models have achieved impressive results, de-
scribing the large variety of visual concepts present in real-life scenarios is still
very challenging. For this reason, we propose a novel method for novel object
captioning, a variant of the task that consist of describing novel objects unseen
during the training phase. Our model learns to select the most relevant objects
of an image, regardless of their presence in the training set, and constrains the
generative process accordingly.

In details, the rest of the chapter is organized as follows: in Sec. 2.1, we present
the image captioning problem with a comprehensive survey on the task since the
first deep learning approaches. We explore the most important architectures in
literature together with a quantitative experimental analysis. Subsequently, in
Sec. 2.2 and in Sec. 2.3 we describe our solutions, respectively Meshed-Memory
Transformer and CaMEL, and we show their effectiveness with quantitative and
qualitative experiments, where both methods achieve a new state of the art on
standard image captioning. Finally, in Sec. 2.4 we present our approach for novel
object captioning, along with experiments showing its superior performances.

1https://competitions.codalab.org/competitions/3221
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CHAPTER 2. IMAGE CAPTIONING

2.1 Deep learning survey

2.1.1 Introduction

Image captioning is the task of describing the visual content of an image in natural
language, employing a visual understanding system and a language model cap-
able of generating meaningful and syntactically correct sentences. Neuroscience
research has clarified the link between human vision and language generation
only in the last few years [13]. Similarly, in Artificial Intelligence, the design
of architectures capable of processing images and generating language is a very
recent matter. The goal of these research efforts is to find the most effective
pipeline to process an input image, represent its content, and transform that into a
sequence of words by generating connections between visual and textual elements
while maintaining the fluency of language.

The early-proposed approaches to image captioning have entailed description
retrieval [236, 87, 235, 94, 172, 160] or template filling and hand-crafted natural
language generation techniques [355, 3, 351, 193, 116, 230, 178, 181]. While
these have been treated in other surveys [24, 16, 131], image captioning is currently
based on the usage of deep learning-based generative models. In its standard
configuration, the task is an image-to-sequence problem whose inputs are pixels.
These inputs are encoded as one or multiple feature vectors in the visual encoding
step, which prepares the input for a second generative step, called the language
model. This produces a sequence of words or sub-words decoded according to a
given vocabulary.

In these few years, the research community has improved model design con-
siderably: from the first deep learning-based proposals adopting Recurrent Neural
Networks (RNNs) fed with global image descriptors, methods have been enriched
with attentive approaches and reinforcement learning up to the breakthroughs of
Transformers and self-attention and single-stream BERT-like approaches. At the
same time, the Computer Vision and Natural Language Processing (NLP) com-
munities have addressed the challenge of building proper evaluation protocols and
metrics to compare results with human-generated ground-truths. However, despite
the investigation and improvements achieved in these years, image captioning is
still far from being considered a solved task.

Several domain-specific proposals and variants of the task have also been
investigated to accommodate for different user needs and descriptions styles.
According to [128, 269], indeed, image captions can be perceptual, when focusing
on low-level visual attributes; non-visual, when reporting implicit and contextual

Transforming vision and language with attention 9



CHAPTER 2. IMAGE CAPTIONING

information; conceptual, when describing the actual visual content (e.g. visual
entities and their relations). While the latter is commonly recognized as the target
of the image captioning task, this definition encompasses descriptions focusing
on different aspects and at various levels of detail (e.g. including attributes or not,
mentioning named entities or high-level concepts only, describing salient parts
only, or also finer details).

With the aim of providing a testament to the journey that captioning has taken
so far, and with that of encouraging novel ideas, we trace a holistic overview of
techniques, models, and task variants developed in the last years. Furthermore, we
review datasets and evaluation metrics and perform quantitative comparisons of
the main approaches. Finally, we discuss open challenges and future directions.

To sum up, the contributions of this section are as follows:
• Following the inherent dual nature of captioning models, we develop taxonomies

for visual encoding and language modeling approaches and describe their key
aspects and limitations.

• We review the training strategies adopted in the literature over the past years
and the recent advancement obtained by the pre-training paradigm and masked
language model losses.

• We review the main datasets used to explore image captioning, both domain-
generic benchmarks and domain-specific datasets collected to investigate specific
aspects.

• We analyze both standard and non-standard metrics adopted for performance
evaluation and the characteristics of the caption they highlight.

• We present a quantitative comparison of the main image captioning methods
considering both standard and non-standard metrics and a discussion on their
relationships, which sheds light on performance, differences, and characteristics
of the most important models.

• We give an overview of many variants of the task and discuss open challenges
and future directions.

Compared to previous surveys on image captioning [131, 16, 209, 271, 24],
we provide a comprehensive and updated view on deep learning-based generative
captioning models. We perform a deeper analysis of proposed approaches and
survey a considerably larger number of papers on the topic. Also, we cover non-
standard evaluation metrics, which are disregarded by other works, discuss their
characteristics, and employ them in a quantitative evaluation of state-of-the-art
methods. Moreover, we tackle emerging variants of the task and a broader set of
available datasets.

10 Transforming vision and language with attention



CHAPTER 2. IMAGE CAPTIONING

A herd of zebras grazing 
with a rainbow behind.

VISUAL ENCODING

1. Non-Attentive
(Global CNN Features)

2. Additive Attention:
• Grid-based
• Region-based

3. Graph-based Attention
4. Self-Attention:

• Region-based 
• Patch-based 
• Image-Text Early Fusion

LANGUAGE MODELS

1. LSTM-based:
• Single-layer
• Two-layer

2. CNN-based
3. Transformer-based
4. Image-Text Early Fusion 

(BERT-like)

TRAINING STRATEGIES 

1. Cross-Entropy Loss
2. Masked Language Model
3. Reinforcement Learning 
4. VL Pre-Training

Image

Figure 2.1: Overview of the image captioning task and taxonomy of the most
relevant approaches.

2.1.2 Visual encoding
Providing an effective representation of the visual content is the first challenge of
an image captioning pipeline. The current approaches for visual encoding can be
classified as belonging to four main categories: 1. non-attentive methods based on
global CNN features; 2. additive attentive methods that embed the visual content
using either grids or regions; 3. graph-based methods adding visual relationships
between visual regions; and 4. self-attentive methods that employ Transformer-
based paradigms, either by using region-based, patch-based, or image-text early
fusion solutions. This taxonomy is visually summarized in Fig. 2.1.

Global CNN Features

With the advent of CNNs, all models consuming visual inputs have been improved
in terms of performance. The visual encoding step of image captioning is no
exception. In the most simple recipe, the activation of one of the last layers of a
CNN is employed to extract high-level representations, which are then used as
a conditioning element for the language model (Fig. 2.2a). This is the approach
employed in the seminal “Show and Tell” paper [311],where the output of Google-
Net [292] is fed to the initial hidden state of the language model. In the same year,

Transforming vision and language with attention 11
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Attention Over Visual RegionsGlobal CNN Features

Image CNN

Attention Over Grid of CNN Features

Image Detector language modelImage CNN language model

attention attention

(a)

Attention Over Visual RegionsGlobal CNN Features

Image CNN

Attention Over Grid of CNN Features

Image Detector language modelImage CNN language model

attention attention

(b)

Attention Over Visual RegionsGlobal CNN Features

Image CNN

Attention Over Grid of CNN Features

Image Detector language modelImage CNN language model

attention attention

(c)

Figure 2.2: Three of the most relevant visual encoding strategies for image cap-
tioning: (a) global CNN features; (b) fine-grained features extracted from the
activation of a convolutional layer, together with an attention mechanism guided
by the language model; (c) image region features coming from a detector, together
with an attention mechanism.

Karpathy et al. [159] used global features extracted from AlexNet [176] as the
input for a language model. Further, Mao et al. [222] and Donahue et al. [79]
injected global features extracted from the VGG network [280] at each time-step
of the language model.

Global CNN features were then employed in a large variety of image cap-
tioning models [47, 86, 150, 362, 332, 109, 40, 41]. Notably, Rennie et al. [262]
introduced the FC model, in which images are encoded using a ResNet-101 [119],
preserving their original dimensions. Other approaches [359, 96] integrated high-
level attributes or tags, represented as a probability distribution over the most
common words of the training captions.

The main advantage of employing global CNN features resides in their simpli-
city and compactness of representation, which embraces the capacity to extract
and condense information from the whole input and to consider the overall context
of an image. However, this paradigm also leads to excessive compression of in-
formation and lacks granularity, making it hard for a captioning model to produce
specific and fine-grained descriptions.

Attention Over Grid of CNN Features

Motivated by the drawbacks of global representations, most of the following ap-
proaches have increased the granularity level of visual encoding [341, 262, 214].
For instance, Dai et al.[72] have employed 2D activation maps in place of 1D
global feature vectors to bring spatial structure directly in the language model.
Drawing from machine translation literature, a big portion of the captioning com-
munity has instead employed the additive attention mechanism (Fig. 2.2b), which

12 Transforming vision and language with attention



CHAPTER 2. IMAGE CAPTIONING

has endowed image captioning architectures with time-varying visual features
encoding, enabling greater flexibility and finer granularity.
Definition of additive attention. The intuition behind attention boils down to
weighted averaging. In the first formulation proposed for sequence alignment
by Bahdanau et al. [15] (also known as additive attention), a single-layer feed-
forward neural network with a hyperbolic tangent non-linearity is used to compute
attention weights. Formally, given two generic sets of vectors {x1, . . . ,xn} and
{h1, . . . ,hm}, the additive attention score between hi and xj is computed as
follows:

fatt (hi,xj) = W⊤
3 tanh (W1hi +W2xj) , (2.1)

where W1 and W2 are weight matrices, and W3 is a weight vector that performs
a linear combination. A softmax function is then applied to obtain a probability
distribution p (xj | hi), representing how much the element encoded by xj is
relevant for hi.

Although the attention mechanism was initially devised for modeling the rela-
tionships between two sequences of elements (i.e. hidden states from a recurrent
encoder and a decoder), it can be adapted to connect a set of visual representations
with the hidden states of a language model.
Attending convolutional activations. Xu et al. [341] introduced the first method
leveraging the additive attention over the spatial output grid of a convolutional
layer. This allows the model to selectively focus on certain elements of the grid
by selecting a subset of features for each generated word. Specifically, the model
first extracts the activation of the last convolutional layer of a VGG network [280],
then uses additive attention to compute a weight for each grid element, interpreted
as the relative importance of that element for generating the next word.
Other approaches. The solution based on additive attention over a grid of features
has been widely adopted by several following works with minor improvements in
terms of visual encoding [359, 48, 214, 326, 102, 106].

Review networks – For instance, Yang et al. [353] supplemented the encoder-
decoder framework with a recurrent review network. This performs a given number
of review steps with attention on the encoder hidden states and outputs a “thought
vector” after each step, which is then used by the attention mechanism in the
decoder.

Multi-level features – Chen et al. [43] proposed to employ channel-wise
attention over convolutional activations, followed by a more classical spatial
attention. They also experimented with using more than one convolutional layer
to exploit multi-level features. On the same line, Jiang et al. [154] proposed to use

Transforming vision and language with attention 13
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Graph-based Encoding

Image Detector

Self-Attention Encoding

Image Detector

(x N)

(a)

Graph-based Encoding

Image Detector

Self-Attention Encoding

Image Detector

(x N)

(b)

Figure 2.3: Summary of the two most recent visual encoding strategies for image
captioning: (a) graph-based encoding of visual regions; (b) self-attention-based
encoding over image region features.

multiple CNNs in order to exploit their complementary information, then fused
their representations with a recurrent procedure.

Exploiting human attention – Some works also integrated saliency information
(i.e. what do humans pay more attention to in a scene) to guide caption genera-
tion with stimulus-based attention. This idea was first explored by Sugano and
Bulling [289] who exploited human eye fixations for image captioning by includ-
ing normalized fixation histograms over the image as an input to the soft-attention
module of [341] and weighing the attended image regions based on whether these
are fixated or not. Subsequent works on this line [295, 252, 62, 44] employed
saliency maps as a form of additional attention source.

Attention Over Visual Regions

The intuition of using saliency boils down to neuroscience, which suggests that
our brain integrates a top-down reasoning process with a bottom-up flow of visual
signals. The top-down path consists of predicting the upcoming sensory input by
leveraging our knowledge and inductive bias, while the bottom-up flow provides
visual stimuli adjusting the previous predictions. Additive attention can be thought
of as a top-down system. In this mechanism, the language model predicts the next
word while attending a feature grid, whose geometry is irrespective of the image
content.

Bottom-up and top-down attention. Differently from saliency-based approaches [44],
in the solution proposed by Anderson et al. [7] the bottom-up path is defined by
an object detector in charge of proposing image regions. This is then coupled with
a top-down mechanism that learns to weigh each region for each word prediction
(see Fig. 2.2c). In this approach, Faster R-CNN [259, 260] is adopted to detect
objects, obtaining a pooled feature vector for each region proposal. One of the key

14 Transforming vision and language with attention
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elements of this approach resides in its pre-training strategy, where an auxiliary
training loss is added for learning to predict attribute classes alongside object
classes on the Visual Genome [175] dataset. This allows the model to predict
a dense and rich set of detections, including both salient object and contextual
regions, and favors the learning of better feature representations.

Other approaches. Employing image region features has demonstrated its advant-
ages when dealing with the raw visual input and has been the standard de-facto in
image captioning for years. As a result, many of the following works have based
the visual encoding phase on this strategy [162, 248, 138, 318]. Among them, we
point out two remarkable variants.

Visual Policy – While typical visual attention points to a single image region
at every step, the approach proposed by Zha et al. [366] introduces a sub-policy
network that interprets also the visual part sequentially by encoding historical
visual actions (e.g. previously attended regions) via an LSTM to serve as context
for the next visual action.

Geometric Transforms – Pedersoli et al. [241] proposed to use spatial trans-
formers for generating image-specific attention areas by regressing region pro-
posals in a weakly-supervised fashion. Specifically, a localization network learns
an affine transformation or each location of the feature map, and then a bilinear
interpolation is used to regress a feature vector for each region with respect to
anchor boxes.

Graph-based Encoding

To further improve the encoding of image regions and their relationships, some
studies consider using graphs built over image regions (see Fig. 2.3a) to enrich the
representation by including semantic and spatial connections.

Spatial and semantic graphs. The first attempt in this sense is due to Yao et
al. [357], followed by Guo et al. [111], who proposed the use of a graph convolu-
tional network (GCN) [171] to integrate both semantic and spatial relationships
between objects. The semantic relationships graph is obtained by applying a
classifier pre-trained on Visual Genome [175] that predicts an action or an inter-
action between object pairs. The spatial relationships graph is instead inferred
through geometry measures (i.e. intersection over union, relative distance, and
angle) between bounding boxes of object pairs.

Scene graphs. With a focus on modeling semantic relations, Yang et al. [347]
proposed to integrate semantic priors learned from text in the image encoding
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by exploiting a graph-based representation of both images and sentences. The
representation used is the scene graph, i.e. a directed graph connecting the objects,
their attributes, and their relations. On the same line, Shi et al. [277] represented
the image as a semantic relationship graph but proposed to train the module in
charge of predicting the predicate nodes directly on the ground-truth captions
rather than on external datasets.
Hierarchical trees. As a special case of a graph-based encoding, Yao et al. [358]
employed a tree to represent the image as a hierarchical structure. The root
represents the image as a whole, intermediate nodes represent image regions and
their contained sub-regions, and the leaves represent segmented objects in the
regions.

Graph encodings brought a mechanism to leverage relationships between
detected objects, which allows the exchange of information in adjacent nodes and
thus in a local manner. Further, it seamlessly allows the integration of external
semantic information. On the other hand, manually building the graph structure
can limit the interactions between visual features. This is where self-attention
proved to be more successful by connecting all the elements with each other in a
complete graph representation.

Self-Attention Encoding

Self-attention is an attentive mechanism where each element of a set is connected
with all the others, and that can be adopted to compute a refined representation
of the same set of elements through residual connections (Fig. 2.3b). It was
first introduced by Vaswani et al. [306] for machine translation and language
understanding tasks, giving birth to the Transformer architecture and its variants,
which have dominated the NLP field and later also Computer Vision.
Definition of self-attention. Formally, self-attention makes use of the scaled
dot-product mechanism, i.e. a multiplicative attention operator that handles three
sets of vectors: a set of nq query vectors Q, a set of key vectors K, and a set
of value vectors V , both containing nk elements. The operator takes a weighted
sum of value vectors according to a similarity distribution between query and key
vectors:

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V , (2.2)

where dk is a scaling factor. In the case of self-attention, the three sets of vectors
are obtained as linear projections of the same input set of elements. The success
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of the Transformer demonstrates that leveraging self-attention allows achieving
superior performances compared to attentive RNNs.

Early self-attention approaches. Among the first image captioning models
leveraging this approach, Yang et al. [348] used a self-attentive module to en-
code relationships between features coming from an object detector. Later, Li et
al. [190] proposed a Transformer model with a visual encoder for the region
features coupled with a semantic encoder that exploits knowledge from an external
tagger. Both encoders are based on self-attention and feed-forward layers. Their
output is then fused through a gating mechanism governing the propagation of
visual and semantic information.

Variants of the self-attention operator. Other works proposed variants or modi-
fications of the self-attention operator tailored for image captioning [124, 115,
137, 237, 65].

Geometry-aware encoding – Herdade et al. [124] introduced a modified ver-
sion of self-attention that takes into account the spatial relationships between
regions. In particular, an additional geometric weight is computed between object
pairs and is used to scale the attention weights. On a similar line, Guo et al. [115]
proposed a normalized and geometry-aware version of self-attention that makes
use of the relative geometry relationships between input objects. Further, He et
al. [120] introduced a spatial graph transformer, which considers different categor-
ies of spatial relationship between detections (e.g., parent, neighbor, child) when
performing attention.

Attention on Attention – Huang et al. [137] proposed an extension of the
attention operator in which the final attended information is weighted by a gate
guided by the context. Specifically, the output of the self-attention is concatenated
with the queries, then an information and a gate vector are computed and finally
multiplied together. In their encoder, they employed this mechanism to refine the
visual features. This method is then adopted by later models such as [203].

X-Linear Attention – Pan et al. [237] proposed to use bilinear pooling tech-
niques to strengthen the representative capacity of the output attended feature.
Notably, this mechanism encodes the region-level features with higher-order inter-
action, leading to a set of enhanced region-level and image-level features.

Memory-augmented Attention – Cornia et al. [65, 58] proposed a Transformer-
based architecture where the self-attention operator of each encoder layer is
augmented with a set of memory vectors. Specifically, the set of keys and values
is extended with additional “slots” learned during training, which can encode
multi-level visual relationships. More details about this model are presented in the
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Figure 2.4: Vision Transformer encoding. The image is split into fixed-size
patches, linearly embedded, added to position embeddings, and fed to a standard
Transformer encoder.

following section of this thesis.
Other self-attention-based approaches. Ji et al. [148] proposed to improve self-
attention by adding to the sequence of feature vectors a global vector computed as
their average. A global vector is computed for each layer, and the resulting global
vectors are combined via an LSTM, thus obtaining an inter-layer representation.
Luo et al. [217] proposed a hybrid approach that combines region and grid features
to exploit their complementary advantages. Two self-attention modules are applied
independently to each kind of features, and a cross-attention module locally fuses
their interactions. On a different line, the architecture proposed by Liu et al. [202]
is based on an attention module to align grid or detection features with visual words
extracted from a concept extractor and to obtain semantic-grounded encodings.
Attention on grid features and patches. Other than applying the attention oper-
ator on detections, the role of grid features has been recently re-evaluated [151].
For instance, the approach proposed by Zhang et al. [375] applies self-attention dir-
ectly to grid features, incorporating their relative geometry relationships into self-
attention computation. Transformer-like architectures can also be applied directly
on image patches, thus excluding the usage of the convolutional operator [80, 301]
(Fig. 2.4). On this line, Liu et al. [208] devised the first convolution-free architec-
ture for image captioning. Specifically, a pre-trained Vision Transformer network
(i.e. ViT [80]) is adopted as encoder, and a standard Transformer decoder is em-
ployed to generate captions. Interestingly, the same visual encoding approach has
been adopted in CLIP [250] and SimVLM [328], with the difference that the visual
encoder is trained from scratch on large-scale noisy data. CLIP-based features
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have then been used by subsequent captioning approaches [273, 232, 60].

Early fusion and vision-and-language pre-training. Other works using self-
attention to encode visual features achieved remarkable performance also thanks to
vision-and-language pre-training [293, 212] and early-fusion strategies [196, 381].
For example, following the BERT architecture [78], Zhou et al. [381] combined
encoder and decoder into a single stream of Transformer layers, where region and
word tokens are early fused together into a unique flow. This unified model is first
pre-trained on large amounts of image-caption pairs to perform both bidirectional
and sequence-to-sequence prediction tasks and then fine-tuned.

On the same line, Li et al. [196] proposed OSCAR, a BERT-like architecture
that includes object tags as anchor points to ease the semantic alignment between
images and text. They also performed a large-scale pre-train with 6.5 million
image-text pairs, with a masked token loss similar to the BERT mask language
loss and a contrastive loss for distinguishing aligned words-tags-regions triples
from polluted ones. Later, Zhang et al. [371] proposed VinVL, built on top of
OSCAR, introducing a new object detector capable of extracting better visual
features and a modified version of the vision-and-language pre-training objectives.
On this line, Hu et al. [134] improved the VinVL model by scaling up its size and
using larger scale noisy data to pre-train.

Discussion

After the emergence of global features and grid features, region-based features
have been the state-of-the-art choice in image captioning for years thanks to their
compelling performances. Recently, however, different factors are reopening
the discussion on which feature model is most appropriate for image captioning,
ranging from the performance of better-trained grid features [151] to the emergence
of self-attentive visual encoders [80] and large-scale multi-modal models like
CLIP [250]. Recent strategies encompass training better object detectors on large-
scale data [371] or employing end-to-end visual models trained from scratch [328].
Moreover, the success of BERT-like solutions performing image and text early-
fusion indicates the suitability of visual representations that also integrate textual
information.

2.1.3 Language models
The goal of a language model is to predict the probability of a given sequence
of words to occur in a sentence. As such, it is a crucial component in image
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Figure 2.5: LSTM-based language modeling strategies: (a) Single-Layer LSTM
model conditioned on the visual feature; (b) LSTM with attention, as proposed
in [341]; (c) LSTM with attention, in the variant proposed in [214]; (d) two-layer
LSTM with attention, in the style of the bottom-up top-down approach [7]. In all
figures, X represents a set of visual features, ht is the LSTM hidden state at time
t, and st is the visual sentinel.

captioning, as it gives the ability to deal with natural language as a stochastic
process.

Formally, given a sequence of n words, the language model component of an
image captioning algorithm assigns a probability P (y1, y2, . . . , yn |X) to the
sequence as:

P (y1, y2, . . . yn |X) =

n∏
t=1

P (yt | y1, y2, . . . , yt−1,X) , (2.3)

where X represents the visual encoding on which the language model is specific-
ally conditioned. Notably, when predicting the next word given the previous ones,
the language model is auto-regressive, which means that each predicted word is
conditioned on the previous ones. The language model usually also decides when
to stop generating caption words by outputting a special end-of-sequence token.

The main language modeling strategies applied to image captioning can be
categorized as: 1. LSTM-based approaches, which can be either single-layer or
two-layer; 2. CNN-based methods that constitute a first attempt in surpassing
the fully recurrent paradigm; 3. Transformer-based fully-attentive approaches;
4. image-text early-fusion (BERT-like) strategies that directly connect the visual
and textual inputs. This taxonomy is visually summarized in Fig. 2.1.
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LSTM-based Models

As language has a sequential structure, RNNs are naturally suited to deal with
the generation of sentences. Among RNN variants, LSTM [127] has been the
predominant option for language modeling.

Single-layer LSTM

The most simple LSTM-based captioning architecture is based on a single-layer
LSTM and was proposed by Vinyals et al. [311]. As shown in Fig. 2.5a, the visual
encoding is used as the initial hidden state of the LSTM, which then generates
the output caption. At each time step, a word is predicted by applying a softmax
activation function over the projection of the hidden state into a vector of the
same size as the vocabulary. During training, input words are taken from the
ground-truth sentence, while during inference, input words are those generated at
the previous step.

Shortly after, Xu et al. [341] introduced the additive attention mechanism. As
depicted in Fig. 2.5b, in this case, the previous hidden state guides the attention
mechanism over the visual features X , computing a context vector which is then
fed to the MLP in charge of predicting the output word.

Other approaches. Many subsequent works have adopted a decoder based on
a single-layer LSTM, mostly without any architectural changes [353, 43, 241],
while others have proposed significant modifications, summarized below.

Visual sentinel – Lu et al. [214] augmented the spatial image features with an
additional learnable vector, called visual sentinel, which can be attended by the
decoder in place of visual features while generating “non-visual” words (e.g. “the”,
“of”, and “on”), for which visual features are not needed (Fig. 2.5c). At each time
step, the visual sentinel is computed from the previous hidden state and generated
word. Then, the model generates a context vector as a combination of attended
image features and visual sentinel, whose importance is weighted by a learnable
gate.

Hidden state reconstruction – Chen et al. [48] proposed to regularize the trans-
ition dynamics of the language model by using a second LSTM for reconstructing
the previous hidden state based on the current one. Ge et al. [102] enhance context
modeling by using a bidirectional LSTM with an auxiliary module. The auxiliary
module in a direction approximates the hidden state of the LSTM in the other dir-
ection. Finally, a cross-modal attention mechanism combines grid visual features
with the two sentences from the bidirectional LSTM to obtain the final caption.
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Multi-stage generation – Wang et al. [326] proposed to generate a caption from
coarse central aspects to finer attributes by decomposing the caption generation
process into two phases: skeleton sentence generation and attributes enriching,
both implemented with single-layer LSTMs. On the same line, Gu et al. [106] de-
vised a coarse-to-fine multi-stage framework using a sequence of LSTM decoders,
each operating on the output of the previous one to produce increasingly refined
captions.

Semantic-guided LSTM – Jia et al. [150] proposed an extension of LSTM
that includes semantic information to guide the generation (e.g. sentences from a
cross-modal retrieval model, vectors from a multi-modal embedding, the image
itself). Specifically, the semantic information is used as an extra input to each gate
in the LSTM block.

Two-layer LSTM

LSTMs can be expanded to multi-layer structures to augment their capability of
capturing higher-order relations. Donahue et al. [79] firstly proposed a two-layer
LSTM as a language model for captioning, stacking two layers, where the hidden
states of the first are the input to the second.
Two-layers and additive attention. Anderson et al. [7] went further and proposed
to specialize the two layers to perform visual attention and the actual language
modeling. As shown in Fig. 2.5d, the first LSTM layer acts as a top-down visual
attention model which takes the previously generated word, the previous hidden
state, and the mean-pooled image features. Then, the current hidden state is used
to compute a probability distribution over image regions with an additive attention
mechanism. The so-obtained attended image feature vector is fed to the second
LSTM layer, which combines it with the hidden state of the first layer to generate
a probability distribution over the vocabulary.
Variants of two-layers LSTM. Because of their representation power, LSTMs
with two-layers and internal attention mechanisms represent the most employed
language model approach before the advent of Transformer-based architectures [357,
347, 358, 277]. As such, many other variants have been proposed to improve the
performance of this approach.

Neural Baby Talk – To ground words into image regions, Lu et al. [215] incor-
porated a pointing network that modulates the content-based attention mechanism.
In particular, during the generation process, the network predicts slots in the cap-
tion, which are then filled with the image region classes. For non-visual words, a
visual sentinel is used as dummy grounding. This approach leverages the object
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detector both as a feature region extractor and as a visual word prompter for the
language model.

Reflective attention – Ke et al. [162] introduced two reflective modules: while
the first computes the relevance between hidden states from all the past predicted
words and the current one, the second improves the syntactic structure of the sen-
tence by guiding the generation process with words common position information.

Look back and predict forward – On a similar line, Qin et al. [248] used two
modules: the look back module that takes into account the previous attended
vector to compute the next one, and the predict forward module that predicts the
new two words at once, thus alleviating the accumulated errors problem that may
occur at inference time.

Adaptive attention time – Huang et al. [138] proposed an adaptive attention
time mechanism, in which the decoder can take an arbitrary number of attention
steps for each generated word, determined by a confidence network on top of the
second-layer LSTM.

Boosting LSTM with Self-Attention

Some works adopted the self-attention operator in place of the additive atten-
tion one in LSTM-based language models [137, 237, 203, 385]. In particular,
Huang et al. [137] augmented the LSTM with the Attention on Attention operator,
which computes another step of attention on top of visual self-attention. Pan et
al. [237] introduced the X-Linear attention block, which enhances self-attention
with second-order interactions and improves both the visual encoding and the
language model. On a different line, Zhu et al. [385] applied the neural architec-
ture search paradigm to select the connections between layers and the operations
within gates of RNN-based image captioning language models, using a decoder
enriched with self-attention [237].

Convolutional Language Models

A worth-to-mention approach is that proposed by Aneya et al. [11], which uses
convolutions as a language model. In particular, a global image feature vector
is combined with word embeddings and fed to a CNN, operating on all words
in parallel during training and sequentially in inference. Convolutions are right-
masked to prevent the model from using the information of future word tokens.
Despite the clear advantage of parallel training, the usage of the convolutional
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Figure 2.6: Schema of the Transformer-based language model. The caption
generation is performed via masked self-attention over previously generated tokens
and cross-attention with encoded visual features.

operator in language models has not gained popularity due to the poor performance
and the advent of Transformer architectures.

Transformer-based Architectures

The fully-attentive paradigm proposed by Vaswani et al. [306] has completely
changed the perspective of language generation. Shortly after, the Transformer
model became the building block of other breakthroughs in NLP, such as BERT [78]
and GPT [251], and the standard de-facto architecture for many language un-
derstanding tasks. As image captioning can be cast as a sequence-to-sequence
problem, the Transformer architecture has been employed also for this task. The
standard Transformer decoder performs a masked self-attention operation, which
is applied to words, followed by a cross-attention operation, where words act as
queries and the outputs of the last encoder layer act as keys and values, plus a
final feed-forward network (Fig. 2.6). During training, a masking mechanism is
applied to the previous words to constrain a unidirectional generation process. The
original Transformer decoder has been employed in some image captioning mod-
els without significant architectural modifications [124, 115, 217, 328]. Besides,
some variants have been proposed to improve language generation and visual
feature encoding.

Gating mechanisms. Li et al. [190] proposed a gating mechanism for the cross-
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attention operator, which controls the flow of visual and semantic information by
combining and modulating image regions representations with semantic attributes
coming from an external tagger. On the same line, Ji et al. [148] integrated a
context gating mechanism to modulate the influence of the global image repres-
entation on each generated word, modeled via multi-head attention. Cornia et
al. [65] proposed to take into account all encoding layers in place of performing
cross-attention only on the last one. To this end, they devised the meshed decoder,
which contains a mesh operator that modulates the contribution of all the encoding
layers independently and a gate that weights these contributions guided by the text
query. More details about this method are presented in the following section of
this thesis. In [328, 60], the decoder architecture is again employed in conjunction
with textual prefixes, also extracted from pre-trained visual-semantic models and
employed as visual tags.

BERT-like Architectures

Despite the encoder-decoder paradigm being a common approach to image caption-
ing, some works have revisited captioning architectures to exploit a BERT-like [78]
structure in which the visual and textual modalities are fused together in the early
stages (Fig. 2.7). The main advantage of this architecture is that layers dealing with
text can be initialized with pre-trained parameters learned from massive textual
corpora. Therefore, the BERT paradigm has been widely adopted in works that
exploit pre-training [196, 381, 371].

The first example is due to Zhou et al. [381], who developed a unified model
that fuses visual and textual modalities into a BERT-like architecture for image
captioning. The model consists of a shared multi-layer Transformer encoder
network for both encoding and decoding, pre-trained on a large corpus of image-
caption pairs and then fine-tuned for image captioning by right-masking the tokens
sequence to simulate the unidirectional generation process. Further, Li et al. [196]
introduced the usage of object tags detected in the image as anchors points for
learning a better alignment in vision-and-language joint representations. To this
end, their model represents an input image-text pair as a word tokens-object tags-
region features triple, where the object tags are the textual classes proposed by the
object detector.
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caption.

Non-autoregressive Language Models

Thanks to the parallelism offered by Transformers, non-autoregressive language
models have been proposed in machine translation to reduce the inference time
by generating all words in parallel. Some efforts have been made to apply this
paradigm to image captioning [88, 113, 89, 114]. The first approaches towards a
non-autoregressive generation were composed of a number of different generation
stages, where all words were predicted in parallel and refined at each stage. Sub-
sequent methods, instead, employ reinforcement learning techniques to improve
the final results. Specifically, these approaches treat the generation process as a
cooperative multi-agent reinforcement system, where the positions in of the words
in the target sequence are viewed as agents that learn to cooperatively maximize a
sentence-level reward [113, 114]. These works also leverage knowledge distilla-
tion on unlabeled data and a post-processing step to remove identical consecutive
tokens.

Discussion

Recurrent models have been the standard for many years, and their application
brought to the development of clever and successful ideas that can be integrated
also into non-recurrent solutions. However, they are slow to train and struggle to
maintain long-term dependencies: these drawbacks are alleviated by autoregressive
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and Transformer-based solutions that recently gained popularity. Inspired by the
success of pre-training on large, unsupervised corpora for NLP tasks, massive
pre-training has been applied also for image captioning by employing either
encoder-decoder or BERT-like architectures, often in conjunction with textual tags.
This strategy led to impressive performance, suggesting that visual and textual
semantic relations can be inferred and learned also from not well-curated data [196,
328, 134]. BERT-like architectures are suitable for such a massive pre-training
but are not generative architectures by design. Massive pre-training on generative-
oriented architectures [328, 60] is currently a worth-exploring direction, which
leads to performances that are at least on-pair with the early-fusion counterparts.

2.1.4 Training strategies

An image captioning model is commonly expected to generate a caption word by
word by taking into account the previous words and the image. At each step, the
output word is sampled from a learned distribution over the vocabulary words. In
the most simple scenario, i.e. the greedy decoding mechanism, the word with the
highest probability is output. The main drawback of this setting is that possible
prediction errors quickly accumulate along the way. To alleviate this drawback,
one effective strategy is to use the beam search algorithm [173] that, instead of
outputting the word with maximum probability at each time step, maintains k
sequence candidates (those with the highest probability at each step) and finally
outputs the most probable one.

During training, the captioning model must learn to properly predict the
probabilities of the words to appear in the caption. To this end, the most common
training strategies are based on 1. cross-entropy loss; 2. masked language model;
3. reinforcement learning that allows directly optimizing for captioning-specific
non-differentiable metrics; 4. vision-and-language pre-training objectives (see
Fig. 2.1).

Cross-Entropy Loss

The cross-entropy loss is the first proposed and most used objective for image
captioning models. With this loss, the goal of the training, at each timestep, is
to minimize the negative log-likelihood of the current word given the previous
ground-truth words. Given a sequence of target words y1:T , the loss is formally
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defined as:

LXE(θ) = −
n∑
i=1

log (P (yi | y1:i−1,X)) , (2.4)

where P is the probability distribution induced by the language model, yi the
ground-truth word at time i, y1:i−1 indicate the previous ground-truth words, and
X the visual encoding. The cross-entropy loss is designed to operate at word
level and optimize the probability of each word in the ground-truth sequence
without considering longer range dependencies between generated words. The
traditional training setting with cross-entropy also suffers from the exposure bias
problem [255] caused by the discrepancy between the training data distribution as
opposed to the distribution of its own predicted words.

Masked Language Model (MLM)

The first masked language model has been proposed for training the BERT [78]
architecture. The main idea behind this optimization function consists in ran-
domly masking out a small subset of the input tokens sequence and training
the model to predict masked tokens while relying on the rest of the sequence,
i.e. both previous and subsequent tokens. As a consequence, the model learns to
employ contextual information to infer missing tokens, which allows building a
robust sentence representation where the context plays an essential role. Since
this strategy considers only the prediction of the masked tokens and ignores the
prediction of the non-masked ones, training with it is much slower than training
for complete left-to-right or right-to-left generation. Notably, some works have
employed this strategy as a pre-training objective, sometimes completely avoiding
the combination with the cross-entropy [196, 371].

Reinforcement Learning

Given the limitations of word-level training strategies observed when using lim-
ited amounts of data, a significant improvement was achieved by applying the
reinforcement learning paradigm for training image captioning models. Within
this framework, the image captioning model is considered as an agent whose
parameters determine a policy. At each time step, the agent executes the policy to
choose an action, i.e. the prediction of the next word in the generated sentence.
Once the end-of-sequence is reached, the agent receives a reward, and the aim of
the training is to optimize the agent parameters to maximize the expected reward.
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Many works harnessed this paradigm and explored different sequence-level
metrics as rewards. The first proposal is due to Ranzato et al. [255], which
introduced the usage of the REINFORCE algorithm [331] adopting BLEU [238]
and ROUGE [199] as reward signals. Ren et al. [261] experimented using visual-
semantic embeddings obtained from a network that encodes the image and the so
far generated caption in order to compute a similarity score to be used as reward.
Liu et al. [207] proposed to use as reward a linear combination of SPICE [5]
and CIDEr [307], called SPIDEr. Finally, the most widely adopted strategy [369,
97, 65], introduced by Rennie et al. [262], entails using the CIDEr score, as it
correlates better with human judgment [307]. The reward is normalized with
respect to a baseline value to reduce variance. Formally, to compute the loss
gradient, beam search and greedy decoding are leveraged as follows:

∇θL(θ) = −
1

k

k∑
i=1

(
(r(wi)− b)∇θ logP (wi)

)
, (2.5)

where wi is the i-th sentence in the beam or a sampled collection, r(·) is the
reward function, i.e. the CIDEr computation, and b is the baseline, computed as
the reward of the sentence obtained via greedy decoding [262], or as the average
reward of the beam candidates [65].

Note that, since it would be difficult for a random policy to improve in an
acceptable amount of time, the usual procedure entails pre-training with cross-
entropy or masked language model first, and then fine-tuning stage with reinforce-
ment learning by employing a sequence level metric as reward. This ensures the
initial reinforcement learning policy to be more suitable than the random one.

Large-scale Pre-Training

In the context of vision-and-language pre-training in early-fusion architectures,
one of the most common pre-training objectives is the masked contextual token
loss, where tokens of each modality (visual and textual) are randomly masked
following the BERT strategy [78], and the model has to predict the masked input
based on the context of both modalities, thus connecting their joint representation.
Another largely adopted strategy entails using a contrastive loss, where the inputs
are organized as image regions-captions words-object tags triples, and the model
is asked to discriminate correct triples from polluted ones, in which tags are
randomly replaced [196, 371]. Other objectives take into account the text-image
alignment at a word-region level and entail predicting the original word sequence
given a corrupted one [337].
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(a)

COCO

CUB-200Fashion Captioning

TextCaps
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Figure 2.8: Qualitative examples from some of the most common image captioning
datasets: (a) image-caption pairs; (b) word clouds of the captions most common
visual words.

On the other hand, cross-entropy has also been used when pre-training on
noisy captions [60, 328], sometimes also employing prefixes. PrefixLM [328] has
indeed proved to be a valuable strategy that enables bidirectional attention within
the prefix sequence, and thus, it is applicable for both decoder-only and encoder-
decoder sequence-to-sequence language models. Noticeably, some large-scale
models pre-trained on noisy data under this setting can achieve state-of-the-art
performance without requiring a fine-tuning stage with Reinforcement [328].

Finally, we notice that image captioning can be used as a pre-training task to
efficiently learn visual representations, which can benefit downstream tasks such
as image classification, object detection, and instance segmentation [76].

2.1.5 Evaluation protocol
As for any data-driven task, the development of image captioning has been enabled
by the collection of large datasets and the definition of quantitative scores to
evaluate the performance and monitor the advancement of the field.

Datasets

Image captioning datasets contain images and one or multiple captions associated
with them. Having multiple ground-truth captions for each image helps to capture
the variability of human descriptions. Other than the number of available captions,
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also their characteristics (e.g. average caption length and vocabulary size) highly
influence the design and the performance of image captioning algorithms. Note
that the distribution of the terms in the datasets captions is usually long-tailed,
thus, when using word-level dictionaries, the common practice is to include in the
vocabulary only those terms whose frequency is above a pre-defined threshold.
Recently, however, using subword-based tokenization approaches like BPE [267]
is a popular choice that allows avoiding dataset pre-processing. The available
datasets differ both on the images contained (for their domain and visual quality)
and on the captions associated with the images (for their length, number, relevance,
and style). A summary of the most used public datasets is reported in Table 3.6,
and some sample image-caption pairs are reported in Fig. 2.8, along with some
word clouds obtained from the 50 most used visual words in the captions.

Standard captioning datasets

Standard benchmark datasets are used by the community to compare their ap-
proaches on a common test-bed, a procedure that guides the development of image
captioning strategies by allowing to identify suitable directions. Datasets used
as benchmarks should be representative of the task at hand, both in terms of the
challenges and ideal expected results (i.e. achievable human performance). Further,
they should contain a large number of generic-domain images, each associated
with multiple captions.

Early image captioning architectures [222, 79, 159] were commonly trained
and tested on the Flickr30K [364] and Flickr8K [128] datasets, consisting of
pictures collected from the Flickr website, containing everyday activities, events,
and scenes, paired with five captions each. Currently, the most commonly used
dataset is Microsoft COCO [201], which consists of images of complex scenes
with people, animals, and common everyday objects in their context. It contains
more than 120,000 images, each annotated with five captions, divided into 82,783
images for training and 40,504 for validation. For ease of evaluation, most of the
literature follows the splits defined by Karpathy et al. [159], where 5,000 images
of the original validation set are used for validation, 5,000 for test, and the rest
for training. The dataset has also an official test set, composed of 40,775 images
paired with 40 private captions each, and a public evaluation server2.

2https://competitions.codalab.org/competitions/3221

Transforming vision and language with attention 31

https://competitions.codalab.org/competitions/3221


CHAPTER 2. IMAGE CAPTIONING

Table 2.1: Overview of the main image captioning datasets.

Domain Nb. Images Nb. Caps Vocab Size Nb. Words
(per Image) (per Cap.)

COCO [201] Generic 132K 5 27K (10K) 10.5

Flickr30K [364] Generic 31K 5 18K (7K) 12.4

Flickr8K [128] Generic 8K 5 8K (3K) 10.9

CC3M [272] Generic 3.3M 1 48K (25K) 10.3

CC12M [37] Generic 12.4M 1 523K (163K) 20.0

SBU Captions [235] Generic 1M 1 238K (46K) 12.1

VizWiz [117] Assistive 70K 5 20K (8K) 13.0

CUB-200 [256] Birds 12K 10 6K (2K) 15.2

Oxford-102 [256] Flowers 8K 10 5K (2K) 14.1

Fashion Cap. [350] Fashion 130K 1 17K (16K) 21.0

BreakingNews [254] News 115K 1 85K (10K) 28.1

GoodNews [27] News 466K 1 192K (54K) 18.2

TextCaps [279] OCR 28K 5/6 44K (13K) 12.4

Loc. Narratives [246] Generic 849K 1/5 16K (7K) 41.8

Pre-training datasets

Although training on large well-curated datasets is a sound approach, some
works [212, 196, 328, 134] have demonstrated the benefits of pre-training on
even bigger vision-and-language datasets, which can be either image captioning
datasets of lower-quality captions or datasets collected for other tasks (e.g. visual
question answering [196, 381], text-to-image generation [253], image-caption
association [250]). Among the datasets used for pre-training, that have been
specifically collected for image captioning, it is worth mentioning SBU Cap-
tions [235], originally used for tackling image captioning as a retrieval task [128],
which contains around 1 million image-text pairs, collected from the Flickr web-
site. Similarly, YFCC100M [296] is composed of 100 million media objects in
which 14.8 million images are available with automatically-collected textual de-
scriptions. Later, the Conceptual Captions [272, 37] datasets have been proposed,
which are collections of around 3.3 million (CC3M) and 12 million (CC12M)
images paired with one weakly-associated description automatically collected
from the web with a relaxed filtering procedure. Differently from previous data-
sets, Wikipedia-based Image Text (WIT) [283] provides images coming from
Wikipedia together with various metadata extracted from the original pages, with
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approximately 5.3 million images available with the corresponding descriptions
in English. Although the large scale and variety in caption style make all these
datasets particularly interesting for pre-training, the contained captions can be
noisy, and the availability of images is not always guaranteed since most of them
are provided as URLs.

Pre-training on such datasets requires significant computational resources and
effort to collect the data needed. Nevertheless, this strategy represents an asset to
obtain state-of-the-art performances. Accordingly, some pre-training datasets are
currently not publicly available, such as ALIGN [149, 328] and ALT-200 [134],
respectively containing 1.8 billion and 200 million noisy image-text pairs, or the
datasets used to train DALL-E [253] and CLIP [250] consisting of 250 and 400
million pairs.

Domain-specific datasets

While domain-generic benchmark datasets are important to capture the main as-
pects of the image captioning task, domain-specific datasets are also important to
highlight and target specific challenges. These may relate to the visual domain
(e.g. type and style of the images) and the semantic domain. In particular, the dis-
tribution of the terms used to describe domain-specific images can be significantly
different from that of the terms used for domain-generic images.

An example of dataset-specific in terms of the visual domain is the VizWiz
Captions [117] dataset, collected to favor the image captioning research towards
assistive technologies. The images in this dataset have been taken by visually-
impaired people with their phones, thus, they can be of low quality and concern a
wide variety of everyday activities, most of which entail reading some text.

Some examples of specific semantic domain are the CUB-200 [329] and the
Oxford-102 [233] datasets, which contain images of birds and flowers, respect-
ively, that have been paired with ten captions each by Reed et al. [256]. Given the
specificity of these datasets, rather than for standard image captioning, they are
usually adopted for different related tasks such as cross-domain captioning [46],
visual explanation generation [121, 122], and text-to-image synthesis [257]. An-
other domain-specific dataset is Fashion Captioning [350] that contains images
of clothing items in different poses and colors that may share the same caption.
The vocabulary for describing these images is somewhat smaller and more spe-
cific than for generic datasets. Differently, datasets as BreakingNews [254] and
GoodNews [27] enforce using a richer vocabulary since their images, taken from
news articles, have long associated captions written by expert journalists. The
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same applies to the TextCaps [279] dataset, which contains images with text, that
must be “read” and included in the caption, and to Localized Narratives [246],
whose captions have been collected by recording people freely narrating what they
see in the images. Collecting domain-specific datasets and developing solutions
to tackle the challenges they pose is crucial to extend the applicability of image
captioning algorithms.

Evaluation Metrics

Evaluating the quality of a generated caption is a tricky and subjective task [307, 5],
complicated by the fact that captions cannot only be grammatical and fluent but
need to properly refer to the input image. Arguably, the best way to measure the
quality of the caption for an image is still carefully designing a human evaluation
campaign in which multiple users score the produced sentences [161]. However,
human evaluation is costly and not reproducible – which prevents a fair comparison
between different approaches. Automatic scoring methods exist that are used
to assess the quality of system-produced captions, usually by comparing them
with human-produced reference sentences, although some metrics do not rely on
reference captions.

Standard evaluation metrics

The first strategy adopted to evaluate image captioning performance consists of ex-
ploiting metrics designed for NLP tasks. For example, the BLEU score [238] and
the METEOR [19] score were introduced for machine translation. The former is
based on n-gram precision considering n-grams up to length four; the latter favors
the recall of matching unigrams from the candidate and reference sentences in their
exact form, stemmed form, and meaning. Moreover, the ROUGE score [199] was
designed for summarization and applied also for image captioning in its variant
considering the longest subsequence of tokens in the same relative order, pos-
sibly with other tokens in-between, that appears in both candidate and reference
caption. Later, specific image captioning metrics have been proposed [307, 5].
The reference CIDEr score [307] is based on the cosine similarity between the
Term Frequency-Inverse Document Frequency weighted n-grams in the candidate
caption and in the set of reference captions associated with the image, thus taking
into account both precision and recall. The SPICE score [5] considers matching
tuples extracted from the candidate and the reference (or possibly directly the
image) scene graphs, thus favoring the semantic content rather than the fluency.
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As expected, metrics designed for image captioning usually correlate better
with human judgment than those borrowed from other NLP tasks (with the ex-
ception of METEOR [19]), both at corpus-level and caption-level [5, 270, 68].
Correlation with human judgment is measured via statistical correlation coef-
ficients (such as Pearson’s, Kendall’s, and Spearman’s correlation coefficients)
and via the agreement with humans’ preferred caption in a pair of candidates, all
evaluated on sample captioned images.

Diversity metrics

To better assess the performance of a captioning system, it is common practice
to consider a set of the above-mentioned standard metrics. Nevertheless, these
are somehow gameable because they favor word similarity rather than meaning
correctness [32]. Another drawback of the standard metrics is that they do not
capture (but rather disfavor) the desirable capability of the system to produce
novel and diverse captions, which is more in line with the variability with which
humans describe complex images. This consideration brought to the development
of diversity metrics [275, 305, 321, 322]. Most of these metrics can potentially be
calculated even when no ground-truth captions are available at test time. However,
since they overlook the syntactic correctness of the captions and their relatedness
with the image, it is advisable to combine them with other metrics.

The overall performance of a captioning system can be evaluated in terms of
corpus-level diversity or, when the system can output multiple captions for the
same image, single image-level diversity (termed as global diversity and local
diversity, respectively, in [305]). To quantify the former, it can be considered
the number of unique words used in all the generated captions (Vocab) and the
percentage of generated captions that were not present in the training set (%Novel).
For the latter, it can be used the ratio of unique captions unigrams or bigrams to
the total number of captions unigrams (Div-1 and Div-2).

Embedding-based metrics

Another approach to captioning evaluation consists in relying on captions semantic
similarity or other specific aspects of caption quality, which are estimated via
embedding-based metrics [263, 152, 327]. For example, the WMD score [179],
originally introduced to evaluate document semantic dissimilarity, can also be
applied to captioning evaluation by considering generated captions and ground-
truth captions as the compared documents [165]. Moreover, the Alignment
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Figure 2.9: Relationship between CIDEr, number of parameters and other scores.
Values of Div-1 and CLIP-S are multiplied by powers of 10 for readability.

score [57] is based on the alignment between the sequences of nouns in the
candidate and reference sentence and captures whether concepts are mentioned in a
human-like order. Finally, the Coverage score [58, 25] expresses the completeness
of a caption, which is evaluated by considering the mentioned scene visual entities.
Since this score considers visual objects directly, it can be applied even when no
ground-truth caption is available.

Learning-based evaluation

As a further development towards captions quality assessment, learning-based
evaluation strategies [270, 68, 185, 360, 323, 184] are being investigated. To this
end, it can be exploited a component of a complete captioning approach, in charge
to evaluate the produced caption completeness [69] or how human-like it is [70].
Alternatively, learning-based evaluation is usually based on a pre-trained model.
For example, the BERT-S score [372], which is used to evaluate various language
generation tasks [304], exploits pre-trained BERT embeddings [78] to represent
and match the tokens in the reference and candidate sentences via cosine similarity.
Moreover, the TIGEr score [153] represents the reference and candidate captions
as grounding score vectors obtained from a pre-trained model [186] that grounds
their words on the image regions and scores the candidate caption based on
the similarity of the grounding vectors. Further, the CLIP-S score [125] is a
direct application of the CLIP [250] model to image captioning evaluation and
consists of an adjusted cosine similarity between image and candidate caption
representation. Thus, CLIP-S is designed to work without reference captions,
although the CLIP-SRef variant can exploit also the reference captions.
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2.1.6 Experimental evaluation

In Table 2.2, we analyze the performance of some of the main approaches in
terms of all the evaluation scores presented in Section 2.1.5 to take into account
the different aspects of caption quality these express and report their number of
parameters to give an idea of the computational complexity and memory occupancy
of the models. The data in the table have been obtained either from the model
weights and captions files provided by the original authors or from our best
implementation. Given its large use as a benchmark in the field, we consider the
domain-generic COCO dataset also for this analysis. In the table, methods are
clustered based on the information included in the visual encoding and ordered
by CIDEr score. It can be observed that standard and embedding-based metrics
all had a substantial improvement with the introduction of region-based visual
encodings. Further improvement was due to the integration of information on
inter-objects relations, either expressed via graphs or self-attention. Notably,
CIDEr, SPICE, and Coverage most reflect the benefit of vision-and-language
pre-training. Moreover, as expected, it emerges that the diversity-based scores are
correlated, especially Div-1 and Div-2 and the Vocab Size. The correlation of this
family of scores and the others is almost linear, except for early approaches, which
perform averagely well in terms of Diversity despite lower values for standard
metrics. From the trend of learning-based scores, it emerges that exploiting models
trained on textual data only (BERT-S, reported in the table as its F1-score variant)
does not help discriminating among image captioning approaches. On the other
hand, considering as reference only the visual information and disregarding the
ground-truth captions is possible with the appropriate vision-and-language pre-
trained model (consider that CLIP-S and CLIP-SRef are linearly correlated). This
is a desirable property for an image captioning evaluation score since it allows
estimating the performance of a model without relying on reference captions that
can be limited in number and somehow subjective.

For readability, in Fig. 2.9 we highlight the relation between the CIDEr score
and other characteristics from Table 2.2. We chose CIDEr as this score is com-
monly regarded as one of the most relevant indicators of image captioning systems
performance. The first plot, depicting the relation between model complexity
and performance, shows that more complex models do not necessarily bring to
better performance. The other plots describe an almost-linear relation between
CIDEr and the other scores, with some flattening for high CIDEr values. These
trends confirm the suitability of the CIDEr score as an indicator of the overall
performance of an image captioning algorithm, whose specific characteristics in
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terms of the produced captions would still be expressed more precisely in terms of
non-standard metrics.

2.1.7 Image captioning variants

Beyond general-purpose image captioning, several specific sub-tasks have been
explored in the literature. These can be classified into five categories according
to their scope: 1. dealing with the lack of training data; 2. focusing on the visual
input; 3. focusing on the textual output; 4. application specific; 5. addressing user
requirements.

Dealing with the lack of training data

Paired image-caption datasets are very expensive to obtain. Thus, some image
captioning variants are being explored that limit the need for full supervision
information.

Novel Object Captioning. Novel object captioning focuses on describing objects
not appearing in the training set, thus enabling a zero-shot learning setting that
can increase the applicability of the models in the real world. Early approaches
to this task [123, 309] tried to transfer knowledge from out-domain images by
conditioning the model on external unpaired visual and textual data at training
time. To explore this strategy, Hendricks et al. [123] introduced a variant of
the COCO dataset [201], called held-out COCO, in which image-caption pairs
containing one of eight pre-selected object classes were removed from the training
set but not from the test set. To further encourage research on this task, the more
challenging nocaps dataset, with nearly 400 novel objects, has been introduced [2].
Some approaches to this variant [356, 197] integrate copying mechanisms in the
language model to select novel objects predicted from a tagger or generate a
caption template with placeholders to be filled with novel objects [336, 215]. On a
different line, Anderson et al. [6] devised the Constrained Beam Search algorithm
to force the inclusion of selected tag words in the output caption, following the
predictions of a tagger. Moreover, following the pre-training trend with BERT-
like architectures, Hu et al. [135] proposed a multi-layer Transformer model
pre-trained by randomly masking one or more tags from image-tag pairs. Finally,
in the next chapter we present a method for novel object captioning that learns to
select the most relevant objects to describe and constrained the caption generation
accordingly.
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Unpaired Image Captioning. Unpaired Image Captioning approaches can be
either unsupervised or semi-supervised. Unsupervised captioning aims at under-
standing and describing images without paired image-text training data. Following
unpaired machine translation approaches, the early work [107] proposes to gen-
erate captions in a pivot language and then translate predicted captions to the
target language. After this work, the most common approach focuses on ad-
versarial learning by training an LSTM-based discriminator to distinguish whether
a caption is real or generated [90, 182]. As alternative approaches, it is worth
mentioning [108] that generates a caption from the image scene-graph and [110]
that leverages a memory-based network. Moreover, semi-supervised approaches
have been proposed, such as [167], which uses both paired and unpaired data with
adversarial learning, and [23], which performs iterative self-learning.

Continual Captioning. Continual captioning aims to deal with partially unavail-
able data by following the continual learning paradigm to incrementally learn new
tasks without forgetting what has been learned before. In this respect, new tasks
can be represented as sequences of captioning tasks with different vocabularies, as
proposed in [74], and the model should be able to transfer visual concepts from
one to the other while enlarging its vocabulary.

Focusing on the visual input

Some sub-tasks focus on making the textual description more correlated with
visual data.

Dense Captioning. Dense captioning was proposed by Johnson et al. [157] and
consists of concurrently localizing and describing salient image regions with
short natural language sentences. In this respect, the task can be conceived as a
generalization of object detection, where caption replaces object tags, or image
captioning, where single regions replace the full image. To address this task,
contextual and global features [344, 194] and attribute generators [361, 166] can
be exploited. Related to this variant, an important line of works [174, 198, 223, 38,
366, 216] focuses on the generation of textual paragraphs that densely describe
the visual content as a coherent story.

Text-based Image Captioning. Text-based image captioning, also known as
OCR-based image captioning or image captioning with reading comprehension,
aims at reading and including the text appearing in images in the generated
descriptions. The task was introduced by Sidorov et al. [279] with the TextCaps
dataset. Another dataset designed for pre-training for this variant is OCR-CC [352],
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which is a subset of images containing meaningful text taken from the CC3M
dataset [272] and automatically annotated through a commercial OCR system. The
common approach to this variant entails combining image regions and text tokens,
i.e. groups of characters from an OCR, possibly enriched with mutual spatial
information [315, 316], in the visual encoding [279, 384]. Another direction entails
generating multiple captions describing different parts of the image, including the
contained text [340].

Change Captioning. Change captioning targets changes that occurred in a scene,
thus requiring both accurate change detection and effective natural language
description. The task was first presented in [147] with the Spot-the-Diff dataset,
composed of pairs of frames extracted from video surveillance footages and the
corresponding textual descriptions of visual changes. To further explore this
variant, the CLEVR-Change dataset [240] has been introduced, which contains
five scene change types on almost 80K image pairs. The proposed approaches for
this variant apply attention mechanisms to focus on semantically relevant aspects
without being deceived by distractors such as viewpoint changes [276, 139, 168]
or perform multi-task learning with image retrieval as an auxiliary task [132],
where an image must be retrieved from its paired image and the description of the
occurred changes.

Focusing on the textual output

Since every image captures a wide variety of entities with complex interactions,
human descriptions tend to be diverse and grounded to different objects and details.
Some image captioning variants explicitly focus on these aspects.

Diverse Captioning. Diverse image captioning tries to replicate the quality and
variability of the sentences produced by humans. The most common technique
to achieve diversity is based on variants of the beam search algorithm [310] that
entail dividing the beams into similar groups and encouraging diversity between
groups. Other solutions have been investigated, such as contrastive learning [71],
conditional GANs [70, 275], and paraphrasing [206]. However, these solutions
tend to underperform in terms of caption quality, which is partially recovered by
using variational auto-encoders [320, 10, 39, 219]. Another approach is exploiting
multiple part-of-speech tags sequences predicted from image region classes [77]
and forcing the model to produce different captions based on these sequences.

Multilingual Captioning. Since image captioning is commonly performed in
English, multilingual captioning [81] aims to extend the applicability of captioning
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systems to other languages. The two main strategies entail collecting captions
in different languages for commonly used datasets (e.g. Chinese and Japanese
captions for COCO images [195, 231], German captions for Flick30K [82]), or
directly training multilingual captioning systems with unpaired captions [81, 183,
107, 282].

Application-specific Captioning

Image captioning can be applied to ease and automate activities involving text
generation from images. For example, captioning systems can be applied for
medical report generation, for which they need to predict disease tags and try
to imitate the style of real medical reports [155, 204, 346]. Another interesting
application is art description generation, which entails describing not only factual
aspects of the artworks, but also their context and style, and conveyed message
art description [17]. To this end, captioning systems could also rely on external
knowledge, e.g. metadata. A similar application is automatic caption generation
for news articles [254, 27], for which named entities from the article should be
described [91, 302], and the rich journalistic style should be maintained [205, 349].
Another important application domain is assistive technology for the visually
impaired [334], where image captioning approaches must be able to provide
informative descriptions even for low-quality visual inputs [117].

Addressing user requirements

Regular image captioning models generate factual captions with a neutral tone
and no interaction with end-users. Instead, some image captioning sub-tasks are
devoted to coping with user requests.

Personalized Captioning. Humans consider more effective the captions that
avoid stating the obvious and that are written in a style that catches their interest.
Personalized image captioning aims at fulfilling this requirement by generating
descriptions that take into account the user’s prior knowledge, active vocabulary,
and writing style. To this end, early approaches exploit a memory block as a
repository for this contextual information [54, 239]. On another line, Zhang et
al. [374] proposed a multi-modal Transformer network that personalizes captions
conditioned on the user’s recent captions and a learned user representation. Other
works have instead focused on the style of captions as an additional controllable
input and proposed to solve this task by exploiting unpaired stylized textual
corpus [95, 225, 112, 377]. Some datasets have been collected to explore this
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variant, such as InstaPIC [54], which is composed of multiple Instagram posts from
the same users, FlickrStyle10K [95], which contains images and textual sentences
with two different styles, and Personality-Captions [278], which contains triples
of images, captions, and one among 215 personality traits.
Controllable Captioning. Controllable captioning puts the users in the loop
by asking them to select and give priorities to what should be described in an
image. This information is exploited as a guiding signal for the generation process.
The signal can be sparse, as selected image regions [378, 57] and user-provided
visual words [77], or dense, as mouse traces [246, 226]. Eventually, the guiding
signal can incorporate some form of structure, such as sequences that encode the
mentioning order of concepts (part-of-speech tag as in [77]) or visual objects [57].
Guiding inputs can also encode the relation between objects that is most of interest
for the user, as done for example in [42] via verbs and semantic roles (verbs
represent activities in the image and semantic roles determine how objects engage
in these activities) and in [45, 379] via user-generated or user-selected scene
graphs. A different control signal is introduced by [75], which consist of a length-
level embedding added as an additional token to each textual word, providing
existing models the ability to generate length-controllable image captions.
Image Captioning Editing. Image captioning editing was proposed by Sam-
mani et al. [264], following the consideration that generated captions may have
repetitions and inconsistencies. This variant focuses on decoupling the decoding
stage in a caption generation step and a caption polishing one to correct syntactic
errors.
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2.2 Meshed-Memory Transformer

In the previous section, we have comprehensively reviewed the captioning task in
the deep learning era. As shown, in the last few years attentive models have been
improved by replacing this type of attention over a grid of features with attention
over image regions coming from an object detector [7, 317, 376]. In these models,
the generative process attends a set of regions which are softly selected while
generating the caption.

Regarding the language model, the use of recurrent neural networks has
remained the dominant approach, with the exception of the investigation of convo-
lutional language models [11], which however did not become a leading choice.
The recent advent of fully-attentive models, in which the recurrent relation is aban-
doned in favour of the use of self-attention, offers unique opportunities in terms of
set and sequence modeling performances, as testified by the Transformer [306]
and BERT [78] models and their applications to retrieval [281] and video under-
standing [290]. Also, this setting offers novel architectural modeling capabilities,
as for the first time the attention operator is used in a multi-layer and extensible
fashion. Nevertheless, the multimodal nature of image captioning demands for
specific architectures, different from those employed for the understanding of a
single modality.

Following these premises, in this section we investigate the design of a novel
fully-attentive approach for image captioning. Our architecture takes inspiration
from the Transformer model [306] for machine translation and incorporates two
key novelties with respect to all previous image captioning algorithms: (i) image
regions and their relationships are encoded in a multi-level fashion, in which
low-level and high-level relations are taken into account. When modeling these
relationships, our model can learn and encode a priori knowledge by using persist-
ent memory vectors. (ii) The generation of the sentence, done with a multi-layer
architecture, exploits both low- and high-level visual relationships instead of hav-
ing just a single input from the visual modality. This is achieved through a learned
gating mechanism, which weights multi-level contributions at each stage. As this
creates a mesh connectivity schema between encoder and decoder layers, we name
our model Meshed-Memory Transformer –M2 Transformer for short. Figure 2.10
depicts a schema of the architecture.

Experimentally, we explore different fully-attentive baselines and recent pro-
posals, gaining insights on the performance of fully-attentive models in image
captioning. OurM2 Transformer, when tested on the COCO benchmark, achieves
a new state of the art on the “Karpathy” test set, on both single-model and en-
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Figure 2.10: Our image captioning approach encodes relationships between image
regions exploiting learned a priori knowledge. Multi-level encodings of image
regions are connected to a language decoder through a meshed and learnable
connectivity.

semble configurations. Most importantly, it surpasses existing proposals on the
online test server, ranking first among published algorithms.

To foster researches in this field and the reproducibility of our work, the source
code and trained models of ourM2 Transformer are publicly available3.

2.2.1 Meshed-Memory Transformer architecture
Our model can be conceptually divided into an encoder and a decoder module, both
made of stacks of attentive layers. While the encoder is in charge of processing
regions from the input image and devising relationships between them, the decoder
reads from the output of each encoding layer to generate the output caption word
by word. All intra-modality and cross-modality interactions between word and
image-level features are modeled via scaled dot-product attention, without using
recurrence. Attention operates on three sets of vectors, namely a set of queries
Q, keys K, and values V , and takes a weighted sum of value vectors according

3https://github.com/aimagelab/meshed-memory-transformer
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to a similarity distribution between query and key vectors. In the case of scaled
dot-product attention, the operator can be formally defined as

Attention(Q,K,V ) = softmax

(
QKT

√
d

)
V , (2.6)

where Q is a matrix of nq query vectors, K and V both contain nk keys and
values, all with the same dimensionality, and d is a scaling factor.

Memory-augmented encoder

Given a set of image regions X extracted from an input image, attention can be
used to obtain a permutation invariant encoding of X through the self-attention
operations used in the Transformer [306]. In this case, queries, keys, and values
are obtained by linearly projecting the input features, and the operator can be
defined as

S(X) = Attention(WqX,WkX,WvX), (2.7)

where Wq,Wk,Wv are matrices of learnable weights. The output of the self-
attention operator is a new set of elements S(X), with the same cardinality as X ,
in which each element of X is replaced with a weighted sum of the values, i.e. of
linear projections of the input (Eq. 2.6).

Noticeably, attentive weights depend solely on the pairwise similarities between
linear projections of the input set itself. Therefore, the self-attention operator can
be seen as a way of encoding pairwise relationships inside the input set. When
using image regions (or features derived from image regions) as the input set, S(·)
can naturally encode the pairwise relationships between regions that are needed to
understand the input image before describing it4.

This peculiarity in the definition of self-attention has, however, a signific-
ant limitation. Because everything depends solely on pairwise similarities, self-
attention cannot model a priori knowledge on relationships between image regions.
For example, given one region encoding a man and a region encoding a basketball
ball, it would be difficult to infer the concept of player or game without any a priori
knowledge. Again, given regions encoding eggs and toasts, the knowledge that
the picture depicts a breakfast could be easily inferred using a priori knowledge
on relationships.

4Taking another perspective, self-attention is also conceptually equivalent to an attentive encoding
of graph nodes [308].
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Memory-augmented attention. To overcome this limitation of self-attention,
we propose a memory-augmented attention operator. In our proposal, the set of
keys and values used for self-attention is extended with additional “slots” which
can encode a priori information. To stress that a priori information should not
depend on the input set X , the additional keys and values are implemented as
plain learnable vectors which can be directly updated via SGD. Formally, the
operator is defined as:

Mmem(X) = Attention(WqX,K,V )

K = [WkX,Mk]

V = [WvX,Mv] , (2.8)

where Mk and Mv are learnable matrices with nm rows, and [·, ·] indicates
concatenation. Intuitively, by adding learnable keys and values, through attention
it will be possible to retrieve learned knowledge which is not already embedded
in X . At the same time, our formulation leaves the set of queries unaltered.
Intuitively again, this will help to avoid hallucination, given that knowledge is
always retrieved because of similarities with queries which are seen in the image.

Just like the self-attention operator, our memory-augmented attention can be
applied in a multi-head fashion. In this case, the memory-augmented attention
operation is repeated h times, using different projection matrices Wq,Wk,Wv and
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different learnable memory slots Mk,Mv for each head. Then, we concatenate
the results from different heads and apply a linear projection.

Encoding layer. We embed our memory-augmented operator into a Transformer-
like layer: the output of the memory-augmented attention is applied to a position-
wise feed-forward layer composed of two affine transformations with a single
non-linearity, which are independently applied to each element of the set. Formally,

F(X)i = Uσ(VXi + b) + c, (2.9)

where Xi indicates the i-th vector of the input set, and F(X)i the i-th vector of
the output. Also, σ(·) is the ReLU activation function, V and U are learnable
weight matrices, b and c are bias terms.

Each of these sub-components (memory-augmented attention and position-
wise feed-forward) is then encapsulated within a residual connection and a layer
norm operation. The complete definition of an encoding layer can be finally
written as:

Z = AddNorm(Mmem(X))

X̃ = AddNorm(F(Z)), (2.10)

where AddNorm indicates the composition of a residual connection and of a layer
normalization.

Full encoder. Given the aforementioned structure, multiple encoding layers are
stacked in sequence, so that the i-th layer consumes the output set computed by
layer i− 1. This amounts to creating multi-level encodings of the relationships
between image regions, in which higher encoding layers can exploit and refine
relationships already identified by previous layers, eventually using a priori know-
ledge. A stack of N encoding layers will therefore produce a multi-level output
X̃ = (X̃1, ..., X̃N ), obtained from the outputs of each encoding layer.

Meshed decoder

Our decoder is conditioned on both previously generated words and region encod-
ings, and is in charge of generating the next tokens of the output caption. Here,
we exploit the aforementioned multi-level representation of the input image while
still building a multi-layer structure. To this aim, we devise a meshed attention
operator which, unlike the cross-attention operator of the Transformer, can take
advantage of all encoding layers during the generation of the sentence.
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Meshed cross-attention. Given an input sequence of vectors Y , and outputs from
all encoding layers X̃ , the Meshed Attention operator connects Y to all elements
in X̃ through gated cross-attentions. Instead of attending only the last encoding
layer, we perform a cross-attention with all encoding layers. These multi-level
contributions are then summed together after being modulated. Formally, our
meshed attention operator is defined as

Mmesh(X̃ ,Y ) =

N∑
i=1

αi ⊙ C(X̃i,Y ), (2.11)

where C(·, ·) stands for the encoder-decoder cross-attention, computed using
queries from the decoder and keys and values from the encoder:

C(X̃i,Y ) = Attention(WqY ,WkX̃
i,WvX̃

i), (2.12)

and αi is a matrix of weights having the same size as the cross-attention results.
Weights in αi modulate both the single contribution of each encoding layer,
and the relative importance between different layers. These are computed by
measuring the relevance between the result of the cross-attention computed with
each encoding layer and the input query, as follows:

αi = σ
(
Wi

[
Y , C(X̃i,Y )

]
+ bi

)
, (2.13)

where [·, ·] indicates concatenation, σ is the sigmoid activation, Wi is a 2d × d
weight matrix, and bi is a learnable bias vector.

Architecture of decoding layers. As for encoding layers, we apply our meshed
attention in a multi-head fashion. As the prediction of a word should only depend
on previously predicted words, the decoder layer comprises a masked self-attention
operation which connects queries derived from the t-th element of its input se-
quence Y with keys and values obtained from the left-hand subsequence, i.e. Y≤t.
Also, the decoder layer contains a position-wise feed-forward layer (as in Eq. 2.9),
and all components are encapsulated within AddNorm operations. The final
structure of the decoder layer can be written as:

Z = AddNorm(Mmesh(AddNorm(Smask(Y )))

Ỹ = AddNorm(F(Z)), (2.14)

where Y is the input sequence of vectors and Smask indicates a masked self-
attention over time. Finally, our decoder stacks together multiple decoder layers,
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helping to refine both the understanding of the textual input and the generation of
next tokens. Overall, the decoder takes as input word vectors, and the t-th element
of its output sequence encodes the prediction of a word at time t+ 1, conditioned
on Y≤t. After taking a linear projection and a softmax operation, this encodes a
probability over words in the dictionary.

2.2.2 Experimental evaluation
Training

Following a standard practice in image captioning [255, 262, 7], we pre-train
our model with a word-level cross-entropy loss (XE) and finetune the sequence
generation using reinforcement learning. When training with XE, the model is
trained to predict the next token given previous ground-truth words; in this case,
the input sequence for the decoder is immediately available and the computation of
the entire output sequence can be done in a single pass, parallelizing all operations
over time.

When training with reinforcement learning, we employ a variant of the self-
critical sequence training approach [262] on sequences sampled using beam
search [7]: to decode, we sample the top-k words from the decoder probabil-
ity distribution at each timestep, and always maintain the top-k sequences with
highest probability. As sequence decoding is iterative in this step, the aforemen-
tioned parallelism over time cannot be exploited. However, intermediate keys
and values used to compute the output token at time t can be reused in the next
iterations.

Following previous works [7], we use the CIDEr-D score as reward, as it well
correlates with human judgment [307]. We baseline the reward using the mean of
the rewards rather than greedy decoding as done in previous methods [262, 7], as
we found it to slightly improve the final performance. The final gradient expression
for one sample is thus:

∇θL(θ) = −
1

k

k∑
i=1

(
(r(wi)− b)∇θ log p(wi)

)
(2.15)

where wi is the i-th sentence in the beam, r(·) is the reward function, and b =(∑
i r(w

i)
)
/k is the baseline, computed as the mean of the rewards obtained by

the sampled sequences. At prediction time, we decode again using beam search,
and keep the sequence with highest predicted probability among those in the last
beam.
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Datasets

We first evaluate our model on the COCO dataset [201], which is the most com-
monly used test-bed for image captioning. Then, we assess the captioning of novel
objects by testing on the recently proposed nocaps dataset [2].

COCO. As previously mentioned, the dataset contains more than 120, 000 images,
each of them annotated with 5 different captions. We follow the splits provided
by Karpathy et al. [159], where 5, 000 images are used for validation, 5, 000
for testing and the rest for training. We also evaluate the model on the COCO
online test server, composed of 40, 775 images for which annotations are not made
publicly available.

nocaps. The dataset consists of 15, 100 images taken from the Open Im-
ages [180] validation and test sets, each annotated with 11 human-generated
captions. Images are divided into validation and test splits, respectively composed
of 4, 500 and 10, 600 elements. Images can be further grouped into three sub-
sets depending on the nearness to COCO, namely in-domain, near-domain, and
out-of-domain images. In-domain images contain only objects that are described
in the COCO captions, out-of-domain images contain object classes that do not
appear in COCO captions, and near-domain images contain both in-domain and
out-of-domain object classes. Under this setting, we use COCO as training data
and evaluate our results on the nocaps test server.

Metrics

Following the standard evaluation protocol, we employ the full set of caption-
ing metrics: BLEU [238], METEOR [19], ROUGE [199], CIDEr [307], and
SPICE [5].

Implementation details

To represent image regions, we use Faster R-CNN [259] with ResNet-101 [119]
finetuned on the Visual Genome dataset [175, 7], thus obtaining a 2048-dimensional
feature vector for each region. To represent words, we use one-hot vectors and
linearly project them to the input dimensionality of the model d. We also em-
ploy sinusoidal positional encodings [306] to represent word positions inside the
sequence and sum the two embeddings before the first decoding layer.

Pre-training with XE is done following the learning rate scheduling strategy
of [306] with a warmup equal to 10, 000 iterations. Then, during CIDEr-D optim-
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ization, we use a fixed learning rate of 5× 10−6. We train all models using the
Adam optimizer [170], a batch size of 50, and a beam size equal to 5.

Decoding optimization. As mentioned in Section 2.2.2, during the decoding stage
computation cannot be parallelized over time as the input sequence is iteratively
built. A naive approach would be to feed the model at each iteration with the
previous t− 1 generated words, {w0, w1, ..., wt−1} and sample the next predicted
word wt after computing the results of each attention and feed-forward layer over
all timesteps. This in practice requires to re-compute the same queries, keys,
values and attentive states multiple times, with intermediate results depending on
wt being recomputed T − t times, where T is the length of the sampled sequence
(in our experiments T is equal to 20).

In our implementation, we revert to a more computationally friendly approach
in which we re-use intermediate results computed at previous timesteps. Each
attentive layer of the decoder internally stores previously computed keys and
values. At each timestep of the decoding, the model is fed only with wt−1, and we
only compute queries, keys and values depending on wt−1.

In PyTorch, this can be implemented by exploiting the register buffer
method of nn.Module, and creating buffers to hold previously computed results.
When running on a NVIDIA 2080Ti GPU, we found this to reduce training and
inference times by approximately a factor of 3.

Vocabulary and tokenization. We convert all captions to lowercase, remove
punctuation characters and tokenize using the spaCy NLP toolkit5. To build
vocabularies, we remove all words which appear less than 5 times in training and
validation splits. For each image, we use a maximum number of region feature
vectors equal to 50.

Model dimensionality and weight initialization. In our model, we set the
dimensionality d of each layer to 512, the number of heads to 8, and the number
of memory vectors to 40. Using 8 attentive heads, the size of queries, keys and
values in each head is set to d/8 = 64. We employ dropout with keep probability
0.9 after each attention and feed-forward layer. In our meshed attention operator
(Eq. 2.11), we normalize the output with a scaling factor of

√
N .

Weights of attentive layers are initialized from the uniform distribution pro-
posed by Glorot et al. [103], while weights of feed-forward layers are initialized
using [118]. All biases are initialized to 0. Memory vectors for keys and values
are initialized from a normal distribution with zero mean and, respectively, 1/dk

5https://spacy.io/
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and 1/m variance, where dk is the dimensionality of keys and m is the number of
memory vectors.
Novel object captioning. To train the model on the nocaps dataset, instead of
using one-hot vectors, we represent words with GloVe word embeddings [242].
Two fully-connected layers are added to convert between the GloVe dimensionality
and d before the first decoding layer and after the last decoding layer. Before the
final softmax, we multiply with the transpose of the word embeddings.

Following [2], we use an object detector trained on Open Images 6 and filter
detections by removing 39 Open Images classes that contain parts of objects or
which are seldom mentioned. We also discard overlapping detections by removing
the higher-order of two objects based on the class hierarchy, and we use the top-3
detected objects as constraints based on the detection confidence score. Differently
from [2], we do not consider the plural forms or other word phrases of object
classes, thus taking into account only the original class names. After decoding,
we select the predicted caption with highest probability that satisfies the given
constraints.

2.2.3 Ablation study

Performance of the Transformer. In previous works, the Transformer model has
been applied to captioning only in its original configuration with six layers and
self/cross attention, with the structure of connections that has been successful for
uni-modal scenarios like machine translation. As we speculate that captioning
requires specific architectures, we compare variations of the original Transformer
with our approach.

Firstly, we investigate the impact of the number of encoding and decoding
layers on captioning performance. As it can be seen in Table 2.3, the original
Transformer (six layers) achieves 121.8 CIDEr, slightly superior to the Up-Down
approach [7] which uses a two-layer recurrent language model with additive atten-
tion and includes a global feature vector (120.1 CIDEr). Varying the number of
layers, we observe a significant increase in performance when using three encod-
ing and three decoding layers, which leads to 123.6 CIDEr. We hypothesize that
this is due to the reduced training set size and to the lower semantic complexities
of sentences in captioning with respect to those of language understanding tasks.
Following this finding, all subsequent experiments will use three layers.

6Specifically, the tf faster rcnn inception resnet v2 atrous oidv2 model from the
Tensorflow model zoo.
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B-1 B-4 M R C S

Transformer (w/ 6 layers as in [306]) 79.1 36.2 27.7 56.9 121.8 20.9
Transformer (w/ 3 layers) 79.6 36.5 27.8 57.0 123.6 21.1
Transformer (w/ AoA [137]) 80.3 38.8 29.0 58.4 129.1 22.7

M2 Transformer1-to-1 (w/o mem.) 80.5 38.2 28.9 58.2 128.4 22.2
M2 Transformer1-to-1 80.3 38.2 28.9 58.2 129.2 22.5

M2 Transformer (w/o mem.) 80.4 38.3 29.0 58.2 129.4 22.6
M2 Transformer (w/ softmax) 80.3 38.4 29.1 58.3 130.3 22.5
M2 Transformer 80.8 39.1 29.2 58.6 131.2 22.6

Table 2.3: Ablation study and comparison with Transformer-based alternatives.
All results are reported after the REINFORCE optimization stage.

Attention on Attention baseline. We also evaluate a recent proposal that can
be straightforwardly applied to the Transformer as an alternative to standard
dot-product attention. Specifically, we evaluate the addition of the “Attention
on Attention” (AoA) approach [137] to the attentive layers, both in the encoder
and in the decoder. Noticeably, in [137] this has been done with a Recurrent
language model with attention, but the approach is sufficiently general to be
applied to any attention stage. In this case, the result of dot-product attention
is concatenated with the initial query and fed to two fully connected layers to
obtain an information vector and a sigmoidal attention gate, then the two vectors
are multiplied together. The final result is used as an alternative to the standard
dot-product attention. This addition to a standard Transformer with three layers
leads to 129.1 CIDEr (Table 2.3), thus underlying the usefulness of the approach
also in Transformer-based models.

Meshed connectivity. We then evaluate the role of the meshed connections
between encoder and decoder layers. In Table 2.3, we firstly introduce a reduced
version of our approach in which the i-th decoder layer is only connected to
the corresponding i-th encoder layer (1-to-1), instead of being connected to all
encoders. As it can be noticed, using this 1-to-1 connectivity schema already
brings an improvement with respect to using the output of the last encoder layer
as in the standard Transformer (123.6 CIDEr vs 129.2 CIDEr), thus confirming
that exploiting a multi-level encoding of image regions is beneficial. When we
instead use our meshed connectivity schema, that exploits relationships encoded at
all levels and weights them with a sigmoid gating, we observe a further perform-
ance improvement, from 129.2 CIDEr to 131.2 CIDEr. This amounts to a total
improvement of 7.6 CIDEr points with respect to the standard Transformer. Also,

54 Transforming vision and language with attention



CHAPTER 2. IMAGE CAPTIONING

Memories B-1 B-4 M R C S

No memory 80.4 38.3 29.0 58.2 129.4 22.6
20 80.7 38.9 29.0 58.4 129.9 22.7
40 80.8 39.1 29.2 58.6 131.2 22.6
60 80.0 37.9 28.9 58.1 129.6 22.5
80 80.0 38.2 29.0 58.3 128.9 22.9

Table 2.4: Captioning results of M2 Transformer using different numbers of
memory vectors.

Layers B-1 B-4 M R C S

2 80.5 38.6 29.0 58.4 128.5 22.8
3 80.8 39.1 29.2 58.6 131.2 22.6
4 80.8 38.6 29.1 58.5 129.6 22.6

Table 2.5: Captioning results of M2 Transformer using different numbers of
encoder and decoder layers.

the result of our full model is superior to that obtained using the AoA.
As an alternative to the sigmoid gating approach for weighting the contri-

butions from different encoder layers (Eq. 2.11), we also test with a softmax
gating schema. In this case, the element-wise sigmoid applied to each encoder is
replaced with the application of a softmax operation over the rows of αi. Using
this alternative brings to a reduction of around 1 CIDEr point, underlying that it is
beneficial to exploit the full potentiality of a weighted sum of the contributions
from all encoding layers, rather than forcing a peaky distribution in which one
layer is given more importance than the others.

Role of persistent memory. We evaluate the role of memory vectors in both the
1-to-1 configuration and in the final configuration with meshed connections. As
it can be seen from Table 2.3, removing memory vectors brings to a reduction in
performance of around 1 CIDEr point in both connectivity settings, thus confirming
the usefulness of exploiting a priori learned knowledge when encoding image
regions.

In Table 2.4, we report the performance of our approach when using a varying
number of memory vectors. As it can be seen, the best result in terms of BLEU,
METEOR, ROUGE and CIDEr is obtained with 40 memory vectors, while 80
memory vectors provide a slightly superior result in terms of SPICE.

Encoder and decoder layers. We also investigate the performance of the
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B-1 B-4 M R C S

SCST [262] - 34.2 26.7 55.7 114.0 -
Up-Down [7] 79.8 36.3 27.7 56.9 120.1 21.4
RFNet [154] 79.1 36.5 27.7 57.3 121.9 21.2
Up-Down+HIP [358] - 38.2 28.4 58.3 127.2 21.9
GCN-LSTM [357] 80.5 38.2 28.5 58.3 127.6 22.0
SGAE [347] 80.8 38.4 28.4 58.6 127.8 22.1
ORT [124] 80.5 38.6 28.7 58.4 128.3 22.6
AoANet [137] 80.2 38.9 29.2 58.8 129.8 22.4

M2 Transformer 80.8 39.1 29.2 58.6 131.2 22.6

Table 2.6: Comparison with the state of the art on the “Karpathy” test split, in
single-model setting.

M2 Transformer when changing the number of encoding and decoding layers.
Table 2.5 shows that the best performance is obtained with three encoding and
decoding layers, thus confirming the initial findings on the base Transformer
model. As our model can deal with a different number of encoding and decoding
layers, we also experimented with non symmetric encoding-decoding architectures,
without however noticing significant improvements in performance.

2.2.4 Comparison with state of the art
We compare the performances of our approach with those of several recent propos-
als for image captioning. The models we compare to include SCST [262], which
uses attention over the grid of features and a one-layer LSTM language model;
Up-Down [7], which introduces attention over regions, and uses a two-layer LSTM
language model. Also, we compare to the RFNet approach [154], which uses a
recurrent fusion network to merge different CNN features; GCN-LSTM [357],
which exploits pairwise relationships between image regions through a Graph Con-
volutional Neural Network; SGAE [347], which instead uses auto-encoding scene
graphs. Further, we compare with the original AoANet [137] approach, which
uses attention on attention for encoding image regions and an LSTM language
model. Finally, we compare with ORT [124], which uses a plain Transformer, and
weights attention scores in the region encoder with pairwise distances between
detections.

We evaluate our approach on the COCO “Karpathy” test split, using both
single model and ensemble configurations, and on the online COCO evaluation
server.
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B-1 B-4 M R C S

Ensemble/Fusion of 2 models

GCN-LSTM [357] 80.9 38.3 28.6 58.5 128.7 22.1
SGAE [347] 81.0 39.0 28.4 58.9 129.1 22.2
ETA [190] 81.5 39.9 28.9 59.0 127.6 22.6
GCN-LSTM+HIP [358] - 39.1 28.9 59.2 130.6 22.3

M2 Transformer 81.6 39.8 29.5 59.2 133.2 23.1

Ensemble/Fusion of 4 models

SCST [262] - 35.4 27.1 56.6 117.5 -
RFNet [154] 80.4 37.9 28.3 58.3 125.7 21.7
AoANet [137] 81.6 40.2 29.3 59.4 132.0 22.8

M2 Transformer 82.0 40.5 29.7 59.5 134.5 23.5

Table 2.7: Comparison with the state of the art on the “Karpathy” test split, using
an ensemble of models.

Single model. In Table 2.6 we report the performance of our method in comparison
with the aforementioned competitors, using captions predicted from a single model
and optimization on the CIDEr-D score. As it can be observed, our method
surpasses all other approaches in terms of BLEU-4, METEOR and CIDEr, while
being competitive on BLEU-1 and SPICE with the best performer, and slightly
worse on ROUGE with respect to AoANet [137]. In particular, it advances the
current state of the art on CIDEr by 1.4 points.
Ensemble model. Following the common practice [262, 137] of building an
ensemble of models, we also report the performances of our approach when
averaging the output probability distributions of multiple and independently trained
instances of our model. In Table 2.7, we use ensembles of two and four models,
trained from different random seeds. Noticeably, when using four models our
approach achieves the best performance according to all metrics, with an increase
of 2.5 CIDEr points with respect to the current state of the art [137].
Online Evaluation. Finally, we also report the performance of our method on
the online COCO test server7. In this case, we use the ensemble of four models
previously described, trained on the “Karpathy” training split. The evaluation is
done on the COCO test split, for which ground-truth annotations are not publicly
available. Results are reported in Table 2.8, in comparison with the top-performing
approaches of the leaderboard. For fairness of comparison, they also used an

7https://competitions.codalab.org/competitions/3221
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ensemble configuration. As it can be seen, our method surpasses the current state
of the art on all metrics, achieving an advancement of 1.4 CIDEr points with
respect to the best performer.

2.2.5 Qualitative results and visualization
Figure 2.12 proposes qualitative results generated by our model and the original
Transformer. On average, our model is able to generate more accurate and de-
scriptive captions, integrating fine-grained details and object relations.

Finally, to better understand the effectiveness of our M2 Transformer, we
investigate the contribution of detected regions to the model output. Differently
from recurrent-based captioning models, in which attention weights over regions
can be easily extracted, in our model the contribution of one region with respect to
the output is given by more complex non-linear dependencies. Therefore, we revert
to attribution methods and we employ the Integrated Gradients approach [291],
which approximates the integral of gradients with respect to the given input.
Specifically, the Integrated Gradients approach produces an attribution score for
each feature channel of each input region. To obtain the attribution of each region,
we average over the feature channels, and re-normalize the obtained scores by
their sum. For visualization purposes, we apply a contrast stretching function to
project scores in the 0-1 interval. Results are presented in Figure 2.13, where
we observe that our approach correctly grounds image regions to words, also in
presence of object details and small detections.
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GT: A cat looking at his reflection in
the mirror.
Transformer: A cat sitting in a win-
dow sill looking out.
M2 Transformer: A cat looking at
its reflection in a mirror.

GT: A plate of food including eggs
and toast on a table next to a stone
railing.
Transformer: A group of food on a
plate.
M2 Transformer: A plate of break-
fast food with eggs and toast.

GT: A truck parked near a tall pile of
hay.
Transformer: A truck is parked in
the grass in a field.
M2 Transformer: A green truck
parked next to a pile of hay.

GT: A man in a red Santa hat and a
dog pose in front of a Christmas tree.
Transformer: A Christmas tree in
the snow with a Christmas tree.
M2 Transformer: A man wearing
a Santa hat with a dog in front of a
Christmas tree.

GT: A little girl is eating a hot dog
and riding in a shopping cart.
Transformer: A little girl sitting on
a bench eating a hot dog.
M2 Transformer: A little girl sit-
ting in a shopping cart eating a hot
dog.

GT: A man milking a brown and
white cow in barn.
Transformer: A man is standing next
to a cow.
M2 Transformer: A man is milk-
ing a cow in a barn.

GT: A woman with blue hair and a
yellow umbrella.
Transformer: A woman is holding
an umbrella.
M2 Transformer: A woman with
blue hair holding a yellow umbrella.

GT: Several people standing outside
a parked white van.
Transformer: A group of people
standing outside of a bus.
M2 Transformer: A group of
people standing around a white van.

GT: Several zebras and other animals
grazing in a field.
Transformer: A herd of zebras are
standing in a field.
M2 Transformer: A herd of zebras
and other animals grazing in a field.

GT: A truck sitting on a field with
kites in the air.
Transformer: A group of cars parked
in a field with a kite.
M2 Transformer: A white truck is
parked in a field with kites.

GT: A woman who is skateboarding
down the street.
Transformer: A woman walking
down a street talking on a cell phone.
M2 Transformer: A woman stand-
ing on a skateboard on a street.

GT: Orange cat walking across two
red suitcases stacked on floor.
Transformer: An orange cat sitting
on top of a suitcase.
M2 Transformer: An orange cat
standing on top of two red suitcases.

GT: A hotel room with a well-made
bed, a table, and two chairs.
Transformer: A bedroom with a bed
and a table.
M2 Transformer: A hotel room
with a large bed with white pillows.

GT: An open toaster oven with a glass
dish of food inside.
Transformer: An open suitcase with
food in an oven.
M2 Transformer: A toaster oven
with a tray of food inside of it.

Figure 2.12: Examples of captions generated by our approach and the original
Transformer model, as well as the corresponding ground-truths.
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In-Domain Out-of-Domain Overall

CIDEr SPICE CIDEr SPICE CIDEr SPICE

NBT + CBS [2] 62.1 10.1 62.4 8.9 60.2 9.5
Up-Down + CBS [2] 80.0 12.0 66.4 9.7 73.1 11.1

Transformer 78.0 11.0 29.7 7.8 54.7 9.8
M2 Transformer 85.7 12.1 38.9 8.9 64.5 11.1

Transformer + CBS 74.3 11.0 62.5 9.2 66.9 10.3
M2 Transformer + CBS 81.2 12.0 69.4 10.0 75.0 11.4

Table 2.9: Performances on nocaps validation set, for in-domain and out-of-domain
captioning.

2.2.6 Describing novel objects
We also assess the performance of our approach when dealing with images con-
taining object categories that are not seen in the training set. We compare with
the Up-Down model [7] and Neural Baby Talk [215], when using GloVe word
embeddings and Constrained Beam Search (CBS) [6] to address the generation of
out-of-vocabulary words and constrain the presence of categories detected by an
object detector. To compare with our model, we use a simplified implementation
of the procedure described in [2] to extract constraints, without using word phrases
(e.g. plurals).

Results are shown in Table 2.9: as it can be seen, the original Transformer
is significantly less performing than Up-Down on both in-domain and out-of-
domain categories, while our approach can properly deal with novel categories,
surpassing the Up-Down baseline in both in-domain and out-of-domain images.
As expected, the use of CBS significantly enhances the performances, in particular
on out-of-domain captioning.

Figure 2.14 reports sample captions produced by our approach on images from
the nocaps dataset. On each image, we compare to the baseline Transformer and
show the constraints provided by the object detector. Overall, theM2 Transformer
is able to better incorporate the constraints while maintaining the fluency and
properness of the generated sentences.
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Figure 2.13: Visualization of attention states for four sample captions. For each
generated word, we show the attended image regions, outlining the region with
the maximum output attribution in red.

62 Transforming vision and language with attention



CHAPTER 2. IMAGE CAPTIONING

Constraints: horse; cart.

Transformer: A horse pulling a cart
down a street.
M2 Transformer: A white horse
pulling a man in a cart.

Constraints: bee; lavender.

Transformer: A bee lavender of
purple flowers in a field.
M2 Transformer: A field of lav-
ender purple flowers with bee.

Constraints: monkey.

Transformer: A brown bear sitting
on a rock monkey.
M2 Transformer: A small monkey
sitting on a rock in the grass.

Constraints: flag.

Transformer: A red kite with a flag
in the sky.
M2 Transformer: A red and white
flag flying in the sky.

Constraints: bookcase.

Transformer: A woman holding a
bookcase in a store.
M2 Transformer: A woman hold-
ing a book in front of a bookcase.

Constraints: rabbit.

Transformer: A cat sitting on the
rabbit with a cell phone.
M2 Transformer: A rabbit sitting
on a table next to a person.

Figure 2.14: Sample nocaps images and corresponding predicted captions gener-
ated by our model and the original Transformer. For each image, we report the
Open Images object classes predicted by the object detector and used as constraints
during the generation of the caption.
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2.3 CaMEL: mean teacher learning
As shown in the previous sections, describing images in natural language is a fun-
damental step towards the automatic modeling of connections between the visual
and textual modalities. In this section we present CaMEL, a novel Transformer-
based architecture for image captioning that leverages the interaction of two
interconnected language models, learning from each other during the training
phase. The interplay between the two language models follows a mean teacher
learning paradigm with knowledge distillation. Experimentally, we assess the
effectiveness of the proposed solution on the COCO dataset and in conjunction
with different visual feature extractors. When comparing with existing proposals,
we demonstrate that our model provides state-of-the-art caption quality with a
significantly reduced number of parameters. According to the CIDEr metric,
we obtain a new state of the art on COCO when training without using external
data. The source code and trained models will be made publicly available at:
https://github.com/aimagelab/camel.

2.3.1 Introduction

Nowadays, captioning approaches have significantly evolved towards the usage
of Transformer-based language models [124, 237, 65, 217, 59], while the visual
feature extraction stage is rapidly evolving towards the use of grid-like features
extracted with multi-modal architectures trained on large-scale data with language
supervision [273, 60, 250]. In parallel, while many captioning approaches have
been trained on middle-size datasets like COCO, the literature is now investigating
the usage of large-scale noisy datasets as well [60, 196, 371, 328, 134].

Regardless of these architectural and structural improvements, the training
methodology has remained almost unaltered. Indeed, most of the existing ap-
proaches for image captioning are based on the usage of a single language model,
trained to reproduce the ground-truth caption through a cross-entropy loss and
later, in a fine-tuning stage, through the REINFORCE algorithm [262, 207]. In
this section, we take a different path and investigate the development of a training
strategy that is based on the interplay between two distinct language models. In
particular, we draw inspiration from the Mean Teacher Learning approach [294]
– which has been successfully employed to learn visual representation in a self-
supervised manner [35] – and propose a schema in which two language models
learn and interact together at training time. One of the two language models is
employed as teacher, while the other is employed as a student in a knowledge
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Figure 2.15: Comparison of two different versions of our approach (marked with
stars) and existing approaches (marked with bullets, and hexagons if exploiting
vision-and-language pre-training) in terms of number of parameters and caption
quality. Our method features state-of-the-art caption quality in terms of CIDEr
with a significantly reduced number of parameters.

distillation relationship [126, 12, 338]. Parameters update, on the teacher model,
is carried out by averaging successive states of the student, through an exponential
moving average. In this way, the teacher slowly “follows” the student state through
time. We devise and compare strategies to apply this interplay paradigm in both
the cross-entropy training stage and during the fine-tuning with reinforcement
learning.

Noticeably, at test time one of the two language models can be discarded, so
that the number of parameters is kept on pair with traditional models that employ
a single language model at training time. We name our model CaMEL – short for
Captioner with Mean tEacher Learning. As shown in Fig. 2.15, our model outper-
forms existing approaches in terms of caption quality, while being significantly
less demanding in terms of number of parameters. We assess the performances of
the proposed training strategy on the COCO dataset [201], employing different
knowledge distillation strategies, and in comparison with other state-of-the-art
approaches that have been trained on the same dataset. We also compare our
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results on the COCO online test server. Results demonstrate the goodness of the
proposed solution, which attains a new state of the art on COCO when training
without using external data.

2.3.2 Related training strategies

The training strategy for image captioning architectures usually follows the time-
wise cross-entropy paradigm. This was later combined with a fine-tuning phase
based on the application of the REINFORCE algorithm, to allow using as optim-
ization objectives captioning metrics directly [262, 207], overcoming the issue
of their non-differentiability and boosting the final performance. As a strategy to
improve both training phases, in [140] it is proposed to exploit a teacher model
trained on image attributes to generate additional supervision signals for the cap-
tioning model. These are in the form of soft-labels, which the captioning model
has to align with in the cross-entropy phase, and re-weighting of the caption
words to guide the fine-tuning phase. Additional improvement to the performance
of recent self-attention-based image captioning approaches is due to the use of
large-scale vision-and-language pre-training [60, 196, 371, 134, 381], which can
be done on noisy image-text pairs, also exploiting pre-training losses different
from cross-entropy, such as the masked token loss [196, 371]. Different from
previous methods, our approach is based on the interplay of two different language
models that are trained with the mean teacher learning paradigm and knowledge
distillation, without relying on large-scale pre-training.

2.3.3 CaMEL approach

Preliminaries

Most captioning approaches rely on a single language model, which is conditioned
on input images and is trained to reproduce ground-truth sentences. Formally,
given a dataset of image-caption pairs D = {(vi, ti)}i, the language model aims
at learning the probability distribution of the next word in a sequence, conditioned
on the input image, i.e.

p(wτ |wk<τ ,v), (2.16)

where v is an input image, τ indicates time, and {wτ}τ is the sequence of words
comprising the generated caption. The model is trained according to a time-wise
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cross-entropy (XE) loss over the entire dataset, as follows:

L(θ) = −Ex∼D
∑
τ

log p(wτ |wk<τ ,v, θ), (2.17)

where θ indicates the set of parameters of the model.
After a training stage with cross-entropy, sequence generation is usually fine-

tuned using reinforcement learning. When training with XE, indeed, the model is
trained to predict the next token given previous ground-truth words; in reinforce-
ment learning the model is asked to generate an entire sequence and receives a
reward that is proportional to the similarity of the generated caption with respect
to the ground-truth. A standard practice is to employ a variant of the self-critical
sequence training (SCST) approach [262] on sequences sampled using beam
search [7]: to decode, the top-k words are sampled from the language model
probability distribution at each timestep, and a beam with the top-k sequences
with the highest probability is maintained during the generation.

Following previous works [7], the usual practice is to use the CIDEr-D score as
reward, as it well correlates with human judgment [307]. In our case, we baseline
the reward using the mean of the rewards [65]. The final gradient expression for
the SCST training is, therefore

∇θL(θ) = −
1

k

k∑
i=1

(
(r(wi)− b)∇θ log p(wi)

)
, (2.18)

where wi is the i-th sentence in the beam, r(·) is the reward function, and b =(∑
i r(w

i)
)
/k is the baseline, computed as the mean of the rewards obtained by

the sampled sequences.

CaMEL Architecture

In CaMEL, instead of training a single language model, we rely on the interplay
of two different language models – an online and a target language model, that
interact and learn from each other during the training phase, both during the
XE pre-training and during the SCST fine-tuning. At test time, each of the two
language models can be used, alone, for captioning input images.

The interaction between the online and target language models at training time
is two-fold. The online language model is trained, either via XE or SCST, with
respect to ground-truth captions. In addition, it performs knowledge distillation
with the target language model. The target language model, in turn, updates its
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Online Network

Target Network

Knowledge
Distillation

Model
Averaging

Input Image

Input Image

Encoder

Decoder

The Big Ben clock tower 
in the city of London.

Visual 
Encoder

Figure 2.16: Overview of our CaMEL approach and of the interplay between the
online and target language models.

weights according to an exponential moving average of the online model weights.
An overview of our approach is given in Fig. 2.16.
Knowledge distillation. The target network provides regression targets to train
the online network. This is done through knowledge distillation – treating the
online language model as a student network and the target model as a teacher.

Given a visual input v and a conditioning partial sentence w, at each timestep
τ both networks provide output logits over a vocabulary of N tokens, denoted as
pt,τ and po,τ for the target model and the online model, respectively. Given the
teacher, which is kept fixed, we learn to match these distributions by minimizing a
mean squared error loss with respect to the parameters of the online network, i.e.

min
θo

∑
τ

(pt,τ − po,τ )2, (2.19)

where θo indicates the set of parameters of the online network.
Model averaging. The parameters of the target language model are updated as
an exponential moving average [35] of the parameters of the online network θo.
Formally, the parameters of the target model are given by

θt ← λθt + (1− λ)θo, (2.20)

where θt indicates the set of parameters of the target network and λ ∈ [0, 1]
is a target decay rate. In practice, we keep λ fixed during the entire training
process. This strategy results in the target network keeping a weighted average
of successive states from the online network, thus performing a form of model
ensembling [294].
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Algorithm 1: CaMEL PyTorch pseudocode

# gt, go: target and online networks
# l_KD: knowledge distillation weight
# l: network momentum
# v, c: training (image, caption) pair
for v, c in dataloader:

t = gt(v, c) # target output
o = go(v, c) # online output

loss = XE(softmax(o, dim=-1), c) + l_KD * MSE(t, o)
loss.backward() # backpropagate

update(go) # SGD
gt.params = l * gt.params + (1 - l) * go.params

def MSE(t, s):
t = t.detach() # stop gradient
return (t - s).square().mean()

Objective. During XE pre-training, the final objective we employ to train the
online network is a combination of the standard XE loss, which is computed
with respect to ground-truth captions, and of the knowledge distillation loss with
respect to the target logits:

L = LXE + λKD · LKD, (2.21)

where λKD is a weighting hyperparameter. After each SGD update of the online
network, the target network is updated through the model averaging. Algorithm 1
provides the PyTorch pseudo-code of the training loop during the XE stage.
Extension to the SCST stage. The same training methodology is also applied
during SCST fine-tuning. In this case, given that both language models generate a
beam of k captions, there are k2 pairs of sequences on which the MSE loss can be
potentially applied. In the following, we experiment by matching the top-1 caption
in each beam, according to the probability assigned by the models themselves or to
the score assigned by an external image-text model. Further, we also experiment
when matching each caption in the online beam with a caption in the target beam,
and then applying the MSE loss on each pair.
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Network architecture. CaMEL follows an encoder-decoder Transformer [306]
architecture, where the encoder processes visual features via bi-directional atten-
tion and the decoder generates captions in an auto-regressive manner. Follow-
ing [65, 58], our encoder incorporates additional memory slots, enhancing its
ability to encode knowledge and relations learned from visual data. Specifically,
we expand the set of keys and values in self-attention layers with extra and inde-
pendent learnable vectors, which can encode a priori knowledge retrieved through
attention. Our decoder is composed of a stack of decoder layers, each performing
a right-masked self-attention and a cross-attention followed by a position-wise
feed-forward network.

We also test the usage of a mesh-like connectivity between the encoder and
the decoder, following [65]. In this case, the mesh mechanism further connects
each encoder and decoder layer in a mesh-like structure, augmenting its ability to
deal with low- or high-level features. The architecture is the same for both online
and target models, while using independent parameters updated with different
strategies during training.

2.3.4 Experimental evaluation

Dataset. Following the dominant paradigm in literature, we train and evaluate
our model on the COCO dataset [201]. As such, we do not rely on large-scale
image-text datasets [60]. COCO is composed of more than 120, 000 images,
each of them associated with 5 human-collected captions. We follow the splits
defined in [159], using 5, 000 images for both validation and testing and the rest
for training. We also evaluate our model on the COCO online test server, which
includes 40, 775 images for which annotated captions are not publicly available.

Metrics. According to the standard evaluation protocol, we employ the com-
plete set of captioning metrics: BLEU [238], METEOR [19], ROUGE [199],
CIDEr [307], and SPICE [5].

Implementation details. To represent words, we use Byte Pair Encoding (BPE) [267]
with a vocabulary size of 49, 408, which is then linearly projected to the input di-
mensionality of the model. We use standard sinusoidal positional encodings [306]
to represent word positions. All models comprise three layers in the visual encoder
and three layers in the decoder, each with a dimensionality of 512, a feed-forward
dimensionality of 2048, and a number of heads equal to 8. We apply dropout at
the output of each sub-layer, with a dropout probability equal to 0.1. The number
of memory slots is set to 40.
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CaMEL: A woman riding a
skateboard on the street.

CaMEL w/ mesh: A woman
riding a skateboard on the
sidewalk in front of a
restaurant.

CaMEL: A bowl of cereal
with bananas.

CaMEL w/ mesh: A bowl of
cereal with bananas and a
spoon.

CaMEL: A brown couch with
a couch and a remote
control.

CaMEL w/ mesh: A living
room with a couch and a
remote control.

CaMEL: A man hitting a
tennis ball with a tennis
racket.

CaMEL w/ mesh: A man
jumping to hit a tennis ball
with a tennis racket.

CaMEL: A vase of flowers on
a table.

CaMEL w/ mesh: A vase of
roses on a table with a bird.

CaMEL: A dog running with a
frisbee in its mouth.

CaMEL w/ mesh: A brown
dog carrying a purple frisbee
in its mouth.

Figure 2.17: Qualitative results on sample images from the COCO test set.

In all experiments, we employ Adam [170] as optimizer and a beam size equal
to 5. During pre-training with XE loss, we use a batch size of 50, following the
typical Transformer learning rate scheduling strategy [306] with a warmup equal
to 10, 000 iterations. During the SCST finetuning stage, we use a batch size of
30 and a fixed learning rate equal to 5 × 10−6. The MSE loss is computed by
considering only valid tokens and masking the rest. In according with [294], the
target network momentum λ is set to 0.999.

Ablation Study

Visual features assessment. We firstly discuss the role of visual features, by
comparing traditional detection-based features with grid-based features extracted
from modern multi-modal models. In particular, we consider object detection
features extracted from a Faster R-CNN model [7] pre-trained on the Visual
Genome dataset [175], and grid-based features extracted from CLIP [250], which
has been trained with language supervision. Since CLIP visual encoders can be
either based on ViT-like or CNN-like architectures, we either employ the output of
the last Transformer layer, removing the CLS token, or extract the grid of features
produced immediately after the last convolutional layer.

As it can be seen from Table 2.10, Faster R-CNN features can be surpassed by
modern multi-modal architectures, which brings a significant advantage in terms
of all captioning metrics. While CLIP-RN50 performs worse than Faster R-CNN
features when training a single language model without CaMEL and mesh-like
connectivity, ViT-based and larger CNN-based models achieve better performance.
The best performance is reached by the CLIP-RN50×16 variant, which employs
an EfficientNet-style architecture scaling. Overall, this brings an improvement of
7.1 CIDEr points with respect to traditional detection-based features (from 113.9
to 121.0) when training a single language model without the CaMEL technique
and without mesh-like connectivity.
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Table 2.11: Results on the COCO Karpathy-test split with different knowledge
distillation strategies during CIDEr optimization.

B-1 B-4 M R C S

CaMELbest – CLIP Text Embeddings 82.6 40.7 30.3 60.1 138.2 24.3

CaMELall – Hungarian Matching 82.7 40.8 30.2 60.0 138.4 24.0
CaMELbest – Hungarian Matching 82.4 40.4 30.1 59.8 138.6 23.8

CaMELall 82.9 41.0 30.2 60.1 138.5 24.0
CaMELbest 82.7 40.9 30.3 60.1 138.9 24.5

Role of CaMEL. We then assess the impact of the proposed training technique
during the XE pre-training stage, by also testing with different weights for the
knowledge distillation loss, which we indicate with λKD. Results are reported in
Table 2.10. As it can be seen, CaMEL improves the performance when used with
all the previously mentioned features, by a considerable margin. This confirms the
appropriateness of using a mean teacher learning paradigm in image captioning.
When using the RN50×16 encoder, for instance, applying CaMEL with a distilla-
tion weight of 0.1 brings an improvement of 4.7 CIDEr points (121.0 vs 125.7).
Finally, the CaMEL training strategy improves the performance also when using a
mesh-like connectivity, from 122.6 to 125.0 CIDEr points when using λKD equal
to 0.01.

Overall, during XE pre-training CLIP features bring a 6.2% relative improve-
ment with respect to traditional detection-based features, and CaMEL introduces,
in the best feature configuration, a relative advancement of 3.9% with respect
to a typical single model training. In the following experiments we employ the
CLIP-RN50×16 variant as image encoder and the target network as language
model.
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Table 2.12: Comparison with the state of the art on the Karpathy-test split.

B-1 B-4 M R C S

Up-Down [7] 79.8 36.3 27.7 56.9 120.1 21.4
ORT [124] 80.5 38.6 28.7 58.4 128.3 22.6
GCN-LSTM [357] 80.9 38.3 28.6 58.5 128.7 22.1
SGAE [347] 81.0 39.0 28.4 58.9 129.1 22.2
CPTR [208] 81.7 40.0 29.1 59.4 129.4 -
MT [277] 80.8 38.9 28.8 58.7 129.6 22.3
AoANet [137] 80.2 38.9 29.2 58.8 129.8 22.4
M2 Transformer [65] 80.8 39.1 29.2 58.6 131.2 22.6
X-LAN [237] 80.8 39.5 29.5 59.2 132.0 23.4
TCTS [140] 81.2 40.1 29.5 59.3 132.3 23.5
X-Transformer [237] 80.9 39.7 29.5 59.1 132.8 23.4
DPA [203] 80.3 40.5 29.6 59.2 133.4 23.3
DLCT [217] 81.4 39.8 29.5 59.1 133.8 23.0
RSTNet [375] 81.8 40.1 29.8 59.5 135.6 23.3

CaMEL 82.7 40.9 30.3 60.1 138.9 24.5
CaMEL w/ mesh 82.8 41.3 30.2 60.1 140.6 23.9

VinVLB [371] 82.0 40.9 30.9 60.7 140.6 25.1
VinVLL [371] 82.0 41.0 31.1 60.9 140.9 25.2
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Evaluation of different SCST strategies. Turning to the evaluation of the SCST
fine-tuning stage, in Table 2.11 we compare the performance of different know-
ledge distillation strategies. In particular, we experiment the CaMELbest version,
in which we pair the two logits sequences with the highest probability from both
models to compute the KD loss, and the CaMELall version where we use all the
sequences generated by the beam search algorithm, pairing them in sorted order
of log probability. Further, we explore the use of CLIP text embeddings in the
MSE loss. In CaMELbest with CLIP text embeddings, we select the most probable
caption in each of the two beams, and then apply the MSE loss between the CLS
tokens given by the CLIP text encoder.

Moreover, we investigate the usage of the Hungarian matching algorithm [177]
to couple captions in the online and target beams, using their CLIP embedding
similarity as distance function. We then compute the MSE loss on the original
logits between all pairs – in CaMELall version – or only the most probable cap-
tion from the target model and its most similar one from the online model – in
CaMELbest version. The best version, based on all metrics except BLEU scores, is
CaMELbest without additional algorithms, while for the BLEU metrics the best
one is CaMELall always without the use of additional algorithms to pair captions.

Comparison with the state of the art

We compare the results of CaMEL with those of several recent image caption-
ing models trained without large-scale vision-and-language pre-training. In our
analysis, we include methods with LSTM-based language models and attention
over image regions such as Up-Down [7], either enhanced with graph-based en-
coding (i.e. GCN-LSTM [357], SGAE [347], and MT [277]) or self-attention
(i.e. AoANet [137], X-LAN [237], DPA [203], and TCTS [140]), and caption-
ing architectures entirely based on the Transformer network such as ORT [124],
M2 Transformer [65], X-Transformer [237], CPTR [208], DLCT [217], and
RSTNet [375].

Performance on COCO. As it can be observed from Table 2.12, our proposal
reaches 138.9 CIDEr points, beating all the compared approaches. Adding the
mesh-like connectivity to the decoder further improves the results to 140.6 CIDEr
points. This represents an increase of 5.0 CIDEr points with respect to the cur-
rent state-of-the-art when training on the COCO dataset only [375]. Further, in
Fig. 2.15 we compare the aforementioned approaches in terms of both CIDEr and
number of parameters. As it can be noticed, not only CaMEL reports state-of-the-
art results in terms of caption quality, but it also features a significant reduction in
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terms of number of trainable weights. As most of previous literature has increased
caption quality by increasing the model capacity, our approach represents an
outlier in this trend, and demonstrates that state-of-the-art CIDEr levels can be
obtained even with a lightweight model.

Finally, in Table 2.12 and Fig. 2.15 we also report the performance obtained
by a recent approach which employs large-scale pre-training on external data,
i.e. VinVL [371]. While this approach is not directly comparable with CaMEL
considering that it employs more data, we notice that our proposal is on pair with
the Base version of VinVL, and only 0.3 CIDEr points below its Large version.
In terms of model size and number of parameters, VinVL is also extremely more
demanding than our proposal (cfr. Fig. 2.15). This further confirms that the usage
of proper visual features and of mean teacher learning strategy can achieve a good
caption quality with a reduced model size.
Online evaluation. Finally, we also report the performance of our method on the
online COCO test server8. In this case, we also employ an ensemble of four models
trained with the mesh-like connectivity. The evaluation is done on the COCO test
split, for which ground-truth annotations are not publicly available. Results are
reported in Table 2.13, in comparison with the top-performing approaches of the
leaderboard. As it can be seen, our method surpasses the current state of the art on
all metrics, achieving an advancement of 4.2 CIDEr points with respect to the best
performer.

8https://competitions.codalab.org/competitions/3221
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2.4 Novel object captioning
Image captioning models have lately shown impressive results when applied
to standard datasets. Switching to real-life scenarios, however, constitutes a
challenge due to the larger variety of visual concepts which are not covered in
existing training sets. For this reason, novel object captioning (NOC) has recently
emerged as a paradigm to test captioning models on objects which are unseen
during the training phase. In this section, we present a novel approach for NOC
that learns to select the most relevant objects of an image, regardless of their
adherence to the training set, and to constrain the generative process of a language
model accordingly. Our architecture is fully-attentive and end-to-end trainable,
also when incorporating constraints. We perform experiments on the held-out
COCO dataset, where we demonstrate improvements over the state of the art, both
in terms of adaptability to novel objects and caption quality.

2.4.1 Introduction

Describing images has emerged as an important task at the intersection of computer
vision, natural language processing, and multimedia, thanks to the key role it can
have to empower both retrieval and multimedia systems [159, 7, 61, 62, 64, 25,
285]. Recent advances in image captioning, indeed, have demonstrated that fully-
attentive architectures can provide high-quality image descriptions when tested
on the same data distribution they are trained [124, 65, 237, 196]. As existing
datasets for image captioning [364, 201] are limited in terms of the number of
visual concepts they contain, though, the application of such systems in real-life
scenarios is still challenging. For this reason, the task of Novel Object Captioning
(NOC) has recently gained a lot of attention due to its affinity towards real-world
applications [123, 2, 135]. This setting, indeed, requires a model to describe
images containing objects unseen in the training image-text data, also referred to
as out-of-domain visual concepts.

Since the language model behind a NOC algorithm can not be trained to
predict out-domain words, proper incorporation of such novel words during the
generation phase is one of the most relevant issues in this task. Early NOC
approaches [123, 309] tried to transfer knowledge from out-domain images by
conditioning the model at training time on external unpaired visual and textual data.
Further works [356, 197] proposed to integrate coping mechanisms in the language
model to select words corresponding to the predictions of a tagger. However, these
frameworks do not include a proper and explainable method to identify which
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Figure 2.18: Summary of our approach.

objects on the scene are more relevant to be described, and consequently, lack on
leveraging all the available information provided by visual inputs. On a different
line, Anderson et al. [6] devised a Constrained Beam Search algorithm to force
the inclusion of selected tag words in the output caption, following the predictions
of a tagger.

Inspired by this last line of research, we combine the ability to constrain
the predictions from a language model with the usage of object regions and of
fully-attentive architectures, which is dominant in traditional image captioning.
Precisely, we devise a model with a specific ability to select objects in the scene to
be described, with a class-independent module that can work on both in-domain
and out-of-domain objects. Further, we combine this with a variant of the Beam
Search algorithm which can include constraints produced by the region selector,
while assuring end-to-end differentiability. We provide extensive experiments to
validate the proposed approach: when tested on the held-out portion of the COCO
dataset, our model provides state-of-the-art results in terms of caption quality and
adaptability to describe objects unseen in the training set. Given its simplicity and
effectiveness, our approach can also be thought of as a powerful new baseline for
NOC, which can foster future works in the same area.

2.4.2 Proposed method

Our NOC approach can be conceptually divided into two modules: an image
captioner and a region selector. While the image captioning model is conditioned
on the input image and is in charge of modeling a sequence of output words, the
region selector is in charge of choosing the most relevant objects which need to
be described, regardless of their adherence to the training set. The objects picked
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by the selector are used as constraints during the generation process, so that the
output caption is forced to contain their labels as predicted by an object detector.
All the components of our architecture are based on fully-attentive structure, and
end-to-end training is allowed also when adding constraints to the language model.
Fig. 2.18 shows an outline of the approach.

Class-Independent Region Selector

The role of the region selector is to identify objects which must be described in
the output sentence. Since the object selector will need to work on classes that
are unseen in the training set, we adopt a class-independent strategy in which no
information about the object class is employed in the feature extraction process.
Instead, we model intra-class relationships between objects of the same class, to
handle the case in which multiple objects of the same class are present on the
scene.

Given a set of regions X = {xi}i extracted from the input image, along with
their classes {ci}i, we extract central coordinates, width, height and, additionally,
we compute the object area. We also consider as an extra feature the confidence
score si of the object, to obtain a class-independent feature vector:

xi =

[( xc
W

)
,
(yc
H

)
,
(wi
W

)
,

(
hi
H

)
,

(
wi · hi
W ·H

)
, si

]
(2.22)

where xc and yc are the coordinates of the center of the region, wi and hi its width
and height, and W and H the image dimensions.

The set of feature vectors obtained for an image is then fed to a sequence
of Transformer-like [306] layers, each of them composed by an inner-attention
operator and a self-attention operator. The inner-attention operator is devised
to connect together regions belonging to the same class, while the self-attention
operator provides complete connectivity between elements in X . The combination
of these two operators allows the region selector to independently focus on specific
clusters of objects, in order to exchange semantically related information and learn
intra-class dependencies, and then, to model long-range and diverse dependencies.
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Given a partition of X computed according to the class each region belongs to,
i.e. {rc ⊆X | ∀xi, xj ∈ rc, ci = cj}c, the result of the inner-attention operator
applied over an element of the partition is a new set of elements I(rc), with the
same cardinality as rc, in which each element is replaced with a weighted sum of
values computed from regions of the same class. Formally, it can be defined as:

I(rc) = Attention(Wqrc,Wkrc,Wvrc), (2.23)

where rc is the set of all elements of X belonging to class c, W∗ are learnable pro-
jection matrices, and Attention indicates the standard dot-product attention [306].

The inner attention layer is applied independently over each element of the
above-defined partition so that the overall encoding of X is a new sequence of
elements defined as follows:

I(X) = (I(r1), I(r2), ..., I(rC)) , (2.24)

where C indicates the number of classes. After each inner-attention layer, a
self-attention layer is employed to connect elements of different classes together.
Formally, it is defined as:

S(X) = Attention(WqX,WkX,WvX), (2.25)

where W∗ are, again, learnable projection matrices.
After a sequence of inner- and self-attention layers, in which each pair of

operators is followed by a position-wise feed-forward network [306], the region
selector outputs a selection score Yi for each object proposal. To do so, we apply
an affine transformation and a non-linear activation to the output of the last layer:

Yi = σ (RegionSelector(Xi)Wo) , (2.26)

where Wo ∈ Rd×1 are learnable weights and σ is a sigmoid.
Training. The region selector is trained using a binary cross-entropy loss. To
build ground-truth data, for each image we collect the object classes identified by
the object detector and construct a binary ground-truth vector indicating whether
a class name is contained in at least one of the ground-truth captions associated
with the image. We also consider as positives synonyms and plural forms of the
object class names. At inference time, we extract the selected objects for each
image adopting 0.5 as threshold.
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Image Captioner

After object selection, our image captioning model is responsible for generating
a caption using the chosen class names as constraints. Inspired by recent works
which employ fully-attentive models in image captioning [124, 65, 217], we create
a captioning model with an encoder-decoder structure, where the encoder refines
image region features and the decoder generates captions auto-regressively.
Encoder. Recent captioning literature has shown that object regions are the leading
solution to encode visual inputs [7, 357, 347], followed by self-attentive layers
to model region relationships [124, 137, 65, 237, 286, 217]. However, as self-
attention can only encode pairwise similarities, it exhibits a significant limitation
on encoding knowledge learned from data. To overcome this restraint, we enrich
our encoder with memory slots [58, 65]. Specifically, we extend the set of keys
and values of self-attention layers with additional learnable vectors, which are
independent of the input sequence and can encode a priori information retrieved
through attention.
Decoder. The decoder is the actual language model, conditioned on both previ-
ously generated words and image region encodings. As in the standard Trans-
former [306], our language model is composed of a stack of decoder layers, each
performing a masked self-attention and a cross-attention followed by a position-
wise feed-forward network. Specifically, for each cross-attention, keys and values
are inferred from the encoder output, while for the masked self-attention, queries,
keys, and values are exclusively extracted from the input sequence of the decoder.
This self-attention is right-masked so that each query can only attend to keys
obtained from previous words.

Including Lexical Constraints

To include the lexical constraints produced by the region selector when decoding
from the language model, we devise a variant of the Beam Search algorithm [234,
130] which supports the adoption of single-word constraints. Given a number of
word constraints W = {w0, w1, ..., wn} and a maximum decoding length T , we
frame the decoding process in a matrix G with n rows and T columns, where the
horizontal axis covers the time steps in the output sequence, and the vertical axis
indicates the constraints coverage. Each cell of the matrix can contain a beam of
partially decoded sequences.

At iteration t, each row i of G[:, t] can be filled in two ways: either by
continuing the beam contained in G[i, t − 1] by sampling from the probability
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Algorithm 2: Grid Beam Search
G← initGrid(n, T, k)
for t = 1; t < T ; t++ do

for c = max(0, n+ t− T ); c < min(t, n); c++ do
g, s = ∅ forall hyp in G[c, t− 1] do

g ← g ∪ model.step(hyp)
end
if c > 0 then

forall hyp in G[c− 1, t− 1] do
s← s ∪ model.add constr(hyp, {w0, ..., wn})

end
end
G[c, t]←

h∈g∪s
(model.score(h))

end
end
topHyp← hasEOS(G[n, :])Remove sequences w/o EOS
return argmax

h∈topHyp
(model.score(h))

distribution of the language model, or by forcing the inclusion of a constraint from
W . In the former case, the resulting updated beam of sequences is stored in G[i, t],
while in the latter case it is stored in G[i + 1, t]. At the end of the generation
process, the last row of G will contain sequences that satisfy all constraints.

Algorithm 2 reports the pseudo-code of our constrained beam search proced-
ure. There, k indicates the number of elements in each bin, model.step indicates
sampling from the language model probability distribution to continue the genera-
tion of a partially-decoded sequence, while model.add constr indicates a function
which continues a beam by adding all the available constraints, excluding those
which have already been generated for a sequence. Because all the operations
required to include constraints are differentiable, we call our constraint inclusion
approach Differentiable Grid Beam Search (DGBS), and employ it to fine-tune
the image captioner also when using a CIDEr-D optimization strategy.
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Table 2.16: Region selector performance evaluation using different loss weights
for zero and one values.

In-Domain Out-Domain

λ0 λ1 M C S M C S F1

Region Selector (w/o Inner) 0.4 0.6 27.4 111.9 20.3 25.8 85.6 18.7 68.5
Region Selector 0.4 0.6 28.1 119.2 21.3 26.0 89.0 19.4 70.4

Region Selector (w/o Inner) 0.3 0.7 27.2 108.7 19.9 25.9 84.9 18.6 69.9
Region Selector 0.3 0.7 28.0 116.4 21.2 26.2 88.7 19.4 74.2

Region Selector (w/o Inner) 0.2 0.8 27.4 108.0 19.7 25.8 82.1 18.2 70.2
Region Selector 0.2 0.8 27.9 115.3 21.0 26.3 88.5 19.4 75.1

Region Selector (w/o Inner) 0.1 0.9 26.9 97.8 18.2 25.6 73.2 16.7 67.1
Region Selector 0.1 0.9 27.9 114.3 20.8 26.2 87.5 19.2 75.6

2.4.3 Experimental evaluation

Evaluation Protocol

Dataset. We conduct experiments on the held-out COCO dataset [123], which
consists of a subset of the COCO dataset [201] for standard image captioning,
where the training set excludes all image-caption pairs that mention at least one of
the following eight objects: bottle, bus, couch, microwave, pizza, racket, suitcase,
and zebra. We follow the splits defined in [123] and take half of COCO validation
set for validation and the other half for testing.
Metrics. To evaluate caption quality, we use standard captioning metrics (i.e. BLEU-
4 [238], METEOR [19], ROUGE [199], CIDEr [307], and SPICE [5]), while we
employ F1-scores [123] to measure the model ability to incorporate new objects
in generated captions.
Implementation details. To extract geometric features and confidence scores
for our region selector, we employ Faster R-CNN [260] with ResNet-50-FPN
backbone, trained on COCO [201]. For both training and inference, we discard
the detections of the person and background classes. During training, we use
different loss weights (i.e., λ0 = 0.2 and λ1 = 0.8) to balance the importance of
zero and one ground-truth values, and we limit the number of object proposals for
each image to 10 according to their confidence scores. Region selector features
are projected to a 128-dimensional embedding space and passed through N =
2 identical layers, each composed of inner-attention, self-attention, and feed-
forward.

For our image captioning model, we extract object features from Faster R-
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CNN [260] with ResNet-101 finetuned on Visual Genome [175, 7]. Following [65],
we use three layers for both encoder and decoder and employ 40 memory vectors
for each encoder layer. We represent words with GloVe word embeddings [242],
using two fully-connected layers to convert between the GloVe dimensionality
(i.e., 300) and the captioning model dimensionality (i.e., 512) before the first
decoding layer and after the last decoding layer. Before the final softmax, we
multiply with the transpose of the word embeddings. We pre-train our captioning
model using cross-entropy and finetune it using RL with CIDEr-D reward. During
this phase, we use the classes detected by Faster R-CNN, trained on COCO, that
are mentioned in the ground-truth captions as constraints for our DGBS algorithm.
We limit the number of possible constraints to 5.

All experiments are performed with a batch size equal to 50. For training
the region selector and pre-training the captioning model, we use the learning
rate scheduling strategy of [306] with a warmup equal to 10, 000 iterations and
Adam [170] as optimizer. CIDEr-D optimization is done with a learning rate equal
to 5× 10−6.

Experimental Results

Table 2.14 shows the results of our model in terms of captioning metrics and
F1-score averaged over the eight held-out classes, using different strategies to
train the captioning model. We compare with a variant of our region selector
without inner-attention (i.e., w/o Inner) and using the top-k detections, with
k = 1, 2, 3, instead of our selection strategy. For reference, we also report the
performance when using oracle constraints coming from ground-truth captions.
As it can be seen, our solution achieves the best results in terms of both caption
quality and F1-score, demonstrating the effectiveness of our region selector for
choosing constraints for the captioning model and the importance of the inner-
attention operator. Furthermore, by comparing the results with standard CIDEr
optimization and those obtained using our DGBS algorithm during training, we can
see improved results on both in-domain and out-domain captions, thus confirming
the usefulness of our training strategy.

In Table 2.16, we show the results when using different weights to balance the
importance of zero and one ground-truth values. As it can be seen, our complete
region selector achieves better performance than the variant without inner-attention,
thus further demonstrating the effectiveness of the proposed attention operator.
Additionally, employing λ0 = 0.2 and λ1 = 0.8 provides the best balance in terms
of captioning metrics and F1-score.
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Finally, in Table 2.15, we compare our model with NOC state-of-the-art
approaches. As it can be noticed, our region selector obtains the best results in
terms of both F1-scores and captioning metrics, achieving a new state of the art on
the held-out COCO dataset.
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Chapter 3

Cross-modal retrieval

As shown in the previous chapters, recent progress in computer vision and natural
language processing has enabled the blooming of neural networks able to narrow
the gap between vision and language generating new solutions not only for image
and video captioning, but also for cross-modal retrieval [172, 85, 186, 191, 227],
visual question answering [333, 7, 268], and vision-and-language navigation [8,
324, 93]. In this chapter, we aim our attention on cross-modal retrieval and on
the development of deep learning architectures capable of retrieving visual items
given textual queries and vice versa.

Contributions

The leading design of many cross-modal retrieval methods has been that of learning
a joint multimodal embedding space in which text and images could be projected
and compared. In the first part of this chapter, we propose an attention-based
aggregation function that aggregates elements of a sequence or a set in order to
obtain a single response, like a classification or a similarity score, and we use
these responses as projections for the two modalities. We also demonstrate the
effectiveness of this solution for visual question answering, applying these outputs
for classification purposes. Experimentally, we show that our approach increases
performances on both tasks.

This chapter is related to publications [2, 3, 5, 9] reported in Appendix A, by the author of the
thesis. See Appendix A for details.
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While most of the state-of-the-art solutions have shown impressive results us-
ing large-scale models trained with a vast amount of training data, their application
to more real-world scenarios has been rarely investigated due to their inference
time and model size. Therefore, in the second part of this chapter, we go beyond
these limitations and tackle the design of visual-semantic architecture that fills the
gap between effectiveness and efficiency. Our model, called ALADIN, first gener-
ates scores by aligning at fine-grained level images and texts, and then it learns a
shared embedding space by distilling these scores, allowing for a more efficient
kNN search. We demonstrate that our approach can compete with state-of-the-art
large models while being almost 90 times faster.

Finally, while all of these solutions as proved impressive achievements on
fully-supervised settings in which a large amount of training data is available,
their application to more challenging scenarios has been rarely investigated. In the
last part of this chapter, we go beyond these limitations and tackle the design of
visual-semantic algorithms in the domain of the digital humanities and cultural
heritage. To this end, we collect and annotate the Artpedia dataset that contains
paintings and textual sentences describing both the visual content of the paintings
and other contextual information, and we devise a model that matches images
and texts but also identifies if a sentence is visual or contextual. Moreover, since
this setting also features a significant lack of training data, making the use of
fully-supervised approaches infeasible, we propose cross-modal retrieval solutions
that can automatically align illustrations and textual elements without paired
supervision. Our approach transfers the knowledge learned on ordinary visual-
semantic datasets to the artistic domain. Experimentally, we validate the proposed
strategies and quantify the domain shift between natural images and artworks on
two datasets specifically designed for this domain.

3.1 Related work

The key issue of cross-modal retrieval methods is to measure the visual-semantic
similarity between images and textual sentences. Typically, this is achieved
by learning a common embedding space where visual and textual data can be
projected and compared. One of the first attempt in this direction has been made by
Kiros et al. [172] in which a triplet ranking loss is used to maximize the distance
between mismatching items and minimize that between matching pairs.

Following this line of work, Faghri et al. [85] introduced a simple modification
of standard loss functions, based on the use of hard negatives during training, that
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has been demonstrated to be effective in improving the final performance and
widely adopted by several subsequent methods [83, 105, 186, 285]. Among them,
Gu et al. [105] further improved the visual-semantic embedding representations by
incorporating generative processes of images and text. Differently, Engilberge et
al. [83] proposed a novel approach in which spatial pooling mechanisms are used
to embed visual features and localize new concepts from the embedding space.
Later, strong improvements have been obtained with the stacked cross-attention
mechanism proposed by Lee et al. [186] in which a latent correspondence between
image regions and words of the caption is learned to match images and textual
sentences. Wang et al. [325] extended this paradigm by adding the relative position
of image regions in the visual encoder, demonstrating better performance. On a
similar line, Li et al. [191] introduced a visual-semantic reasoning model based
on graph convolutional networks that can generate better visual representations
and capture key objects and semantic concepts present on a scene.

Many works followed [227, 229, 191, 286, 249, 330], trying out BERT [78] as
a text extractor other than a simple GRU and showing the effectiveness of region-
based features [7] as visual representation. After the success of BERT-like models
in Natural Language Processing [78, 188, 210], many works tried to employ the
Transformer Encoder to jointly process images and text, like VilBERT [212],
OSCAR [196], VL-BERT [288], or VinVL [371]. These methods tackle image-
text matching as a binary classification problem, where an (image, sentence) pair
is input to the complex Transformer architecture which is trained to predict the
probability that the sentence relates to the image.

3.2 Attention-based aggregation function

As both images and text can be encoded as sets or sequences of elements – like
regions and words – proper reduction functions are needed to transform a set of
encoded elements into a single response, like a classification or similarity score.
In this section, we propose a novel fully-attentive reduction method for vision and
language. Specifically, our approach computes a set of scores for each element
of each modality employing a novel variant of cross-attention, and performs a
learnable and cross-modal reduction, which can be used for both classification
and ranking. We test our approach on image-text matching and visual question
answering, building fair comparisons with other reduction choices, on both COCO
and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads
to a performance increase on both tasks. Further, we conduct ablation studies to
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validate the role of each component of the approach.

3.2.1 Introduction
As humans we learn to combine vision and language early in life, building con-
nections between visual stimuli and our ability to communicate in a common
natural language. The abundance and diversity of daily-created data pose new
unparalleled opportunities in the attempt to artificially reproduce this joint visual-
semantic understanding. Recent progress at the intersection of Computer Vision
and Natural Language Processing has led to new architectures capable of auto-
matically combining the two modalities, improving the performance of different
vision-and-language tasks, such as image captioning [7, 314, 58, 65], cross-modal
retrieval [172, 20, 85, 186, 64], and visual question answering [9, 7, 293]. All
these settings have usually been addressed by using recurrent neural networks that
can naturally model the sequential nature of textual data. However, the recent
advent of fully attentive mechanisms, in which the recurrent relation is abandoned
in favor of the use of self- and cross-attention, has consistently changed the way
to deal with visual and textual data, as testified by the success and performance
improvements obtained with the Transformer [306] and BERT [78] models.

Nonetheless, the difficulty in tackling these problems is still given by the huge
discrepancy between visual-semantic modalities. In this context, recent research
efforts have mainly focused on treating images and text as sets or sequences
of building elements, such as image regions and sentence words, leading to a
better content understanding of both modalities [7, 186]. While this approach
has allowed more fine-grained alignment and richer representation capabilities of
visual-semantic concepts, it has also caused a large increase of features that need
to be combined together without loosing inter- and intra-modality interactions.

As such, aggregating features represents one of the crucial steps in visual-
semantic tasks in which different information are fused together to obtain a com-
pact and comprehensive representation of both modalities. In this section, we
tackle the problem of aggregating visual-semantic features in an effective and
learnable way, and propose a novel aggregation function based on attentive mech-
anisms that can be successfully applied to different vision-and-language tasks.
Our method can be seen as a variant of the cross-attention schema in which a set
of scores are learned to aggregate feature vectors coming from image regions and
textual words, thus taking into account the cross-modality interactions between
elements (Fig. 3.1).

We apply our attention-based aggregation function to cross-modal retrieval
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Figure 3.1: We propose a novel aggregation function for vision-and-language
tasks. Given sets of visual and textual inputs, our approach computes a set of
scores for each modality, using a novel operator based on cross-attention which
ensures a learnable reduction based on cross-modal information flow.

and visual question answering: in the first case, the compact representation of
visual-semantic data is used to measure the similarity between the input image
and the textual sentence, while, in the visual question answering task, it is used
to compute a classification score over a set of possible answers for each image-
question pair. Experimentally, we test our approach on the COCO dataset for
cross-modal retrieval and on the VQA 2.0 dataset for visual question answering,
and we demonstrate its effectiveness in both settings with respect to different
commonly used aggregation functions.

To summarize, our main contributions are as follows:
• We introduce a new aggregation method based on attentive mechanisms that

learns a compact representation of sets or sequences of feature vectors.
• We tailor our method to combine vision-and-language data in order to obtain

a cross-modal reduction for both classification and ranking objectives. Also,
our method can be easily adapted to other tasks requiring an aggregation of
elements with minimum changes in the architecture design.
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• We show the effectiveness of our solution when compared to other common
reduction operators, demonstrating superior performance in aggregating
multi-modal features.

3.2.2 Related research efforts

Visual Question Answering

Many different solutions have been proposed to address the VQA task, ranging
from Bayesian [220] and compositional [9, 133] approaches to spatial attention-
based methods [354, 7] and bilinear pooling schemes [169]. In the last few years,
the use of attention mechanisms has become the leading choice for this task,
resulting in new models in which relevance scores over visual and textual features
are computed to process only relevant information. Among them, Anderson et
al. [7] re-visited the standard attention over a spatial grid of features and proposed
to encode images with multiple feature vectors coming from a pre-trained object
detector.

After this work, several methods with attention over image regions have been
presented [169, 31, 98, 293, 192]. While Cadene et al. [31] proposed a reasoning
module to encode the semantic interaction between each visual region and the
question, Gao et al. [98] introduced a dynamic fusion framework that integrates
inter- and intra-modality information. Differently, Li et al. [192] presented a novel
solution based on graph attention networks that considers spatial and semantic
relations to enrich image representations.

Following the advent of fully-attentive mechanisms for sequence modeling
tasks like machine translation and language understanding [306, 78], different
Transformer-based solutions have also been proposed to address multimodal set-
tings [293, 99, 65]. In the context of visual question answering, Yu et al. [365]
presented a co-attention module made of a stack of attentive layers based on self-
attention, keeping the textual encoder based on recurrent neural networks. Gao et
al. [99], instead, introduced a novel architecture entirely based on fully-attentive
mechanisms that learns cross-modality relationships between latent summariza-
tions of visual regions and questions. On a similar line, Tan et al. [293] proposed
a Transformer-based model that has demonstrated improved performance thanks
to a pre-training phase on large amounts of image-sentence pairs.
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Feature Aggregation Methods

The aggregation of spatial and temporal features is one of the key challenges in
deep learning architectures. Different solutions have been proposed and heavily
depend on the domain in which applying the aggregation functions (i.e. images
or text). While fusing and pooling operations applied over depths, scales, and
resolutions constitute fundamental components in visual recognition architectures,
the sequential nature of textual data requires different strategies to reduce feature
dimensionality.

Regarding the visual domain, with the first strategies adopted in early popular
deep learning models [176, 280, 292], the architecture design has moved in last
few years to deeper and wider networks [119, 339, 136] incorporating bottlenecks
and connectivity novelties like skipping, gating, and aggregating mechanisms.
While going deeper, i.e. aggregating across channels and depths, improves the
semantic recognition accuracy, spatial fusion, i.e. aggregating across scales and
resolutions, is needed to achieve a better localization capability. In this context,
feature pyramid networks [200] are the predominant approach, making use of
top-down and lateral connections between feature hierarchical levels.

On a different note, data with a sequential nature such as textual sentences
require different solutions to take into account the temporal dependencies between
elements. In this setting, the use of recurrent neural networks has remained the
most commonly used strategy, where hidden representations, learned through
memory and gating mechanisms, are adopted as global encoding of a sequence of
feature vectors.

Recently, with the advent of fully attentive architectures [306] that overcame
limitations of recurrent networks, novel solutions based their global understanding
of sequences through the addition of a special CLS token at the beginning of
each sequence [78, 293]. Thanks to the use of attention that models inter- and
intra-modality connections, this CLS token can learn a compact representation of
an input sequence for general classification purposes. Additionally, similar efforts
have been made on the encoding of textual sentences, where again mean and max
pooling or CLS token have remained the predominant aggregation approaches [142,
258].

Differently from previous works, we propose a novel aggregation method
based on attentive mechanisms that can reduce in a learnable way a set or a
sequence of features coming from either the visual or textual domain.
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Figure 3.2: Our architecture for cross-modal feature extraction and matching. After
a cross-modal feature extraction stage, the proposed attention-based aggregation
function aligns and reduces vectors from both modalities into compact and cross-
modal representations.

3.2.3 Proposed method

The popular scaled dot-product attention mechanism operates on a set of input
vectors and generates a new set of vectors, where each one has been updated
with relevant information coming from the others. This has been proved largely
effective in sequence to sequence tasks such as natural language understanding and
machine translation [306, 78]. However, visual-semantic tasks such as visual ques-
tion answering and cross-modal retrieval deal with multi-modal input sequences
and require alignment between modalities and global perspectives in order to reach
a classification or similarity output.

To this end, we propose a novel attention-based aggregation function that learns
to align and combine two sets of features into a global and compact representation
based on the cross-domain connections between modalities. In the simplest case,
the two sets of features will be regions from an input image and word features
from a natural language sentence.

In a nutshell, our approach leverages dot-product attention to compute cross-
modal scores for each element of the two feature sets. The weights are then used
to take a weighted sum of the input feature vectors, reducing the two sets into a
pair of vectors which can be used for classification or ranking.

In the following, we firstly present our attention-based reduction method. With
the aim of testing the operator on both image-text matching and visual question
answering, we then introduce a general architecture for both tasks, where features
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from multi-modal inputs are extracted and combined. In the last section, we
discuss the final stages of the architecture and the training choices.

Attention-based Aggregation Function

Motivated by the need of leveraging the information contained in sequence of
vectors and at the same time to compare multi-modal information, our aggregation
function is based on the scaled dot-product attention mechanism [306].

To recall what attention is, given three sets of vectors, i.e. queries Q, keys
K and values V , scaled dot-product attention computes a weighted sum of the
value vectors according to a similarity distribution between query and key vectors.
This is usually done in a multi-head fashion, so that for each head h the attention
operator is defined as

Attentionh(Qh,Kh,Vh) = softmax

(
QhK

T
h√

d

)
Vh, (3.1)

where Qh is a matrix of nq query vectors, Kh and Vh both contain nk keys and
values, and d is the dimensionality of queries and keys, used as a scaling factor.

In the case of self-attention, queries, keys and values are obtained for each head
as linear projections of the same input vectors belonging to a single modality, while
in cross-attention, queries are a projection of one modality vectors and keys and
values are projections of the other modality vectors. Inspired by cross-attention,
we define a Score Attention operator which computes a relevance score for each
element of the query sequence, considering its relationships with keys and values
coming from the other modality.

Formally, given the set of query, key and value vectors from all heads, our
Score dot-product attention can be formulated as

ScoreAttn(Q,K,V) = fc

([
softmax

(
QhK

T
h√

d

)
Vh

]
h

)
, (3.2)

where Q, K, V indicate the set of queries, keys and values for the different heads,
[...]h indicates the concatenation of the outputs of all heads and fc is a linear
projection that outputs a single scalar score for each input query.

In order to learn complex interactions between modalities and therefore to
guide the reduction process based on the cross-domain relations, Score Attention is
applied on queries from one modality and keys and values from the other modality.
Therefore, given a set of input vectors X coming from one modality (e.g. regions
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of an image) and a set of input vectors Z coming from the other modality (e.g.
words of a text), we obtain a final condensed representation for X conditioned
on Z as a weighted sum of its vectors using the scores provided by the Score
Attention operator, i.e.

Y (X,Z) =

nq∑
i=0

Si(X,Z) ·Xi (3.3)

S(X,Z) = softmax (ScoreAttn(Q,K,V)) , (3.4)

where queries Q are obtained as projections of X , while keys and values K, V
are obtained from Z. The softmax is applied over the nq scores returned by the
Score Attention operator. Conversely, the same applies to the reduction of the
other modality Z by considering Z as query sequence and X as key and value
ones.

As it can be seen from Eq. (3.2) and (3.4), our Score Attention operator can
be thought as a cross-attention that, instead of yielding a sequence of vectors,
computes a sequence of scores conditioned on keys and values from the other
modality. Therefore, the final compressed representation for each modality can
capture a global perspective of the input, focusing on elements that show higher
importance with respect to the cross-domain interactions.

Noticeably, this aggregation function can be executed multiple times in parallel
with different query, key and value projections, thus yielding more than one output
vector. This in principle can foster a more disentangled representation, in which
different output vectors refer to different global aspects of the same input features.
We therefore test our method with different number of compressed vectors, and
we refer later to this hyper-parameter with k. Whenever the number of vectors
is more than one, we average their contributions with a non-learnable reduction
operator. More details on this can be found in the Implementation Details section.

Visual-Semantic Model

To test our aggregation operator, we devise a general architecture for cross-modal
feature extraction and matching, with the aim of tackling different tasks with the
same common pipeline. Specifically, the architecture is tested on both image-text
retrieval and visual question answering. Given input regions from an image, and
words from a textual description, we adopt a bi-directional GRU as text encoder,
retaining for each word the average embedding between the forward hidden state
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and the backward hidden state. On the visual side, instead, we apply a linear
projection to the features of image regions.

Following recent progress in fully-attentive models and cross-modality interac-
tion [306, 293], after this encoding stage we propagate visual and textual features
with a cross-attention operation, followed by a self-attention for each modality.
On top of this, two instances of the aggregation operator are applied, one for each
modality, thus obtaining one global vector for each modality. A summary of the
overall architecture is reported in Fig. 3.2.

Training

The last stage of the model and the training objectives depend on the specific task.
In the following we report the main differences.

Visual Question Answering. After applying the aggregation operator, the two
vector representations are concatenated and fed to a fully connected layer which is
in charge of predicting the final answer class. Additionally, in the case of VQA,
we add a position-wise feed-forward layer between the reduction operator and the
final concatenation for class prediction.

During the training phase, we employ the binary cross-entropy loss in a
multi-label fashion, i.e. applying it independently for all classes. For fairness of
comparison, we do not make use of any data augmentation strategy and do not
employ any external data source like part of the VQA literature does.

Cross-modal Retrieval. In the case of image-text matching, instead, the com-
pressed vectors given by the application of the aggregation operator are compared
with a cosine similarity to measure their similarity score. During training, we adopt
an hinge-based triplet ranking loss, which is the most common ranking objective
in the retrieval literature. Following Faghri et al. [85], we only backpropagate the
loss obtained on the hardest negatives found in the mini-batch. Given image and
sentence pairs (I, T ), our final loss with margin α is thus defined as

Lhard(I, T ) = max
T̂

[
α− S(I, T ) + S(I, T̂ )

]
+

+max
Î

[
α− S(I, T ) + S(Î , T )

]
+
,

where S indicates the cosine similarity, [x]+ = max(x, 0), T̂ is the hardest
negative sentence and Î is the hardest negative image.
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3.2.4 Experimental evaluation
In this section, we report the results on the two considered visual-semantic tasks
(i.e. visual question answering and cross-modal retrieval) by comparing our
attention-based aggregation function with respect to different baselines. First,
we provide implementation details and introduce the datasets used in our experi-
ments.

Datasets

To validate the effectiveness of our solution, we employ two of the most widely
used datasets containing visual-semantic data. In particular, we carry out the
experiments on the VQA 2.0 [104] and COCO [201] datasets to address visual
question answering and cross-modal retrieval, respectively.

COCO. The dataset contains more than 120 000 images, each of them annotated
with 5 different textual descriptions. We follow the splits provided by Karpathy et
al. [159], where 5 000 images are used for validation, 5 000 for testing and the rest
for training. Following the standard evaluation protocol [85], retrieval results on
this dataset are reported by averaging over 5 folds of 1 000 test images each.

VQA 2.0. The dataset is composed of images coming from the COCO dataset
and are divided in training, validation, and test according to the official splits. For
each image, three questions are provided on average. These questions are divided
into three different categories: Yes/No, Number, and Others. Each image-
question pair is annotated with 10 answers collected by human annotators, and the
most frequent answer is selected as the correct one. We report experimental results
on the validation and test-dev sets of this dataset, only using the training split to
train our model. Differently from standard literature that uses additional training
data coming from different datasets, we only focus on image-question-answer
triplets from this dataset.

Implementation Details

To encode image regions, we employ the Faster R-CNN model finetuned on the
Visual Genome dataset [175, 7], obtaining a 2048-dimensional feature vector for
each region. We reduce the dimensionality of region feature vectors by feeding
them to a fully connected layer with a size of 512. For each image, we select the
top 36 regions with the highest class detection confidence score. As mentioned, to
encode word vectors, we use a bi-directional GRU with a single layer using either
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Table 3.1: Accuracy results on VQA 2.0 dataset. The results are reported on the
validation and test-dev splits. All models are trained only on the VQA 2.0 training
split.

Validation Test-Dev

Aggregation Function All Yes/No Number Others All Yes/No Number Others

Mean Pooling 54.87 71.50 37.93 46.69 56.05 71.00 38.88 47.19
Max Pooling 56.73 75.68 37.64 47.37 57.95 75.14 38.48 47.69
LogSumExp Pooling 54.61 70.94 38.27 46.53 55.68 70.36 38.72 47.00
1D Convolution 56.87 72.35 39.18 49.79 57.79 71.71 39.97 49.96
CLS Token 58.31 74.29 39.89 51.03 59.40 74.26 40.31 51.07

Ours (k = 1) 60.73 77.68 41.86 52.84 62.05 77.84 42.47 53.03
Ours (k = 2) 60.76 78.06 42.32 52.48 62.06 78.26 42.62 52.66
Ours (k = 3) 60.50 77.82 41.56 52.33 61.80 78.22 41.69 52.35
Ours (k = 5) 60.99 78.62 42.53 52.46 62.17 78.52 42.27 52.74
Ours (k = 7) 60.95 78.40 42.65 52.53 62.43 78.75 43.33 52.83
Ours (k = 10) 59.94 77.30 40.82 51.80 61.16 77.39 40.69 51.97

learned or pre-trained word embeddings to represent words of the sentence. We
set the hidden size of the GRU layer to 512.

Following the standard implementation [306], each scaled dot-product atten-
tion also includes a dropout, a residual connection, and a layer normalization. We
set the dimensionality d of each layer to 512, the number of heads in both scaled
dot-product and score attention to 8, and the dropout keep probability to 0.9. In
all our experiments, we use Adam [170] as optimizer and a batch size equal to 64.

Visual Question Answering. For VQA models, we set the initial learning rate
to 0.0005 decreased by a factor of 10 every 10 epochs. To represent words,
we use and finetune the pre-trained GloVe word embeddings [242] with a word
dimensionality equal to 300. We set the maximum length of input questions to 14,
padding the shorter ones. For the additional position-wise feed forward layer used
in VQA models, we set the hidden size to the same dimensionality d of attention
layers. When we use a number of compressed vectors k larger than 1, we average
the k vectors of each modality to obtain a single compact representation for both
image regions and words.

Following a common practice in the VQA task [7], the set of candidate answers
is limited to correct answers in the training set that appear more than 8 times,
resulting in an output vocabulary size equal to 3 129.

Cross-modal Retrieval. We set the initial learning rate to 0.00007 decayed by a
factor of 10 every 10 epochs, and the margin α of the triplet loss function to 0.2.
Also, we clip the 2-norm of vectorized gradients to 2.0. To encode words, we use
one-hot vectors and linearly project them with a learnable embedding matrix to the
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word dimensionality of 300. To create the word vocabulary, we take into account
only the words that appear at least 5 times in the training and validation sets.

In our attention-based aggregation function, when the number of compressed
vectors k is larger than 1, we compute a pair-wise cosine similarity between each
pair of compressed vectors coming from the two modalities, and we average the
resulting k similarity scores. Intuitively, each aggregation module learns to extract
and compare different relevant information, specializing each vector to distinct
semantic meaning.

Baselines

To evaluate the proposed method, we compare our results with respect to five
different aggregation functions, namely mean pooling, max pooling, log-sum-exp
pooling, 1D convolution, and CLS token. For all baselines, we employ the pipeline
defined in Sec. 3.2.3, and the same hyper-parameters and implementation choices
used for our architecture.

Mean Pooling. The mean aggregation function is one of the most common
approaches for feature reduction and refers to the global average pooling between
each vector of the input sequence. Since input sequences may have different
lengths, in our experiments the mean pooling operation is computed using only
the valid elements of the sequence.

Max Pooling. Similarly to the mean operation, the max pooling is another
commonly used strategy to reduce feature dimensionality and selects the maximum
activation in the feature maps. In our setting, we apply max pooling to the sequence
dimension, thus obtaining a single summarized vector for each input sequence.

LogSumExp Pooling. It can be considered as a smooth approximation of the
maximum function and is defined as the logarithm of the sum of the argument
exponentials. We apply this operation along the feature dimension thus condensing
the most important features for each vector of the sequence.

1D Convolution. Convolution is the fundamental operation of CNNs and works
well for identifying patterns in data. We test 1D convolutions applied to the
sequence dimension to obtain a compact and aggregated representation of the
whole set of vectors. In our experiments, we set the kernel size equal to the input
sequence length.

CLS Token. Following the recent progress of pre-training strategies and cross-
modality matching [78], we also consider the integration of a special CLS token
at the beginning of each input sequence. Thanks to the cross- and self-attention
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Table 3.2: Comparison between different word embedding strategies on VQA 2.0
validation set.

Aggregation Func. Word Emb. All Yes/No Number Others

Ours (k = 5) Learned 59.29 77.24 40.29 50.66
Ours (k = 5) GloVe 60.98 78.51 42.20 52.61
Ours (k = 5) GloVe Finetuned 60.99 78.62 42.53 52.46

Ours (k = 7) Learned 59.23 76.98 40.02 50.80
Ours (k = 7) GloVe 61.13 79.13 42.13 52.47
Ours (k = 7) GloVe Finetuned 60.95 78.40 42.65 52.53

operations, the CLS token can be used as a final compact representation of the
entire sequence. We add a CLS token for each modality and use them in last stage
of the pipeline according to the specific task.

Visual Question Answering Results

Experimental results for the VQA task are shown in Table 3.1 by comparing
our aggregation function with respect to the aforementioned baselines. For each
method, we report the accuracy on all image-question pairs of the considered splits
and the accuracy values on the three question categories of the VQA 2.0 dataset
(i.e. Yes/No, Number, and Others).

As it can be seen, our method surpasses all other aggregation functions by a
significant margin on both validation and test-dev splits. With respect to the CLS
token, which is the top performing baseline in this task, our solution achieves an
improvement of 2.68% and 3.03% in terms of overall accuracy on the validation
and test-dev splits, respectively.

Additionally, we test our attention-based aggregation method by using a dif-
ferent number of k compressed vectors and different word embedding strategies.
In the bottom section of Table 3.1, we report the accuracy results by varying the
number of compressed vectors. As it can be noticed, the model with 1 vector
reaches good results surpassing all other baselines. Nevertheless, higher perform-
ances can be achieved with 5 and 7 compressed vectors suggesting that a correct
answer can be positively influenced by capturing different aspects of the input
features. Above a certain numbers of k vectors, we instead observe a degradation
of the performance, as demonstrated by the results with 10 vectors. This can be
explained by the greater complexity of the model that undermines the benefits of
learning different global vectors.
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Question: What color 
is the car on the right?

Ground-truth: red

Mean: white

Ours: red

Question: How many 
people can you see?

Ground-truth: eight

Mean: five

Ours: seven

Question: Is the bear 
real?

Ground-truth: no

Mean: yes

Ours: no

Question: What color 
is the floor?

Ground-truth: brown

Mean: yellow

Ours: brown

Question: Is the girl 
sitting on the horse?

Ground-truth: yes

Mean: no

Ours: yes

Question: what is on 
the train?

Ground-truth: graffiti

Mean: people

Ours: graffiti

Question: What is the 
yellow food?

Ground-truth: corn

Mean: eggs

Ours: corn

Question: how many 
giraffes are there?

Ground-truth: two

Mean: three

Ours: two

Figure 3.3: Qualitative results on VQA 2.0 validation set. For each image, we
report a sample question, the ground-truth answer, and the corresponding answers
predicted by our aggregation function and by the mean pooling operation.

In Table 3.2, we show the performance on the VQA 2.0 validation set when
using different word embedding strategies. In particular, we compare the results by
employing learnable word embeddings and pre-trained GloVe vectors, either fixed
or finetuned during training. In our experiments, the GloVe word embeddings lead
to an improvement of the final accuracy results using both 5 and 7 compressed
vectors. The performance gap between fixed and finetuned GloVe vectors is not
very large, but a slight improvement is given when using the finetuned version. For
this reason, all experiments are carried out by using the GloVe vectors finetuned
during training. On the contrary, learning word embeddings from scratch brings to
lower performances in all settings.

Qualitative Results. Some sample results on the VQA 2.0 validation set are
reported in Fig. 3.3. For each image, we show the corresponding question, the
ground-truth correct answer and the answers predicted by our attention-based
aggregation function and the mean pooling operation. The results demonstrate
the effectiveness of our strategy also from a qualitative point of view and confirm
better performance than one of the most widely used solution to aggregate features.
Our method is able to correctly identify the color of the objects contained in
the question and count the number of instances of a given entity. Also, it can
accurately answer either simple (e.g. Yes/No) or more complex questions that
require a complete understanding of the scene.

Cross-modal Retrieval Results

Table 3.3 shows the results for the cross-modal retrieval task on the COCO test
set. For both text and image retrieval, we report the results in terms of recall@K
(with K = 1, 5, 10) which measures the portion of query images or query captions
for which at least one correct result is found among the top-K retrieved elements.
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Table 3.3: Cross-modal retrieval results on Microsoft COCO 1K test set.

Text Retrieval Image Retrieval

Aggregation Function R@1 R@5 R@10 R@1 R@5 R@10

Mean Pooling 69.66 93.12 97.64 50.42 82.27 90.83
Max Pooling 69.04 92.68 96.98 51.20 83.27 91.52
LogSumExp Pooling 64.20 91.52 96.84 47.22 82.26 91.23
1D Convolution 65.66 91.86 96.58 49.25 81.43 90.42
CLS Token 70.30 93.38 97.24 51.05 83.28 91.80

Ours (k = 1) 70.80 93.16 97.24 50.77 82.76 91.31
Ours (k = 2) 70.36 93.46 97.20 51.31 83.38 91.69
Ours (k = 3) 70.42 93.34 97.22 50.98 83.17 91.65
Ours (k = 4) 70.14 93.42 97.76 50.82 82.66 91.14

Also in this setting, we compare our aggregation function with respect to the
previously defined baselines and we analyze the performance by varying the
number of compressed vectors used to aggregate input sequences.

As it can be seen, our attention-based aggregation achieves the best results
among all considered aggregation functions on both text and image retrieval. Also
in this case, the CLS token results to be the top performing baseline according to
all evaluation metrics, confirming the importance of using inter- and intra-modality
interactions to reduce feature dimensionality.

Differently from the VQA task in which the best results are obtained with 5
and 7 compressed vectors, the best performances are instead achieved with a lower
number of vectors (i.e. 2 and 3), as shown in the bottom section of Table 3.3. In
this setting, we do not find beneficial the use of GloVe word vectors and all results
are thus obtained by learning word embeddings during training. This suggests that
the large amount of textual data contained in the COCO dataset compared to that
available for the VQA task can lead to specific and more suited word embedding
representations.

Qualitative Results. Finally, we show some sample results for text and image
retrieval in Fig. 3.4a and 3.4b, respectively. Also in this case, we compare our
results with those obtained by using the mean pooling aggregation function. As
it can be seen, these qualitative results further confirm the effectiveness of our
solution leading to increased and more accurate performance on both settings.
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Ours: A white boxy birthday 
cake with red flowers on a 
decorated table with candles.

Query Image

Mean: A sheet cake sitting on 
top of a table with lit candles.

Top-1

Ours: A large white blue and 
red clock shaped like a cup.

Query Image

Mean: A triangle sign with an 
English and foreign warning.

Top-1

Query Caption: An orange is placed on a plate with 
a cracker.

Top-1 (Mean)Top-1 (Ours)

Query Caption: A man in blue jacket standing by a 
passing train.

Top-1 (Mean)Top-1 (Ours)

Query Caption: Many umbrellas on a beach near a 
body of water.

Top-1 (Mean)Top-1 (Ours)

Query Caption: Two animals walking through high 
grass in the woods.

Top-1 (Mean)Top-1 (Ours)

Ours: The boy is getting ready 
to hit the ball with his bat.

Query Image

Mean: A man is posed in mid 
swing about to serve a ball in 
a tennis court.

Top-1

Ours: A dog is running 
alongside a horse in a corral.

Query Image

Mean: Two brown dogs are
playing on the dirt.

Top-1

(a) Text Retrieval

Ours: A white boxy birthday
cake with red flowers on a
decorated table with candles.

Query Image

Mean: A sheet cake sitting on
top of a table with lit candles.

Top-1

Ours: A large white blue and
red clock shaped like a cup.

Query Image

Mean: A triangle sign with an
English and foreign warning.

Top-1

Query Caption: An orange is placed on a plate with 
a cracker.

Top-1 (Mean)Top-1 (Ours)

Query Caption: A man in blue jacket standing by a 
passing train.

Top-1 (Mean)Top-1 (Ours)

Query Caption: Many umbrellas on a beach near a 
body of water.

Top-1 (Mean)Top-1 (Ours)

Query Caption: Two animals walking through high 
grass in the woods.

Top-1 (Mean)Top-1 (Ours)

Ours: A white boxy birthday
cake with red flowers on a
decorated table with candles.

Query Image

Mean: A sheet cake sitting on
top of a table with lit candles.

Top-1

Ours: A large white blue and
red clock shaped like a cup.

Query Image

Mean: A triangle sign with an
English and foreign warning.

Top-1

(b) Image Retrieval

Figure 3.4: Qualitative results for text and image retrieval. For each sample, we
report the top-1 result retrieved by our aggregation function and by the mean
pooling operation.

3.3 ALADIN: efficient image-text matching

In literature, image-text matching is often used as a pre-training objective to forge
architectures able to jointly deal with images and texts. Nonetheless, solving this
task is of critical importance in cross-modal search engines, where finding images
related to a given query text or vice-versa is a well-known application. Many
recent methods proposed effective solutions to the image-text matching problem,
mostly using recent large vision-language (VL) Transformer networks. However,
these models are often computationally expensive, especially at inference time.
This prevents their adoption in large-scale cross-modal retrieval scenarios, where
results should be provided to the user almost instantaneously. In this section, we
propose to fill in the gap between effectiveness and efficiency by proposing an
ALign And DIstill Network (ALADIN). ALADIN first produces high-effective
scores by aligning at fine-grained level images and texts. Then, it learns a shared
embedding space – where an efficient kNN search can be performed – by distilling
the relevance scores obtained from the fine-grained alignments. We obtained
remarkable results on MS-COCO, showing that our method can compete with
state-of-the-art VL Transformers while being almost 90 times faster. The code
for reproducing our results is available at https://github.com/mesnico/
ALADIN.
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3.3.1 Introduction

As already mentioned, by understanding the hidden semantic connections between
a text and an image, many works in literature solved challenging multi-modal
problems, such as image captioning [7, 65, 284] or visual question answering [7,
381, 18]. Among these tasks, image-text matching has crucial importance [172,
85, 63, 227, 228] and it consists of outputting a relevance score for each given
(image, text) pair, where the score is high if the image is relevant to the text
and low otherwise. Although this task is usually employed as a vision-language
pre-training objective, it is crucial for cross-modal retrieval, which usually consists
of two sub-tasks: image retrieval, where we want images relevant to a given text,
and text retrieval, where we ask for sentences better describing an input image.
Efficiently and effectively solving these retrieval tasks is strategically important in
modern cross-modal search engines.

Many state-of-the-art models for image-text matching, like Oscar [196] or
UNITER [49], comprise large and deep multi-modal vision-language (VL) Trans-
formers with early fusion, which are computationally expensive, especially during
the inference phase. In fact, during inference, all the (image, text) pairs from
the test set should be forwarded through the multi-modal Transformer to obtain
the relevance scores. This is clearly unfeasible in large datasets and unusable in
large-scale retrieval scenarios, where the system latency should be as small as
possible.

For achieving such a performance objective, many approaches in the literat-
ure project image and text embeddings in a common space where similarity is
measured through simple dot products. This allows the introduction of an offline
phase, in which all the dataset items are encoded and stored, and an online phase
in which only the query is forwarded through the network and compared with all
the offline-stored elements. Although these approaches are very efficient, they are
usually not sufficiently effective as the ones relying on early modality fusion using
large VL Transformers.

In the light of these observations, in this section we propose an ALign And
DIstill Network model (ALADIN), which exploits the knowledge acquired by
large VL Transformers to craft an efficient yet effective model for image-text
retrieval. In particular, we employ late fusion approaches so that the two visual
and textual pipelines are kept separated until the final matching phase. The first
objective consists of aligning image regions with sentence words, using a simple
yet effective alignment head. Then, a common visual-textual embedding space
is learned by distilling the scores from the alignment head using a learning-to-

Transforming vision and language with attention 107



CHAPTER 3. CROSS-MODAL RETRIEVAL

rank objective. In this case, we use the learned alignment scores as ground-truth
(teacher) scores.

Our approach is inspired by the recent success of knowledge distillation [12,
21, 35, 338, 382], used to transfer knowledge from a large model to a smaller
and more efficient one. We propose to use scores distillation to learn a visual-
textual common space, employing the knowledge acquired by a pre-trained VL
Transformer. In this case, the knowledge distillation is framed as a learning-to-rank
problem [34, 245, 30], widely used in literature but, as far as we know, never used
for distilling cross-modal scores.

We show that, on the widely used MS-COCO dataset, the alignment scores
can reach results comparable with large joint vision-language models such as
UNITER and OSCAR, while being far more efficient, especially during inference.
On the other hand, the distilled scores used to learn the common space can defeat
previous common space methods on the same dataset, opening the way toward
metric-based indexing for large-scale retrieval.

To sum up, in this section, we propose the following contributions:

• We employ two instances of a pre-trained VL Transformer as a backbone
for extracting separate visual and textual features.

• We adopt a simple yet effective alignment method for producing high-quality
scores instead of the poorly-scalable output of large joint VL Transformers.

• We create an informative embedding space by framing the problem as a
learning-to-rank task and distilling the final scores using the scores in output
from the alignment head.

3.3.2 Proposed method
The proposed architecture is composed of two different stages. The first stage,
which we refer to as backbone, is composed of the layers of a pre-trained large
vision-language transformer – VinVL [371], an extension to the powerful OSCAR
model [196]. In the backbone, the language and the visual paths do not interact
through cross-attention mechanisms so that the features from the two modalities
can be extracted independently at inference time.

The second stage, instead, is composed of two separate heads: the alignment
head and matching head. The alignment head is used to pre-train the network
to efficiently align the visual and the textual concepts in a fine-grained manner,
as done in TERAN [227]. Differently, the matching head is used to construct an
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[SEP] 
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Figure 3.5: Overview of our architecture. The backbone extracts visual and textual
features that are used in both the matching and alignment heads. The matching
head is trained by distilling the scores using the ones coming from the alignment
head.

informative cross-modal common space, that can be used to efficiently represent
images and text as fixed-length vectors for use in large-scale retrieval. The scores
from the matching head are distilled using the scores from the alignment head as
guidance. The overall architecture is shown in Figure 3.5.

In the following, we dive into the building blocks of the architecture – i.e., the
backbone, the alignment head, and the matching head.

Vision-Language Backbone

As the backbone for feature extraction, we use the pre-trained layers from VinVL [371],
an extension to the large-scale vision-language OSCAR model [196]. Our goal
is to obtain suitable vectorial representations for the image V and the text C in
input. In particular, we employ the model pre-trained on the image-text retrieval
task. The authors used a binary classification head on top of the CLS token of the
output sequence, and the model is trained to predict if the input images and textual
sentences are related or not.

In our use case, the visual and textual pipelines should be separated, so that
they can be forwarded independently at inference time. For this reason, we use two
instances of the VinVL architecture, in a shared-weights configuration to forward
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the two modalities independently, as shown in Figure 3.5.
As in [371], we use as visual tokens both the visual features extracted from

object regions1 and their labels, and the two sub-sequences are separated by a
SEP token. In the end, the outputs from the last layers of the disentangled VinVL
architecture are two sequences, V = {vcls,v1,v2, . . . ,vN}, representing the
image V , and C = {ccls, c1, c2, . . . , cM}, representing the text C. Note that, in
both sequences, the first element is the CLS token, used to collect representative
information for the whole image or text.

Alignment Head

The alignment head comprises a similarity matrix that computes the fine-grained
relevances between the visual tokens V and textual tokens C. The fine-grained
similarities are then pooled to obtain the final global relevance between the image
and the text. In particular, we use a formulation similar to the one used in
TERAN [227]. Specifically, the features in output from the backbone are used to
compute a visual-textual tokens alignment matrix A ∈ Rn×m, built as follows:

A = aklij = cosine(vi, cj) =
vTi cj
∥vi∥∥cj∥

i ∈ gk, j ∈ gl, (3.5)

where gk is the set of indexes of the region features from the k-th image and gl is
the set of indexes of the words from the l-th sentence. At this point, the similarities
skl between the image k and the caption l are computed by pooling the similarity
matrix A along dimensions (i, j) through an appropriate pooling function. Guided
by [227], we use the max-over-regions sum-over-words policy, which computes
the following final similarity score:

S(a) = s(a)
kl =

∑
j∈gl

max
i∈gk

Aij . (3.6)

The dot-product similarity used to compute A in Eq. 3.5 resembles the com-
putation of the cross-attention between visual and textual tokens. The difference
boils down to the interaction between the visual and textual pipelines, which
happens only at the very end of the whole architecture. This late cross-attention
makes the sequences V and C cacheable, eliminating the need to forward the
whole architecture whenever a new query – either visual or textual – is issued
to the system. The computation of S(a), involving only simple non-parametric

1https://github.com/microsoft/scene_graph_benchmark
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operations, is very efficient and can be easily implemented on GPU to obtain high
inference speeds.

The loss function used to force this network to produce suitable similarities s
for each (image, text) pair is the hinge-based triplet ranking loss, used in previous
works [85, 191, 227]. Formally,

Ltriplet =
∑
k,l

max
l′

[α+ skl′ − skl]+ +max
k′

[α+ sk′l − skl]+, (3.7)

where skl is the similarity estimated between image k and caption l, and [x]+ ≡
max(0, x); the values k′, l′ are the indexes of the image and caption hard negatives
found in the mini-batch as done in [85], and α is a margin that defines the minimum
separation that should hold between positive and negative pairs.

Given that the alignment head is directly connected to the backbone, we fine-
tuned the backbone on this new alignment objective. More details on the training
procedure are reported in Section 3.3.2.

Matching Head

The matching head uses the same sequences V and C given from the backbone
and employs them to produce the features ṽ ∈ Rd for the image V and c̃ ∈ Rd for
the caption C. These representations are forced to lay in the same d-dimensional
embedding space. In this space, k-neirest-neighbor search can be efficiently
computed — using metric space approaches or inverted files — to quickly retrieve
images given a textual query or vice-versa. Specifically, we forward V and C
through a 2-layer Transformer Encoder (TE):

V̄ = TE(V ); C̄ = TE(C). (3.8)

As in [229], the TE shares the weights among the two modalities, and the final
vectors encoding the whole image and caption are the CLS tokens in output from
the TE layers: ṽ = V̄ [0] = v̄cls and c̃ = C̄[0] = c̄cls. The final relevances are
simply computed as the cosine similarities between the the vector ṽk from the
k-th image and s̃l from the l-th sentence: S(m) = s(m)

kl = cosine(ṽk, s̃l).
In principle, we could optimize the common space using the same hinge-based

triplet ranking loss in Eq. 3.7 already used to train the alignment head. Instead,
in the light of the good effectiveness-efficiency trade-off of the alignment head,
we propose to learn a distribution for S(m) using the previously-learned S(a) as
teachers.
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Specifically, we frame the problem of distilling the distribution of S(m) from
S(a) as a learning-to-rank problem. We employ the mathematical framework
developed in the ListNet approach [34], which models the probability of an object
being ranked at the top, given the scores of all the objects. Differently from this
framework, here we need to optimize for two different entangled distributions: the
distribution of text-image similarities when sentences are used as queries, and the
distribution of image-text similarities when instead images are used as queries. In
particular, given a textual query k and an image query l, the probabilities of the
image i and text j to be the top-one elements respectively with respect to S(a) are:

PS(a)(i) =
exp(s(a)

ik )∑B
t=1 exp(s

(a)
tk)

;PS(a)(j) =
exp(s(a)

lj )∑B
t=1 exp(s

(a)
tj )

(3.9)

where B is the batch size, as the learning procedure is confined to the images
and sentences in the current batch. Therefore, during training, only B images are
retrieved using the query k, and B textual elements are retrieved using the query l.
Similarly, an analogous probability can be defined over S(m):

PS(m)(i) =
exp(τs(m)

ik )∑B
t=1 exp(τs

(m)
tk )

;PS(m)(j) =
exp(τs(m)

lj )∑B
t=1 exp(τs

(m)
tj )

(3.10)

where τ is a temperature hyper-parameter which compensates for the fact that
S(m) ranges in [0, 1]. We empirically found that τ = 6.0 works well in practice.
The final matching loss can be formulated as the cross-entropy between the PS(a)

and PS(m) probabilities, for both the image-to-text and text-to-image cases.

Ldistill = −
B∑
i=1

Ps(a)(i) log(Ps(m)(i))−
B∑
j=1

Ps(a)(j) log(Ps(m)(j)) (3.11)

Notice that accurate and dense teacher scores are needed to obtain a good
estimate of the teacher distributions Ps(a)(i) and Ps(a)(j). This partly motivates
our choice of first researching an effective and efficient alignment head that could
output the scores to be used as ground-truth for the matching head.

Training

During the training phase, we initially respect the following constraints: (a) the
backbone is finetuned only when training the alignment head, and (b) the gradients
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do not flow backward through S(a) when training the matching head (as depicted
in Figure 3.5 through the stop-gradient indication). The constraint (b) comes from
the fact that the scores S(a) are used as teacher scores. Therefore, they should
not modify the weights of the backbone, because it is assumed that the backbone
is already trained with the alignment head. Given these constraints, we train the
network in two steps. First, we train the alignment head by updating the backbone
weights using Ltriplet (ALADIN A/ft. in the experiments). Then, we freeze the
backbone and we learn the matching head by updating the weights of the 2-layer
Transformer Encoder using Ldistill (ALADIN D in the experiments). Note that
the formalism X/ft. signifies that the gradients coming from that head loss X are
used to finetune the backbone. Possible head losses are X={T, D, A} for T=triplet,
D=distillation, and A=alignment, where T and D come from the matching head,
while A from the alignment head. When /ft. is omitted, it means that the backbone
remains frozen.

We explore also the joint training of the two heads. Specifically, we relax con-
straint (a), so that gradients coming from the two heads can update the backbone.
Sticking to the previous formalism, we refer to this experiment as ALADIN A/ft.
+ D/ft.. Nevertheless, when directly applying this training schema, we experienced
some instabilities. If the alignment head — working as a teacher for the matching
head — is not warmed-up, it can not initially provide good teacher scores. The
consequence is that noisy gradients backpropagate through the matching head and
interfere with the finetuning of the backbone. For this reason, we warmup the
backbone by pre-training it with the alignment loss Ltriplet (as in the ALADIN A/ft.
setup).

3.3.3 Experimental evaluation
In this section, we report detailed results for validating our approach. In addition to
the training setups described in 3.3.2, we consider two more schemes as baselines:
ALADIN T trains the matching head using the standard hinge-based triplet ranking
loss without distillation, starting from a pre-trained backbone (i.e. ALADIN A/ft.)
and leaving it fixed; similarly, ALADIN T/ft. lacks the alignment head and the
backbone is finetuned only with the gradients from the matching head.

Dataset and Metrics

We perform our experiments on the widely-used MS-COCO dataset, which con-
tains a large corpus of images scraped from the web. Each image is annotated
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with 5 textual descriptions. We follow the splits introduced by [159], which re-
serves 113,287 images for training, 5,000 for validating, and 5,000 for testing. In
literature, a smaller test set comprising only 1,000 images is often used. For a
fair comparison, we report the results on both 5K and 1K test sets. In the case of
1K images, the results are computed by performing a 5-fold cross-validation and
averaging the results.

As commonly done to evaluate cross-modal retrieval models [85, 191, 247,
212, 187], we use the recall@k metric for evaluating the ability of our model to
correctly retrieve relevant texts or images. Specifically, the recall@k measures the
percentage of queries able to retrieve the correct item among the first k results.

Alignment Head Results

We first compare the results obtained with our alignment head against some recent
methods comprising large-scale pre-trained Transformer models (Table 3.4). We
consider only the Base versions and not the Large ones, for hardware limitations.
For a fair comparison, we initialize our backbone with the weights of VinVL
Base [371]. Notice that, at test time, all the reported models except ours need
to compute a number of network forward steps in the order of O(n2r), where
n is the number of images and r is the number of sentences associated to each
image (r = 5 in case of MS-COCO). In fact, due to cross-attention links between
visual and textual pipelines, intermediate representations cannot be cached for
being reused with a different query. Instead, given the disentangled pipelines, our
model enables caching of the image and text features in output from the backbone
for speeding up the retrieval with never seen queries, with a number of network
forward steps in the order of O(n+ nr). As we can notice from Table 3.4, this
disentanglement comes at the cost of a slight reduction of the overall effectiveness,
as we can notice by comparing our approach to the VinVL model. Nevertheless,
our model ALADIN A/ft. can perfectly compete, and partially overtake, all the
previous entangled visual-textual Transformer models on both image and sentence
retrieval tasks. From the results on the ALADIN A/ft. + D/ft. model, we can
notice that when the distillation loss is also active the alignment scores are pretty
comparable to ALADIN A/ft. In particular, on the 5K test set, we observe slight
improvements in both image and sentence retrieval. This evidence suggests that
the distillation loss has the collateral effect of regularizing its own teacher scores,
as done in recent works on self-distillation [370, 35].
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Matching Head Results

We compare the common space created from our matching head with other dis-
entangled methods using similar approaches. The results are shown in Table
3.5. As explained above, for comparison we report also the matching head dir-
ectly trained using the hinge-based triplet loss (ALADIN T and ALADIN T/ft.)
without distilling the scores from the alignment head. Furthermore, for complete-
ness, we report also the results from the recent methods CLIP (0-shot) [250] and
ALIGN [149]. Although the comparison with CLIP (0-shot) may result unfair, we
decided to stick with the results obtained by the authors of the original paper, to
avoid all the intricacies deriving from the hyper-parameter tuning phase needed for
a satisfactory fine-tuning stage. However, these models use from 100× to 1000×
more training data, so we exclude them from the analysis.

All of our methods outperform the previous models, notably surpassing
TERAN [227], the method that introduced the alignment matrix used in the
alignment head. Concerning the experiments that non-finetune the backbones
(ALADIN T and ALADIN D), we argue that scores distillation helps, especially in
the recall@1, where we observe an improvement of about 8% and 2% on sentence
and image retrieval respectively for the 5K test set. We obtain the best results by
using our model ALADIN A/ft. + D/ft., which jointly trains the alignment and
distillation heads by also finetuning the backbone with the respective gradients.
The alignment scores from this setup already proved to be effective in Table 3.4.
The distilled scores in output from the matching head follow the same trend,
obtaining the best results on the 5K test set.

Effectiveness vs Efficiency

To better show the advantage of our model in terms of computing times, in
Figure 3.6 we plot the effectiveness vs the efficiency of our approach compared
with other methods. We address image-retrieval on the 1K test set, and we report
the sum of the recall values (rsum) versus the average time needed to solve a
textual query. These experiments are run on a system equipped with an RTX
2080Ti and an AMD Ryzen 7 1700 Eight-Core Processor. As we can notice, the
scores from the alignment head (ALADIN A/ft.) can directly compete with VL
Transformer models, although being almost 20 times faster. Notably, the scores
computed on the distilled space from ALADIN A/ft. + D/ft. obtain a speedup of
almost 90×, with a rsum loss of only about 7% with respect to VinVL. Therefore,
the proposed models help fill the gap between efficiency and effectiveness – i.e.,
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Figure 3.6: Effectiveness vs efficiency. We report effectiveness as the sum of
recall values on the image retrieval (rsum), and efficiency as the time needed to
search the 5K test images.

the top left zone of the diagram.
Considering the efficiency-effectiveness trade-offs of both the alignment and

matching heads, the whole architecture could be deployed in real application
scenarios in a two-stage configuration: first, the faster matching head proposes
relevant candidates using k-NN search on the common space; then, the candidates
are re-ranked using the scores from the alignment head. This pipeline would
enable the alignment head, which is slower but more effective, to contribute to the
final ranking while keeping the whole system highly scalable.

3.4 Artpedia
As vision and language techniques are widely applied to realistic images, there is
a growing interest in designing visual-semantic models suitable for more complex
and challenging scenarios. In this section, we address the problem of cross-modal
retrieval of images and sentences coming from the artistic domain. To this aim,
we collect and manually annotate the Artpedia dataset that contains paintings
and textual sentences describing both the visual content of the paintings and
other contextual information. Thus, the problem is not only to match images and
sentences, but also to identify which sentences actually describe the visual content
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of a given image. To this end, we devise a visual-semantic model that jointly
addresses these two challenges by exploiting the latent alignment between visual
and textual chunks. Experimental evaluations, obtained by comparing our model
to different baselines, demonstrate the effectiveness of our solution and highlight
the challenges of the proposed dataset. The Artpedia dataset is publicly available
at: http://aimagelab.ing.unimore.it/artpedia.

3.4.1 Introduction
As humans, we can seamlessly connect what we visually see or imagine and what
we hear or say, therefore building effective bridges between our ability to see and
our ability to express ourselves in a common language. In the effort of artificially
replicating these connections, new algorithms and architectures have recently
emerged for image and video captioning [7, 215, 57] and for visual-semantic
retrieval [172, 85, 186]. The former architectures combine vision and language in
a generative flavour on the textual side, and in the latter common spaces are built
to integrate the two domains and retrieve textual elements given visual queries,
and vice versa.

While the standard objective in visual-semantic retrieval is that of associating
images and visual sentences (i.e. sentences that visually describe something), the
variety of sentences which can be found in textual corpora is definitely larger, and
also contains sentences which do not describe the visual content of a scene. Here,
we go a step beyond and extend the task of visual-semantic retrieval to a setting
in which the textual domain does not exclusively contain visual sentences, and
explore the task of identifying relevant visual sentences given image queries. As
such, the task establishes two challenges, the first one being that of understanding
whether the sentence has a visually relevant content, and the second being that of
associating elements between the two domains.

Further, we also address a second shortcoming of most visual-semantic works,
i.e. that of dealing with photo-realistic images and simple texts. As there is a
growing need of extending these algorithms to less general semantic and visual
domains, we both increase the complexity on the visual and on the semantic side.
To create an environment where all the aforementioned challenges live together,
we focus on the case of artistic data — which surely advertise more complex and
unusual visual and semantic features, and propose a new dataset with visual and
contextual sentences for each visual item. In short, visual sentences deal with
the visual appearance of the item, contextual ones describe either the item or its
context without dealing with its visual appearance.
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Table 3.6: Overview of the most relevant datasets containing artistic images.

Dataset # Images # Sentences Manually TaskAnnotated
Wikipaintings [158] 85,000 - ✗ Classification
Art500k [221] 554,198 - ✗ Classification and retrieval
Brueghel [274] 1,587 - ✓ Near duplicate detection

SemArt [100] 21,383 21,383 ✗ Visual-semantic retrieval
EsteArtworks [36] 553 1,278 ✓ Visual-semantic retrieval
BibleVSA [20] 2,282 2,271 ✓ Visual-semantic retrieval
Artpedia 2,930 28,212 ✓ Visual-semantic retrieval (with contextual texts)

We also design and evaluate a model for jointly associating visual and textual
elements, and identifying visual textual samples as opposed to contextual ones.
Taking inspiration from state of the art models for visual-semantic retrieval, we
test both traditional approaches, based on global feature vectors, and approaches
that model the latent alignment between visual and textual chunks.

3.4.2 Related work for cultural heritage

Deep Learning techniques often require significant efforts to be applied to the
domain of Digital Humanities and Cultural Heritage, due to the presence of specific
challenges. The research efforts of the past few years have resulted in various
works and applications spanning from generative models to classification and
retrieval solutions. On the generative and synthesis side, promising results have
been obtained for transferring the style of a painting to a real photograph [101,
265, 156] and inversely, to create a realistic representation of a given painting [383,
298, 299, 300]. On the analysis and feature extraction side, instead, several efforts
have been made on the collection and annotation of large scale datasets containing
artistic images, mainly focusing on style and genre classification [158, 221, 287],
visual patterns detection [274], and artwork instance recognition [73].

For a comprehensive analysis, Table 3.6 shows a summary of the most relevant
dataset related to the cultural heritage domain. To the best of our knowledge,
there is a limited bunch of works that address the problem of retrieving artistic
images from textual descriptions, and vice versa [20, 36, 100]. While [20, 36]
take the problem in a semi-supervised way by exploiting the knowledge from
large-scale datasets containing realistic images, [100] uses additional metadata
such as title, author, genre, and period of the paintings to match images and text. In
this section, we instead propose a visual-semantic model capable of discriminating
visual and contextual sentences for each considered painting and, at the same time,

120 Transforming vision and language with attention



CHAPTER 3. CROSS-MODAL RETRIEVAL

associating the corresponding visual and textual elements.
Moreover, in the following Sec. 3.5, after briefly reviewing the most important

works related to visual-semantic retrieval, we focus on image-text matching ap-
proaches applied to the artistic domain, and subdividing them between supervised
and semi-supervised methods.

3.4.3 The Artpedia dataset

To foster the research on the development of visual-semantic algorithms which deal
with contextual sentences, we propose a novel dataset with visual and contextual
sentences describing real paintings. Artpedia contains a collection of 2, 930
painting images, each associated to a variable number of textual descriptions.
Each sentence is labelled either as a visual sentence or as a contextual sentence,
if does not describe the visual content of the artwork. Contextual sentences can
describe the historical context of the artwork, its author, the artistic influence or
the place where the painting is exhibited. As in standard cross-modal datasets,
the association between sentences and painting is also provided. A sample of the
dataset and its annotations is shown in Figure 3.7.

As the name suggests, the dataset has been collected by crawling Wikipe-
dia pages. To this aim, our crawling strategy followed the Wikipedia category
hierarchy by navigating all categories containing paintings between the 13th and
the 21th century. We then extracted the textual descriptions taking into account
all the summaries of each Wikipedia page and the description section whenever
present. Finally, we split the text into sentences using the spaCy NLP toolbox2 and
manually annotated each sentence either as visual or contextual. As an additional
product of the crawling procedure, we also release the title and the year of each
painting, together with the URL of each image.

Overall, Artpedia contains a total of 28, 212 sentences, 9, 173 labelled as
visual sentences and the remaining 19, 039 as contextual sentences. On average,
each painting is associated with 3.1 visual and 6.5 contextual sentences. The
mean length of the textual items is 21.5 words, considerably longer than those of
standard image captioning datasets. For a comprehensive analysis of the visual and
semantic content of our Artpedia dataset, we report in Figure 3.8 the distribution
of paintings over the given range of centuries, the distribution of sentence lengths,
and the most common object classes obtained by running a pre-trained object
detector [259, 175].

2https://spacy.io/
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The painting depicts an idyllic,
pastoral scene of a lone young
woman in peasant attire posed for
the artist, balancing a stick (likely
her crook) across her shoulders,
standing barefooted in the
foreground.

The title is taken from the Southern
French dialect.

It is currently in the permanent
collection at the Philbrook Museum
of Art in Tulsa, where it has become
an emblematic image for the
museum.

✔

✘

✘

In the foreground, a young man
stands upon a rocky precipice with
his back to the viewer.

He is wrapped in a dark green
overcoat, and grips a walking stick in
his right hand.

✔

It has been considered one of the
masterpieces of Romanticism and
one of its most representative
works.

It currently resides in the Kunsthalle
Hamburg in Hamburg, Germany.

✘

✔

✘

Figure 3.7: Sample paintings from our Artpedia dataset with corresponding visual
(green boxes) and contextual (red boxes) sentences.
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Figure 3.8: Analyses on our Artpedia dataset. From left to right, we report the
painting distribution over centuries, the sentence lengths distribution, and the most
common detection classes.

With respect to other visual-semantic datasets containing artistic images (re-
ported in Table 3.6), Artpedia provides a larger number of sentences, divided into
visual and contextual through a manual annotation procedure. Moreover, to the
best of our knowledge, this is the only dataset that contains two types of artistic
sentences describing both the visual content of the paintings and other contextual
information. For this reason, we devise a visual-semantic model capable of jointly
discriminating between visual and contextual sentences of the same painting, and
identifying which visual descriptions from a subset of textual elements (i.e. a
subset of visual descriptions from different paintings) are associated to a specific
painting.

To allow the training of our model and foster researches on this domain, we
also provide training, validation and test splits obtained by proportionally dividing
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Table 3.7: Number of paintings, visual and contextual sentences for each Artpedia
split.

Training Validation Test
Paintings 2,252 339 339
Visual sentences 7,109 1,036 1,028
Contextual sentences 14,822 2,134 2,083

the number of paintings. Splits have been obtained with the constraint of balancing
the distributions over centuries and the number of visual sentences to maintain
relevant statistics across the subsets. Table 3.7 reports the number of paintings for
each split along with the corresponding number of visual and contextual sentences.

3.4.4 Aligning visual and contextual sentences with images

Cross-modal retrieval is characterized by two main tasks: when the query is a
textual sentence, the objective is to retrieve the most relevant images, while with
an image as a query, the objective is to retrieve the most relevant sentences. The
goal is to maximize recall at K, the fraction of queries for which the most relevant
item is ranked among the top K retrieved ones. Besides, our setting leverages the
presence of visual and contextual sentences, and takes into account this difference
when computing the latent alignment within a single page. In the following, we
refer to a page as an element of our Artpedia dataset comprising an image and its
visual and contextual sentences. Our goal is not only to maximize recall, but also
to distinguish the two types of sentences associated to a painting.

In a nutshell, our model firstly maps image regions and sentence words into a
joint embedding space. Then, it computes a cross-attention mechanism divided in
two branches, where one attends to words with respect to each image region, while
the other attends to image regions with respect to each word. This mechanism
computes a similarity score for each branch between an image and a sentence.
During training, the similarity score is used to minimize two loss functions: our
intra-page loss, which strives to rank the sentences associated to a single image,
bringing near its visual sentences and pushing away its contextual ones, and the
inter-page triplet ranking loss that takes into account all images and their visual
sentences as in standard cross-modal retrieval settings.
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Similarity function

As mentioned before, the similarity is computed with a cross-attention mechanism
that comprises two distinct branches: image-to-text and text-to-image attention,
inspired by [186, 342]. Since the two branches are similar, diversified only by the
input order, we only describe the first one.

Firstly, given an image I , we extract salient regions such that each of them
encodes an object or other entities, and project them into the joint embedding space,
obtaining a final set of regions {v1, . . . ,vk},vi ∈ RD. Also, given a sentence T
composed of n words, encoded with a word embedding strategy, we project each
word into the joint embedding space thus obtaining a vector ej ∈ RD for each
word j. Therefore, given an image I with k detected regions and a sentence T
with n words, we compute the similarity matrix for all possible region-word pairs:

sij = v⊤
i ej i ∈ [1, k], j ∈ [1, n] (3.12)

where sij represents the similarity between the region i and the word j. Since
region and word features are ℓ2 normalized, this product corresponds to a cosine
similarity.

To attend words with respect to each image region, we compute a sentence-
context vector for each region. The sentence-context vector ai is a weighted
representation of the sentence with respect to the region i of the image, where the
similarities between the region i and the sentence words are used to weight each
word as follows:

ai =

n∑
j=1

αijej (3.13)

where

αij =
exp (λssij)∑n
j=1 exp (λssij)

(3.14)

and λs is a temperature parameter [53].
Finally, to evaluate the similarity of each image region given the sentence-

context, we compute the cosine similarity between the attended sentence vector
ai and each image region feature vi:

R (vi,ai) =
v⊤
i ai
∥ai∥

(3.15)
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To summarize the similarity between an image I and a sentence T , we employ
average pooling between all image regions and the sentence-context vector:

RAVG(I, T ) =

∑k
i=1R (vi,ai)

k
(3.16)

Likewise, the other branch follows the same procedure but swapping image
regions and sentence words, computing a region-context vector for each sentence
word, evaluating their cosine similarities and summarizing the final branch score
in the same way. Finally, by averaging the similarity scores of the two branches,
we obtain the final similarity score S(I, T ) between an image I and a sentence T .

Training

Intra-page loss. With the objective of correctly ranking visual and contextual
sentences of a given image, we propose an intra-page loss function that learns
the latent alignment between an image and its corresponding visual sentences
within a single page of the dataset. Given an image I , a visual sentence TV and a
contextual sentence TC , our intra-page loss is computed by taking into account
the similarity score S(I, TV ) between the image and the visual sentence and the
similarity score S(I, TC) between the image and the contextual one:

Lintra(I, TV , TC) = [α− S(I, TV ) + S(I, TC)]+ (3.17)

where [x]+ = max(x, 0) and α is the margin. Note that, since this loss function
is computed within a single page, both considered visual and contextual sentence
are taken within the sentences of the given image I .
Inter-page triplet ranking loss. Since our final objective is not only to identify
visual and contextual sentences of the same image, but also to associate matching
image-visual sentence pairs within the entire dataset, we define an inter-page
triplet ranking loss, which is typical of cross-modal retrieval methods.

As proposed in [85], we focus solely on the hardest negatives in the mini-batch.
So that, our final inter-page triplet ranking loss with margin α is defined as follows:

Linter(I, T ) = max
T̂

[
α− S(I, T ) + S(I, T̂ )

]
+
+max

Î

[
α− S(I, T ) + S(Î , T )

]
+

(3.18)
where only the hardest negative sentences T̂ or hardest negative images Î for each
positive pair S(I, T ) are taken into account. In our case, a negative sentence T̂
is a visual sentence of another image. Since this loss function aims to associate
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images and visual sentences of the entire dataset, contextual sentences are only
used by our intra-page loss.

Final training objective. The final training loss is obtained by a linear combin-
ation of the two loss functions, i.e. L = λwLinter + (1 − λw)Lintra, where
λw ∈ [0, 1] is a parameter that weights the contribution of the two losses. When
λw is equal to 0, the training procedure only minimizes our intra-page loss, whilst
when λw is equal to 1, all the attention is given to the inter-page triplet ranking
loss.

3.4.5 Experimental evaluation
We experimentally evaluate the effectiveness of our approach by comparing it
with different baselines. First, we provide all implementation details used in our
experiments.

Implementation details

To encode image regions, we use Faster R-CNN [259] trained on Visual Gen-
ome [175, 7], thus obtaining 2048-dimensional feature vectors. For each image,
we exploit the top 20 detected regions with the highest class confidence scores. To
project regions into the visual-semantic embedding space, we use a fully connected
layer with a size of 512.

For the textual counterpart, we compare GloVe [242] with word embeddings
learned from scratch. In both cases, the word embedding size is set to 300. Then,
with the aim of capturing the semantic context of the sentence, we employ a
bi-directional GRU with a size of 512, so that given a sentence with n words, the
bi-directional GRU captures the context reading forward from word 1 to n and
reading backwards from word n to 1, averaging the two hidden states to obtain the
final embedding vector for each word.

To train our model, we use the Adam optimizer with an initial learning rate
of 10−6 decreased by a factor of 10 after 15 epochs. In all our experiments, we
use a batch size of 128 and clip the gradients at 2. Finally, the margin α and the
temperature parameter λs are respectively set to 0.2 and 6.

Baselines

To evaluate our solution, we build different baselines to quantify both the effect-
iveness of using a cross-attention model and that of our intra-page loss. To this
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aim, we first exploit global features to encode images and sentences in place
of multiple feature vectors for each image or sentence. In particular, to encode
images, we extract 2048-dimensional feature vectors from the average pooling
layer of a ResNet-152, while, to encode sentences, we feed word embeddings
through a bi-directional GRU network and average the outputs of the last hidden
state in both directions. After projecting both images and sentences into a common
embedding space, the final similarity score between an image and a sentence is
given by the cosine similarity between the two ℓ2-normalized embedding vectors.

Furthermore, we compare the proposed intra-page loss function with respect to
binary cross-entropy. Therefore, visual and contextual sentences are not projected
into the same embedding space, but fed through a binary classification branch. In
practice, each sentence is classified either as visual or contextual by concatenating
the image and sentence embeddings and feeding them through two fully connected
layers of size 512 and 1, respectively. For the cross-attention model, the image
embedding is obtained by averaging the image region embedding vectors, while
the sentence embedding is obtained by averaging the last hidden states of the
bi-directional GRU in the two directions.

For both baselines, all other hyper-parameters and training details are the same
as those used in our complete model.

Cross-modal retrieval results

We first evaluate the effectiveness of our model to identify and distinguish visual
sentences with respect to contextual ones. Table 3.8 shows the results on the
Artpedia test set in terms of average precision (AP). In particular, the results are
obtained by training the models with λw equal to 0 (i.e. by only minimizing the
intra-page loss or binary cross-entropy). As it can be seen, our intra-page loss
function always obtains better performance with respect to the binary cross-entropy
baseline either when exploiting global features to embed images and sentences
or when using the cross-attention approach described in Section 3.5.2. Regarding
the word embedding strategy, GloVe vectors achieve better results with respect to
word embeddings learned from scratch, probably due to the presence of peculiar
words, typical of the artistic domain.

In Table 3.9, we show the performance of our complete model trained with
various λw weights to differently balance the contribution of the two loss functions.
In this case, the goal is not only to correctly distinguish between visual and
contextual sentences of a given image, but also to find the corresponding visual
sentences from a subset of other textual elements (i.e. visual sentences of different

Transforming vision and language with attention 127



CHAPTER 3. CROSS-MODAL RETRIEVAL

Table 3.8: Intra-page results in terms of Average Precision (AP).

Model Word Embedding AP

Global features with BCE loss Learned 39.3
Global features with BCE loss GloVe 40.8
Global features with intra-page loss Learned 52.8
Global features with intra-page loss GloVe 55.3

Cross-attention with BCE loss Learned 42.6
Cross-attention with BCE loss GloVe 41.7
Cross-attention with intra-page loss Learned 86.3
Cross-attention with intra-page loss GloVe 88.5

images). Results are reported in terms of recall@K (K = 1, 5) using a different
number N of items from which perform retrieval. In details, given an image as
a query, the retrieval of a textual element is performed from a subset of visual
sentences of N different images (i.e. the visual sentences of the query and those
of other N − 1 randomly selected images). Instead, given a textual query, the
retrieval of an image is performed from a subset of N different images (i.e. the
image linked to the query and other N − 1 randomly selected images from the
Artpedia test set). We also report the results of identifying visual sentences with
respect to contextual ones in terms of average precision. As it can be noticed, by
increasing the λw weight, we obtain an increment of recall metrics with a slight
drop of average precision values, in almost all considered combinations of features
and word embeddings. Also in this case, the cross-attention mechanism and the
GloVe word embeddings achieve better results than global features and learned
word embeddings.

Finally, Figure 3.11 shows learned embedding spaces using the best model
(i.e. cross-attention with GloVe word embeddings) using different λw weights.
Since in this case images and sentences are composed of an embedding vector for
each image region and word of the sentence, we represent each image or sentence
by summing the ℓ2-normalized embedding vectors of its image regions or words,
and ℓ2-normalized again the result. This strategy has been largely used in image
and video retrieval works, and is known for preserving the information of the
original vectors into a compact representation with fixed dimensionality [297].
To get a suitable two-dimensional representation out of a 512-dimensional space,
we run the t-SNE algorithm [218], which iteratively finds a non-linear projection
which preserves pairwise distances from the original space. As it can be observed,
the higher the λw weight, the greater the distance between images and visual
sentences in the embedding space, thus confirming the drop of average precision
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Table 3.9: Cross-modal retrieval results with a different number N of retrievable
items and with respect to different λw weights.

Model Word Emb. λw AP
N = 10 N = 50 N = 100

Img-to-Text Text-to-Img Img-to-Text Text-to-Img Img-to-Text Text-to-Img
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Global Learned

0.25

44.9 9.4 36.3 7.6 50.0 2.4 8.3 1.3 8.9 0.6 5.0 0.5 3.6
Global GloVe 43.1 12.4 35.4 8.5 48.7 2.7 9.1 2.2 11.1 0.6 5.3 1.8 5.5
X-Attn Learned 85.9 15.3 40.4 17.5 61.9 2.7 13.3 4.2 16.7 2.1 8.0 2.2 9.0
X-Attn GloVe 88.2 19.8 44.0 22.7 69.6 8.6 22.1 6.1 23.6 4.4 15.9 4.0 14.8
Global Learned

0.50

50.2 9.4 38.1 9.9 50.7 1.8 10.0 2.0 10.5 0.6 6.2 1.1 5.1
Global GloVe 46.0 8.8 37.2 9.8 48.9 1.2 10.0 2.0 10.1 1.8 4.1 1.0 4.4
X-Attn Learned 85.2 11.5 40.1 17.4 61.0 3.2 13.6 3.8 18.7 1.2 7.7 2.4 9.9
X-Attn GloVe 87.5 26.3 54.3 21.2 69.7 8.8 27.7 7.5 22.9 6.2 18.6 4.1 14.1
Global Learned

0.75

53.4 10.6 38.3 10.4 50.0 2.4 10.6 2.3 11.6 1.5 5.6 1.4 6.2
Global GloVe 44.9 10.9 34.2 8.9 47.7 1.8 8.6 1.8 9.3 0.9 4.4 0.7 4.6
X-Attn Learned 84.6 10.9 37.5 18.5 64.3 2.7 10.0 5.1 20.1 1.2 7.1 2.9 11.4
X-Attn GloVe 86.5 29.5 57.2 23.7 71.2 13.6 31.9 5.8 23.1 8.6 22.7 4.1 13.6

values when decreasing the importance of our intra-page loss during training.

3.5 Aligning Digital Humanities
As shown in the previous section, research efforts have resulted in algorithms
that can retrieve images from textual descriptions and vice versa, when paired
training data is provided. However, the domain of the Digital Humanities features
complex visual and semantic structures and also a significant lack of training
data, which makes the use of fully-supervised approaches often infeasible. In this
section, we go beyond these limitations and tackle the design of visual-semantic
algorithms proposing a joint visual-semantic embedding that can automatically
align illustrations and textual elements without paired supervision. This is achieved
by transferring the knowledge learned on ordinary visual-semantic datasets to the
artistic domain. Experiments, performed on two datasets specifically designed
for this domain, validate the proposed strategies and quantify the domain shift
between natural images and artworks.

3.5.1 Introduction
As humans, we can easily link our ability to see and understand the surrounding
environment with the ability to express ourselves in natural language. In the effort
of artificially replicating these connections, new models have emerged for image
and video captioning [7, 215, 57] and for visual-semantic retrieval [172, 85, 186].
The former architectures combine vision and language in a generative flavor on

Transforming vision and language with attention 129



CHAPTER 3. CROSS-MODAL RETRIEVAL

(a) λw = 0.25 (b) λw = 0.50 (c) λw = 0.75

Figure 3.9: Comparison between visual-semantic embedding spaces obtained
by training the model with different λw weights. Visualizations are obtained by
running the t-SNE algorithm [218] on top of embedding vectors representing
images and sentences (both visual and contextual).

the textual side, the latter build common spaces to integrate the two domains and
retrieve textual elements given visual queries, and vice versa.

The leading solutions for visual-semantic retrieval have so far relied on fully
supervised settings in which paired training samples are available and have been
applied to general-purpose datasets where the state of the art of concept recognition
methods is useful and well assessed. In the domain of arts and culture, however,
both visual and textual elements are far from those of ordinary datasets. On one
side, textual descriptions often contain technical language with symbolic reminds,
metaphors and artistic or historical connections; on the other side, artworks and
illustrations are characterized by visual features different from those of natural
images. Beyond this domain-shift issue, the supervised training of a common
visual-semantic embedding requires sufficiently large datasets. Instead, the artistic
domain is often characterized by small scale datasets in which the pairing between
visual and textual elements is not available or expensive to obtain.

Tackling the aforementioned setting, in this section we propose a semi-supervised
visual-semantic embedding model (SS-VSE) for cross-modal retrieval in the
artistic domain. Our approach relies on the construction of a common semantic
embedding, in which the knowledge learned on a supervised and ordinary visual-
semantic dataset is transferred to an artistic dataset in which the pairing between
images and sentences is not available. After using global feature vectors, we
also investigate the use of auto-encoders (SS-VSE-AE) to obtain more compact
representations of input images and sentences. Experiments are conducted on two
datasets specifically designed for the artistic domain. In particular, we use the
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Figure 3.10: Visual and textual data from the artistic domain are different from
those addressed by ordinary visual-semantic datasets, posing significant challenges
in the automatic understanding of arts and culture. Our approach can align illus-
trations and textual elements by transferring the knowledge learned on standard
datasets to match images and captions coming from a target domain.

target images target captionssource images source captions

Distribution 
Alignment

This painting shows a girl in a yellow 
dress holding a bouquet of flowers. It is a 
typical portrait of the artist showing the 

influence of his teacher, Agnolo Bronzino.

Two people on 
surfboards with a 
third in the water.

Target 
Domain

Source 
Domain

BibleVSA dataset [20] which contains illustrations and textual sentences extracted
from the commentaries of a historical manuscript, and the SemArt dataset [100]
that is composed of artwork images and textual comments. Extensive experiments
are presented to validate the proposed solution and to visualize the effect of the
knowledge transfer between source and target datasets.

Motivation

Only a few works have applied image-text matching strategies to artistic data.
Among them, [100] used additional metadata such as title, author, genre, and period
of the paintings to find corresponding image-text pairs. [285] introduced a new
dataset and a visual-semantic model to discriminate visual and contextual sentences
associated to artistic images and, at the same time, to align the corresponding visual
and textual elements. While [100, 285] matched images and textual descriptions
in a supervised way, [20, 36] addressed the problem in a semi-supervised setting,
adapting the knowledge learned on a given source domain to align images and text
belonging to a different target domain and without directly training the model on
the target domain. This solution, which is known as domain adaptation, has been
used in a wide variety of applications such as image classification [211], semantic
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segmentation [129, 51], object detection [143, 50], and image captioning [46,
345]. Typically, it is addressed by minimizing the distance between feature space
statistics of the source and target, or by using domain adversarial objectives
where a domain classifier is trained to distinguish between the source and target
representations.

3.5.2 Semi-supervised cross-modal retrieval
In the following, we describe our strategy for cross-modal retrieval in the artistic
domain. Our model has a two-fold role: retrieving relevant images given textual
sentences as queries, and retrieve relevant sentences when given images as queries.
Parameters of the model are learned with the objective of maximizing recall at K –
i.e. the fraction of queries for which the most relevant item is ranked among the
top K retrieved ones. As training data in the artistic domain is often scarce, we
build a proposal that does not need a paired training set in which the associations
between images and sentences are known in advance. Rather, our model transfers
the knowledge learned on a source annotated dataset to a target dataset in which
the pairing between the two modalities is unknown at training time.

In a nutshell, the paradigm of the common embedding space is exploited
to learn similarities between images and sentences. In addition to using global
feature vectors to encode data from both modalities, we also investigate the use of
auto-encoders to learn more compact representations of images and sentences. To
transfer knowledge to the artistic domain without leveraging annotated pairs, we
devise a distribution alignment strategy based on the Maximum Mean Discrepancy
measure, which aims at uncovering suitable cross-modal representation of cultural
heritage data without supervision.

Visual-semantic embeddings

Aligning works of arts and their corresponding textual descriptions requires the
ability to compare visual and textual data in this particular domain. To this end,
we adopt the strategy of creating a shared multi-modal embedding space, in which
both textual and visual elements can be projected and compared using a similarity
function.

Formally, we denote ϕ(I,wϕ) ∈ RDϕ as the feature representation computed
from an image I of the dataset (such as the representation coming from a CNN),
and ψ(T,wψ) ∈ RDψ as the representation of a textual element T , computed, for
example, using a text encoder on one-hot vectors, or as a function of pre-trained
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word embeddings. Here, wϕ and wψ indicate, respectively, the learnable weights
of the visual and textual encoders.

To project those representations into a common semantic space, we perform
a linear projection followed by a ℓ2-normalization step, so that the resulting
embedding space lies on the ℓ2 unit ball:

f(I,wf ,wϕ) = ℓ2,norm(w⊺
i ϕ(I,wϕ)) (3.19)

g(T,wg,wψ) = ℓ2,norm(w⊺
cψ(T,wψ)), (3.20)

where ℓ2,norm is the ℓ2 normalization function. Being D the dimensionality of the
joint embedding space, wf is a Dϕ ×D matrix, and wg is a Dψ ×D matrix.

Visual and textual elements can be compared in the joint multi-modal embed-
ding space by computing the cosine similarity (equivalent, in this case, to a dot
product) between their projections, so that the similarity between an image I and
a caption T becomes

s(I, T ) = f(I,wf ,wϕ) · g(T,wg,wψ). (3.21)

Clearly, the utility of the joint embedding space is maximized when it exhibits
suitable cross-modality matching properties, i.e. when similarities in the embed-
ding space correspond to meaningful similarities in both modalities. In this case,
the embedding space acts as a bridge between the two modalities and makes it
possible to retrieve textual pieces describing a query image, and images described
by a query caption by identifying the closest neighbors in both modalities.

Given a dataset annotated with matching visual-semantic pairs, a good proxy of
this property is to verify that corresponding pairs are neighbours in the embedding
space. As a matter of fact, classical approaches have relied on the availability of
paired datasets, and have learned the joint embedding for a specific domain in a
completely supervised way, e.g. training the parameters of the model according
to a Hinge triplet ranking loss with margin, which imposes suitable similarities
between matching and non-matching elements. Formally, it is defined as:

ℓ(I, T ) =
∑
T̂

[
α− s(I, T ) + s(I, T̂ )

]
+
+

+
∑
Î

[
α− s(I, T ) + s(Î , T )

]
+

(3.22)

where [x]+ = max(0, x) and α is a margin. In the equation above, (I, T ) is
a matching image-text pair (i.e., such that T describes the content of I , and I
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represents the content of T ), while T̂ is a negative text with respect to I (such
that T̂ does not describe I), and Î is a negative image with respect to T (such
that T does not describe Î). The terms contained in both sums require that the
difference in similarity between the matching and the non-matching pair is higher
than a margin α: in the first sum, this is done by considering an image anchor
and matching or non-matching captions; in the latter, instead, a caption is used as
anchor.

As reported by a recent work by [85], in a completely supervised setting it is
often beneficial to replace the sums in Eq. 3.22 with maximum operations, so to
consider only the most violating non-matching pair.

Auto-encoding images and sentences

In addition to the use of plain global feature vectors, we also investigate an
alternative projection strategy in which images and sentences are fed to an auto-
encoder to learn a more compact yet powerful representation of the input, which
can in turn be used as the input of the projection function defined in Eq. 3.19.

To this end, we design a textual auto-encoder which can convert variable-
length captions to fixed-length representations from which input sentences can
be reconstructed. In particular, our model exploits Gated Recurrent Networks
(GRUs) [52] for both encoding and decoding. Formally, given a sentence T =
(w1, w2, ..., wN ) with length N , we firstly encode it word by word through a
single-layer GRU and take the last hidden state of the Recurrent layer as the
encoding of the sentence. Given the recurrent relation defined by the GRU cell
and the t-h word, i.e.

ht = GRUe(wt,ht−1), (3.23)

the encoding of the input sentence is defined as:

hN = GRUe(wN ,hN−1). (3.24)

In the decoding stage, the input sentence is reconstructed by feeding hN to
a second GRU layer which is in charge of generating the reconstructed sentence.
During training, at the t-th iteration the Recurrent layer is fed with hN and the
previous ground-truth words, and it is trained to predict the t-h word. Formally,
the training objective is thus:

max
w

T∑
t=1

log Pr(wt|wt−1, wt−2, ..., w1,hN ). (3.25)

134 Transforming vision and language with attention



CHAPTER 3. CROSS-MODAL RETRIEVAL

The probability of a word is modeled via a softmax layer applied to the output
of the decoder. To reduce the dimensionality of the decoder, a linear embedding
transformation is used to project one-hot word vectors into the input space of the
decoder and, vice-versa, to project the output of the decoder to the dictionary
space.

Given the auto-encoder for the textual part, we build an encoder-decoder
model that can take an image feature vector as input and reconstruct it starting
from an intermediate and more compact representation. In practice, the encoder
model is composed of a single fully connected layer. We indeed notice that a
single layer leads to have a fairly informative representation of the image feature
vector. Formally, we define the output of the encoder model z (i.e. the intermediate
representation of the input image) as

z = tanh(Weϕ(I) + be), (3.26)

where We and be are, respectively, the weight matrix and the bias vector of
the encoder. Notice that the output of the encoder layer is fed through a tanh
non-linearity activation function.

The decoder model has a symmetric structure. Therefore, starting from the
intermediate vector z, the decoder applies a single fully connected layer that trans-
forms z to the size of the input image feature vector. Formally, the reconstructed
image feature vector ϕ̂(I) is defined as

ϕ̂(I) = Wdzi + bd, (3.27)

where Wd and bd are the weight matrix and the bias vector of the decoder. Overall,
the image auto-encoder is trained to minimize the reconstruction error for each
input image. We define the decoder loss function as the mean square error between
the original image feature vector ϕ(I) and the corresponding reconstruction ϕ̂(I).

Aligning distributions

While the knowledge of matching and non-matching pairs on a source dataset
can be exploited to train the embedding space, as discussed in Sec. 3.5.2, the two
reconstruction losses can be applied to both the source and the target dataset, thus
building encoded representations which are suitable for both datasets. However,
this is not enough to transfer knowledge from the source domain to the target
domain, as there is no guarantee that encoded words and sentences from the target
dataset will lie together in the embedding space.

Transforming vision and language with attention 135



CHAPTER 3. CROSS-MODAL RETRIEVAL

Figure 3.11: Comparison between the visual and textual features of ordinary
visual-semantic datasets (Flickr30k, COCO) and those of BibleVSA and SemArt
dataset. Visualization is obtained by running the t-SNE algorithm on top of the
features. Best seen in color.
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To this end, we match the distributions of textual and visual data in the target
domain, while learning from pairs sampled from the source domain. Following
recent works in the field [141, 303, 343], we use the Maximum Mean Discrepancy
(MMD) to compare distributions. This, basically, computes the distance between
the expectations of the two distributions in a reproducing kernel Hilbert spaceHκ
endowed with a kernel κ, and can be used as an additional loss term:

Lmmd = ∥EI∼I [f(I)]− ET∼T [g(T )] ∥2Hκ
, (3.28)

where I is the distribution of the illustrations, and T is the distribution of cap-
tions. The kernel in the MMD criterion must be a universal kernel, and thus we
empirically choose a Gaussian kernel:

κ(x,y) = exp
(
−σ∥x− y∥2

)
. (3.29)

At training time, we sample two mini-batches of samples, one from the super-
vised set and a second one from the unsupervised dataset. The back-propagated
loss is then the sum of the supervised loss (Eq. 3.22) on the supervised set, plus
the MMD loss Lmmd approximated over the batch from the unsupervised set.
Additionally, the two loss terms of the auto-encoders are evaluated over both the
supervised and the unsupervised batches.

3.5.3 Experimental evaluation
Datasets

We perform experiments on two different visual-semantic datasets containing
artistic images and corresponding textual descriptions (described below). As
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source domains, we use Flickr30k and COCO which are composed of natural
images and are commonly used to train cross-modal retrieval methods. For these
two datasets, we use the splits provided by [159].

BibleVSA [20]. The dataset consists of 2, 282 illustrations taken from the digitized
version of the Borso d’Este Holy Bible, one of the most significant illustrated
manuscripts of Renaissance. Each image is associated with a single textual phrase
extracted from a textual commentary which describes the content of each page of
the manuscript. In our experiments, we use the original training, validation, and
test split, respectively composed of 1, 671, 293, and 307 image-caption pairs.

SemArt [100]. This dataset is composed of 21, 384 paintings extracted from the
Web Gallery of Art, which contains European fine-art reproductions between the
8th and the 19th century. Each image is associated to an artistic comment and
to a set of 7 different attributes comprising the title, the author, and the type of
the painting. Overall, the dataset is divided in training, validation and test split
with 19, 244, 1, 069 and 1, 069 elements, respectively. The average length of each
artistic comment is more than 80, with a maximum number of words equal to
830. This highlights the difference between SemArt and ordinary visual-semantic
datasets (i.e. COCO has an average caption length lower than 11) and accentuates
the challenges of this set of data. To first validate our solution in a less complex
scenario, we limit the validation and test set to 300 randomly selected image-text
pairs. Then, we evaluate our model using a different number of retrievable items.

Implementation details

To encode input images, we use two different convolutional networks: the VGG-
19 [280] and ResNet-152 [119]. We extract image features from the fc7 layer of
the VGG-19 and from the average pooling layer of the ResNet-152 thus obtaining
an input image embedding dimensionality Dϕ of 4096 and 2048, respectively.

For encoding image descriptions, we use a GRU network [52]. We set the
dimensionality of the GRU and of the joint embedding space D to 512, while the
input size of word embeddings Dψ is set to 300. We use either a text encoder on
one-hot vectors or different pre-trained word embeddings (such as GloVe [242]
and FastText [28]) as input of the GRU.

The model with textual and visual auto-encoders is trained using the same
input and output sizes. For the training with pre-trained word embeddings, instead
of using the loss function defined in Eq. 3.25, we compute the cosine distance
between original and reconstructed embeddings of each word.
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Table 3.10: Semi-supervised cross-modal retrieval results using different visual
features. Results are reported on BibleVSA and SemArt test set.

Method CNN Feat.
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

COCO→ BibleVSA
SS-VSE VGG-19 13.1 29.5 36.1 3.9 16.7 27.5
SS-VSE ResNet-152 9.8 31.1 50.8 6.2 22.3 30.8
SS-VSE-AE VGG-19 9.8 27.9 34.4 3.6 15.7 25.9
SS-VSE-AE ResNet-152 6.6 23.0 36.1 3.6 19.7 29.8

COCO→ SemArt
SS-VSE VGG-19 3.7 11.7 19.0 2.3 10.0 19.3
SS-VSE ResNet-152 6.7 19.3 27.0 5.0 17.3 29.3
SS-VSE-AE VGG-19 5.0 14.3 22.7 1.7 9.0 15.3
SS-VSE-AE ResNet-152 4.7 12.7 21.0 3.7 11.0 18.0

All experiments are performed by using Adam optimizer with a learning rate
of 0.0002 for 15 epochs and then decreased by a factor of 10. We set the margin α
to 0.2, the σ parameter of the Gaussian kernel to 1 and the size of the mini-batch
to 128.

Analysis of artistic visual-semantic data

To get an insight of characteristics of the BibleVSA and SemArt datasets, we
analyze the distribution of image and textual features respectively obtained from
CNNs and sentence embeddings and compare them with those extracted from
classical visual-semantic datasets.

For the visual part, we extract the activation from the VGG-19 and ResNet-152
networks, while, for textual elements, we embed each word of a caption with a
word embedding strategy (either GloVe or FastText). To get a feature vector for
a sentence, we sum the ℓ2 normalized embeddings of the words, and we apply
the ℓ2-norm also to the results. This strategy is largely used in image and video
retrieval literature and is known for preserving the information of the original
vectors into a compact representation with fixed dimensionality [297] .

Fig. 3.11 shows the distributions of visual and textual features of both data-
sets. To get a suitable two-dimensional representation, we run the t-SNE al-
gorithm [218], which iteratively finds a non-linear projection that preserves the
statistical distribution of the pairwise distances from the original space. As it can
be observed, the features of ordinary visual-semantic datasets share almost the
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Table 3.11: Semi-supervised cross-modal retrieval results using different word
embeddings. Results are reported on BibleVSA and SemArt test set.

Method Word Emb.
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

COCO→ BibleVSA
SS-VSE FastText 8.2 19.7 34.4 2.6 16.7 26.6
SS-VSE GloVe 6.6 23.0 39.3 3.6 16.7 27.2
SS-VSE - 9.8 31.1 50.8 6.2 22.3 30.8
SS-VSE-AE FastText 6.6 27.9 34.4 3.3 14.4 25.2
SS-VSE-AE GloVe 4.9 19.7 41.0 3.9 13.8 27.5
SS-VSE-AE - 6.6 23.0 36.1 3.6 19.7 29.8

COCO→ SemArt
SS-VSE FastText 1.7 5.0 7.7 0.7 2.3 7.3
SS-VSE GloVe 3.3 11.3 16.0 2.0 11.0 17.7
SS-VSE - 6.7 19.3 27.0 5.0 17.3 29.3
SS-VSE-AE FastText 3.7 10.0 17.0 3.0 9.3 11.7
SS-VSE-AE GloVe 2.7 12.0 17.0 1.7 7.0 12.3
SS-VSE-AE - 4.7 12.7 21.0 3.7 11.0 18.0

same visual and textual distributions. BibleVSA and SemArt, on the contrary,
feature a completely different distribution, according to both modalities and all
feature extractors. This underlines, on the one hand, that artistic datasets define
a completely new domain. On the other hand, instead, this motivates the low
performance of existing models when tested on these datasets.
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Table 3.13: Semi-supervised retrieval results on BibleVSA test set.

Method
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

Flickr30k→ BibleVSA
VSE 3.3 8.2 16.4 1.6 12.1 19.7
SS-VSE 9.8 23.0 39.3 4.6 16.1 26.6
VSE-AE 1.6 4.9 13.1 3.0 9.8 17.0
SS-VSE-AE 3.3 23.0 29.5 3.3 13.1 23.0

COCO→ BibleVSA
VSE 1.6 9.8 16.4 2.6 10.5 20.0
SS-VSE 9.8 31.1 50.8 6.2 22.3 30.8
VSE-AE 3.3 6.6 14.8 1.6 9.8 19.7
SS-VSE-AE 6.6 23.0 36.1 3.6 19.7 29.8

Cross-modal retrieval results

To evaluate the effectiveness of the visual-semantic embeddings, we report rank-
based performance metrics R@K (K = 1, 5, 10) for image and caption retrieval.
In particular, R@K computes the percentage of test images or test sentences for
which at least one correct result is found among the top-K retrieved sentences, in
the case of caption retrieval, or the top-K retrieved images, in the case of image
retrieval.

Firstly, we assess the performance of our full model when using different CNN
features or different word embeddings, to get an insight of the role of different
global feature vectors. In Table 3.10, we show the performance of the proposed
approach on the test sets of BibleVSA and SemArt when using image features
extracted, respectively, from VGG-19 and ResNet-152. Table 3.11 compares the
use of FastText and GloVe embeddings versus a learned word embedding matrix.
In this case, the results on SemArt test set are obtained by using 300 randomly
selected retrievable items.

For space reasons, we limit this analysis to a single source dataset (namely,
COCO), as we have observed similar behaviours on Flickr30k. The two variants
of our approach are denoted as SS-VSE and SS-VSE-AE, where the first refers
to the model with global feature vectors and linear projection, and the latter refers
to the model with the visual and textual auto-encoder. As it can be observed, the
global descriptor extracted from ResNet-152 outperforms the one extracted from
VGG-19 in almost all settings. Noticeably, learned word embeddings outperform
pre-trained solutions. We speculate that this performance drop is due to the the
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Figure 3.12: Comparison between t-SNE projections of the embedding spaces
learned with (b-d) and without (a-c) the MMD loss. Best seen in color.

(a) VSE (COCO→ SemArt)

COCO Img
COCO Txt
SemArt Img
SemArt Txt

(b) SS-VSE (COCO → Se-
mArt)

COCO Img
COCO Txt
SemArt Img
SemArt Txt

(c) VSE-AE (COCO → Se-
mArt)

COCO Img
COCO Txt
SemArt Img
SemArt Txt

(d) SS-VSE-AE (COCO→ Se-
mArt)

COCO Img
COCO Txt
SemArt Img
SemArt Txt

highly specialized nature of the target datasets. In this regards, word embeddings
seem to offer a poor initialization point with respect to a from-scratch learning of
the word embedding matrix.

Another interesting consideration is that the use of hard negatives in the triples
loss function is typically beneficial in a supervised setting [85]. Instead, in our
semi-supervised setting, we do not report the same advantages in improving the
alignment of the target domain.

Evaluation of semi-supervised embeddings

In Tables 3.12 and 3.13, we compare the performances of the two proposed semi-
supervised approaches (SS-VSE and SS-VSE-AE) on SemArt and BibleVSA
test set with respect to the two models trained without the distribution alignment
(VSE and VSE-AE). For these experiments, we use global feature vectors extracted
from ResNet-152 and learned word embeddings. Given the significant size of
SemArt dataset, we report retrieval results when using different sets of database
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Figure 3.13: Qualitative image-to-text (upper) and text-to-image (lower) results
on BibleVSA (first and third rows) and SemArt (second and fourth rows) dataset,
using the proposed semi-supervised strategy.

This three quarter length
portrait of Midshipman (later
Captain) John Windham Dalling
RN (1789-1853) memorialises
his presence on HMS Defence at
the Battle of Trafalgar (...).

A round depicting a dog hunting
a heron.

Query Image Top-1 Retrieved Caption Query Image Top-1 Retrieved Caption

A round, within a quadrangular
frame of a laurel wreath, with
Moses kneeling listening to the
word of God appearing in the
sky.

A fantastic figure with a leopard
body and human head holds a
spear and a shield.

Query Image Top-1 Retrieved Caption

This painting depicts a still-life
of flowers in a vase, with fruit
on a ledge behind.

This painting shows the
Madonna and Child in a
landscape with the Infant Saint
John the Baptist. It betrays the
influence of (…).

Top-1 Retrieved 
Image

A quadrangular vignette with
Moses and Aaron, kneeling in a
landscape, they listen to the
word of God appearing in the
form of a radiated cloud.

Query Caption

A landscape with the leopard
with tail and dragon wings.

Quadrangular vignette with
Moses preaching to the people
gathered around him.

Query Caption Query Caption
Top-1 Retrieved 

Image
Top-1 Retrieved 

Image

This study of a bearded man,
head and shoulders, was
probably made with the
intention to use it in some
multi-figural composition.

In this genre scene three men
are depicted relaxing in a
sparse interior as one plays his
violin and the others jovially
hold a pipe and vessels for
drinking (…).

This still-life depicts Bohemian
crystals, cups, and a watch.

items (i.e. 100, 300, 500, 1000). We notice that, when using a medium-scale
source dataset like Flickr30k, the use of the auto-encoder is competitive with the
use of a linear projection of the global feature vector. Instead, when transferring
from a large-scale dataset like COCO, the reconstruction term is not needed and
the reduced size of the representation degrades the performance. In all settings, the
MMD loss gives a significant contribution to the final performance thus confirming
the effectiveness of our distribution alignment strategy.

To get a better understanding of the role of the MMD loss, we also show the
learned multi-modal embedding space by using t-SNE visualizations. Figure 3.12
shows the embedding spaces when transferring from COCO to SemArt, with
and without the MMD loss. As it can be noticed, without the MMD loss the
distribution of textual and visual elements on the target domain remains almost
separate, as the learning signal from the source domain is not general enough on
the target domain. On the contrary, when applying the MMD loss the distribution
of the learned image embeddings matches that of the textual counterpart on the
target domain, thus confirming the effectiveness of the proposed semi-supervised
strategy. Noticeably, the distributions of the source and target domain still remain
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separate in the embedding space, thus underlying the diverse nature of the two
sets.

Finally, Fig. 3.13 reports sample qualitative results on BibleVSA and SemArt
dataset. As it can be noticed, our method can retrieve significant elements without
employing any paired supervision from the artistic dataset.
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Chapter 4

Gene and Protein expression

In the previous chapters, we have shown how it is possible to apply attention
mechanism and Transformer architectures to Vision and Language, bridging the
gap between different modalities. Thanks to its capabilities, the Transformer
model have firstly led a revolution in Natural Language Processing followed by
Computer Vision and almost every field of artificial intelligence research. The key
ability resides in capturing better long-range interactions among distal elements in
data, excelling in dealing with sequences.

Following these premises, in this chapter we explore the application of the
attention paradigm to the languages of life: the genetic code and the protein
sequences. We propose a new class of deep learning models based on the Perceiver
model, built upon Transformer, which exploit asymmetric attention and is able
scale to longer sequences. We present a method able to predict the gene expression
(mRNA level) given its DNA sequence, and a method predicting the protein
expression given its amino-acid sequence. We demonstrate the effectiveness of
our methods and promising future opportunities.

4.1 Perceiver for gene and protein expression
The functions of an organism and its biological processes result from the expression
of genes and proteins. Therefore quantifying and predicting mRNA and protein

This chapter is related to publications [10] reported in Appendix A, by the author of the thesis.
See Appendix A for details.
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levels is a crucial aspect of scientific research. Concerning the prediction of mRNA
levels, the available approaches use the sequence straddling the Transcription
Start Site (TSS) as input to neural networks. The State-of-the-art models (e.g.,
Xpresso and Basenjii) predict mRNA levels exploiting Convolutional (CNN)
or Long Short Term Memory (LSTM) Networks. However, CNN prediction
depends on convolutional kernel size, and LSTM suffers from capturing long-
range dependencies in the sequence. Concerning the prediction of protein levels,
as far as we know, there is no model for predicting protein levels by exploiting the
gene or protein sequences.

In the following, we present a new class of models for mRNA and protein
level prediction that exploit the Perceiver architecture, which is built upon the
Transformer and can attends to long-range interactions in data sequences and,
in addition, overcomes the quadratic complexity of the standard Transformer
architectures. Specifically, we present: 1. DNAPerceiver model to predict mRNA
levels from the sequence straddling the TSS; 2. ProteinPerceiver model to predict
protein levels from the protein sequence; 3. Protein&DNAPerceiver model to
predict protein levels from TSS-straddling and protein sequences.

We evaluate our models on cell lines, mice, glioblastoma, and lung can-
cer tissues. The results show the effectiveness of the Perceiver-type models in
predicting mRNA and protein levels. In the future, inserting regulatory and
epigenetic information into the model could improve mRNA and protein level
predictions. The source code is freely available at https://github.com/
MatteoStefanini/DNAPerceiver

4.1.1 Introduction
Most of the biological processes that regulate the functions of an organism are
due to the activity of proteins [67, 66, 313]. In recent decades, the incredible
development of sequencing techniques and proteomics quantifications have en-
abled a systematic analysis of the activity level of thousands of genes and proteins
[367, 243]. In addition, it is known that many regulatory and epigenomic processes
regulate the expression of mRNAs and proteins [144, 26, 84], and the sequence
straddling the transcription start site (TSS) has long been investigated to predict
the mRNA levels in various tissues. However, the protein level prediction from
sequences has yet to be addressed to the best of our knowledge.

In recent years, deep learning techniques spread in health applications[224, 4,
29, 33] [164, 373] and previous works focused on mRNA level prediction from
TSS-straddling sequences [163, 380, 1]. In particular, Convolutional Neural Net-
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works have been adopted to deal with the sequential nature of the DNA[163, 380,
1, 14, 244]. Specifically, Basenjii[163] applies convolutional layers followed by
dilated convolutions to share information across large distances in the gene se-
quences. Dilated convolutions have a wider filter created by inserting spaces in the
filter elements. Those gaps exponentially increase the receptive field width, thus
taking into account longer dependencies in the sequences. Similarly, Expecto[380]
applies convolutional layers to extract features from the sequences using a pre-
defined window’s size. Each window yields a set of features stacked together in
a high-dimensionality feature vector. Spatial transformations are then applied to
reduce feature vector dimensionality to output mRNA levels. On the same line,
Xpresso[1] introduced a deep convolutional model composed of two sequential
convolutional and max-pooling layers followed by two fully connected layers,
demonstrating that a localized region around the transcription start site captures
the most relevant information for mRNA level prediction.

Although convolutions represent an effective way to deal with gene sequences,
they have some significant limitations that hinder their representational power.
Above all, the locality nature of convolutions limits the information propagation
in the network among distal elements, requiring many successive layers to expand
the receptive field and thus not allowing to capture of long-range relationships
and dependencies in sequence elements[306]. In 2017 the attention mechanism
revolutionized sequence processing, achieving outstanding performance in captur-
ing long-range dependencies due to each token’s global interaction in the input
sequence (so-called self-attention), extracting global information directly from the
first layer [306]. However, the self-attention operator has a quadratic complex-
ity O(n2), making the prediction unfeasible for long sequences. The Enformer
model[14] firstly applies self-attention to genomic data, capturing wide-ranging
relationships and improving mRNA level prediction. However, to keep the compu-
tation feasible, the model is composed of a first convolutional step that extracts
local features that are then applied to self-attention layers to capture long-range
interactions.

Our method, instead, is based on the Perceiver architecture[146], which allows
for asymmetric attention between inputs and learnable query vectors, therefore
expanding its capabilities to attend longer sequences directly on the raw data
without an initial convolutional step. The advantage of the Perceiver architecture
is not limited to the computational aspects. The regulatory parts of a gene (e.g.,
enhancer and silencer) can be at a considerable distance from the gene region
on which they act. Unlike CNN and LSTM, these long-range interactions are
modeled in the Perceiver architecture, allowing a better mRNA level prediction.
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In this chapter, we present three models, all based on the Perceiver architecture:
DNAPerceiver, ProteinPerceiver, and DNA&ProteinPerceiver. DNAPerceiver pre-
dicts the mRNA and protein levels from the TSS-straddling sequence, and its
performances are directly compared with competitor models on various data-
sets. ProteinPerceiver and DNA&ProteinPerceiver instead predict the protein
levels from the protein sequence (ProteinPerceiver) and the combination of TSS-
straddling and protein sequences (DNA&ProteinPerceiver), respectively. The latter
two models were evaluated under different experimental conditions. However,
due to the task’s novelty, it is impossible to report comparisons with models in
the literature. Below, the Materials and Method paragraph contains the technical
details of the models developed and the data used. Subsequently, the Results
and Discussion paragraphs report the results obtained. Finally, the Conclusion
paragraph summarizes the main contributions of this work.

4.1.2 Proposed method

In order to predict mRNA and protein levels, human protein-coding genes were
selected, and their TSS-straddling and protein sequences were obtained (see details
in the Dataset paragraph). Then, three models based on a Perceiver architecture
were implemented: DNAPerceiver, ProteinPerceiver, and DNA&ProteinPerceiver.
DNAPerceiver predicts mRNA levels from the TSS-straddling gene sequence.
ProteinPerceiver and DNA&ProteinPerceiver instead predict protein levels from
the protein sequence and the combination of the TSS-straddling and protein
sequences, respectively.

Although each model differs in the prediction task, the general structure is very
similar. First, each model receives a sequence representing the TSS-straddling
or the protein sequence as input. Then, the Perceiver model encodes and pro-
cesses the sequence, and a discrete number is outputted for each sequence. This
number represents the samples’ average amount of mRNA or protein levels. The
greater the number, the greater the amount of molecule (mRNA or protein) circu-
lating. Therefore the main difference between the three Perceiver architectures
consists of the input data: TSS-straddling sequences for DNAperceiver; protein
sequences for ProteinPerceiver, and TSS-straddling and protein sequences for
DNA&ProteinPerceiver architecture.
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Datasets

We evaluate our models adopting different settings, depending on the task and thus
the desired combination of input sequences and predicted output. Overall, there
are two input types: inputDNA and inputProt. InputDNA consists of the sequence
of human protein-coding genes upstream and downstream of the transcription
start site (TSS). The sequence upstream of the TSS contains the gene’s promoter,
while the sequence downstream of the TSS contains the exons and introns of
the gene. InputDNA sequences are taken from the Xpresso publication [1] due
to its particular data curation. Indeed, in this dataset, the TSS positions were
accurately revised by Xpresso’s authors exploiting Cap Analysis Gene Expression
(CAGE) experiments, a method to measure the actual TSS location. Specifically,
it comprises 18377 genes split into 16377 genes for training, 1000 for validation,
and 1000 for the test. The maximum length of the TSS sequence of a gene is
set to 20000 base pairs. Xpresso DNA input also comes with half-life features,
which contain general information about the gene (e.g., gene length, number of
introns). Therefore, whenever we use InputDNA sequences, we also include
half-life features as additional input to our models at different network points, as
explained in the architecture section.

InputProt, on the other hand, consists of protein sequences. Therefore, the
promoter region and all non-coding parts of a gene are not included in the in-
putProt sequence. All protein sequences were obtained from Uniprot database
[56], processed with Biopython library [55], and intersected with Xpresso’s list of
protein-coding genes.

As for the labels, we used four typologies for predicting mRNA levels (la-
belGeneMouse, labelGeneHuman, labelGeneGlio, labelGeneLung) and two ty-
pologies for predicting protein levels (labelProtGlio and labelProtLung). la-
belGeneMouse and labelGeneHuman come from the Xpresso publication, con-
taining the mean mRNA levels of mouse and human samples, respectively. These
labels were obtained in the biologically controlled context of cell lines, and there-
fore the prediction task is limited. To evaluate the predictive capabilities of the
models on high throughput multi-omics human data from clinical studies, we
selected mRNA and protein levels on patients with glioblastoma [319] and lung
cancer [266]. LabelGeneGlio and labelGeneLung contain the labels of the me-
diated mRNA values for glioblastoma and lung cancer, respectively. The same
procedure has been applied to obtain the mediated protein levels for the same
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patients, named labelProtGlio and labelProtLung, respectively [319, 266].
Given the scarcity of data, except for Xpresso comparisons, we adopt the

K-Fold validation setting and average the results across the folds. We set the
number of folds K to 10.

Metric

To measure the effectiveness of our methods, we compute the variance explained
r2, also known as the coefficient of determination: r2 = 1 − SSR

SST , where SSR
stands for Sum Squared Regression (the sum of the residuals -actual values minus
predicted value- squared) and SST for Total Sum of Squares (the sum of the
distance the data is away from the mean all squared). This coefficient is the most
widely adopted metric for mRNA level prediction, ranging from 0 to 1. When it
is 0, the model makes a prediction no better than random, while when it is 1 the
model perfectly predicts the actual labels.

DNAPerceiver architecture

As stated above, various models in the literature focused on predicting mRNA
levels from the TSS-straddling sequence. This work aims to reveal if mRNA levels
can be explained by the TSS-straddling sequence alone. All predictive models
do not use the whole gene sequence as input but only the portion straddling TSS,
which involves numerous regulatory and transcriptional processes. In particular,
the region preceding the TSS contains the promoter, a region targeted explicitly
by transcription factors, elements responsible for the final quantity of mRNA
produced. The data used in this model are inputDNA as input and labelExprMouse,
labelExprHuman, labelGeneGlio, and labelGeneLung as output.

Figure 4.1 shows the architecture of the DNAPerceiver. The model is com-
posed of two distinct flows: one with asymmetric attention as in the original
Perceiver model [146], and another with a convolutional step inspired by the
Enformer model [14]. The asymmetric attention reduces the complexity of the
attention from O(n2) to O(n×m) where n is the length of the input sequence,
and m is a hyperparameter defying the latent space dimensionality. The model can
attend to long sequences and condense their semantic information within a tight
latent space. The convolutional step extracts another representation of the same
DNA sequence and is then used to query the latent space in the final decoding stage.
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Figure 4.1: DNAPerceiver architecture. It is based on the Perceiver IO model [145].
The upper flow represents the asymmetric attention that distills the sequence in a
smaller latent space, where learnable arrays attend to all the input sequences and
refine their representations with self-attention and feed-forward networks. The
lower flow depicts the decoding stage of the Perceiver IO, where instead of using
learnable vectors like in the original model, we use, as the final query, the same se-
quence processed by a convolutional pipeline inspired by the Enformer model [14].
In this figure, Q,K,V stands for Query, Keys and Values as in typical Transformer
architecture, PE is the Positional Encoding, Conv1D is a 1-dimensional Convolu-
tion and RConvBlock is a 1D Convolution with a residual connection. The first
Convolutional layer is applied to the one-hot encoded version of the sequence,
as all previous model of literature, while the upper part of the model embeds the
one-hot vectors into learnable embedding vectors through linear projections, as
typical Transformer architecture requires.

Therefore, while our model still leverages a convolutional step, it takes more
advantage of the recent advancements of attentive architectures, i.e. the Perceiver,
that have originated from the original Transformer model. Transformers are a class
of deep learning models, first introduced by Vaswani et al. [306], that attained
substantial breakthroughs in natural language processing and computer vision.
Specifically, they consist of attention blocks that aggregate information from the
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entire input sequence by computing a weighted sum across the representations
of all other tokens for each sequence token. Since each token directly attends to
all other positions in the sequence, they allow for a much better information flow
between distal elements, in contrast with convolutional layers, which may require
many successive layers to increase the receptive field [306].

These methods were recently applied to model mRNA sequences. However,
given the quadratic complexity of attention O(n2), the length of the input can
explode quadratically, rendering it infeasible to encode sequences of more than a
few thousand letters. For this reason, our method is based on the Perceiver [146],
a model that builds upon Transformers but scales to hundreds of thousands of
inputs, as it leverages an asymmetric attention mechanism to distill inputs into a
tight latent bottleneck iteratively. Then, the latent arrays go through self-attention
blocks to refine their representation and potentially other asymmetric attention
layers before getting averaged to obtain the logits for the task at hand.

Specifically, we use the Perceiver IO [145], which improved the decoder
capabilities of the model by adding a final decoding stage. This stage acts as a
query on the latent arrays, allowing the model to produce outputs of arbitrary size
and semantics, and deal with diverse domains without sacrificing the benefits of
deep, domain-agnostic processing.

In our implementation, however, we introduce substantial modifications con-
cerning the Perceiver IO architecture. Firstly, instead of learning a different set of
output arrays for the decoding stage, we use the same InputDNA sequence after
being processed by a Convolutional step. This step consists of multiple Conv lay-
ers, Residual connections, and Attention Pooling layers inspired by the Enformer
model [14]. Secondly, another difference is that our model in the decoding stage
also considers the processed latent arrays by applying a final head that computes
their average and uses them as final logits. The processing is similar to that of the
original Perceiver model. However, in our case, it is fused with the final decoding
mechanism proposed by the Perceiver IO.

Hence, in our architecture, the TSS-straddling or the protein sequence given in
input is processed twofold: as learnable vectors for the perceiver flow, where the
asymmetric attention is applied with the latent arrays, and as one-hot encoding
vectors fed to the convolutional step. After embedding the input letters, we also
add a learnable Positional Encoding, initialized with a sinusoidal function as in
the original Transformer model to deal with positions in the asymmetric attention.

Latent arrays are initialized with random numbers from a normal distribution
with mean 0 and variance 1, while the inputDNA is represented with one-hot
encoding vectors, applied to the Convolutional step, and linearly projected into
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embedding vectors for the attention path. Moreover, mRNA half-life features are
injected in both flows: they are appended to the latent arrays and the convolutional
step in the final feature representations.

In the DNAPerceiver configuration, we predict the mRNA level for both
human cell-line and mouse data, and we evaluate our model on the Xpresso
dataset, comparing it with other similar methods and Xpresso itself. Further, we
applied the DNAPerceiver model to predict mRNA and protein levels in human
high throughput sequencing data. As discussed in the Dataset paragraph, we
take the protein labels from two real-human datasets, ending with 10529 pairs of
labels for Lung cancer (labelProtLung) and 10280 pairs of labels for glioblastoma
(labelProtGlio). In this configuration, we output two predictions for labelGene
and labelProt, mRNA and protein levels, respectively, for both datasets.

Implementation details

To represent the A, T, C, and G letters, we use one-hot vectors, and for the
perceiver flow, we linearly project them to learnable vectors of dimensionality 32.
In addition, we add the letter P as padding. To represent letter positions, we employ
learnable positional encodings initialized in a standard sinusoidal fashion[306].
We use 128 latent learnable arrays with a dimensionality of 128 each, constituting
the dimensionality of the following self-attention layers. The number of heads in
asynchronous attention is set to 1, while self-attention is set to 8. The attention
over the input is computed by considering only valid letters and masking the rest.
Feed-forward layers have a dimensionality of 256 and GELU nonlinearity. The
depth of the Perceiver, the number of layers of asynchronous attention followed
by self-attention, is set to 1. For the convolutional query flow, we adopt a similar
strategy as Enformer[14] using the first layer of Conv1D with a kernel size of
15, channel dimensionality of 64 and Attention Pooling with a pooling size of 12.
Subsequent convolutional layers, forming the Conv tower, have a kernel size of 5
and attention pooling size of 6. Each Conv layer applies GELU nonlinearity and
is followed by a residual connection.

The length of the InputDNA sequence is set to 10500, taking the majority part
from the promoter side and less from the actual gene, specifically considering 7000
base pairs before the TSS and 3500 after the TSS. We apply dropout throughout the
model before each linear projection and attention layer, with a keep probability of
0.8. We train our model using ADAM[368], a batch size of 128, and we follow the
learning rate scheduling strategy of [306] with a warmup equal to 8000 iterations.
We apply a weight decay of 0.2 and an early stopping strategy to avoid overfitting.
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We found it helpful to use the Tanh activation for our final predicted scores only
in this configuration and when applied to Xpresso mRNA levels. In the end, we
weighted the loss contribution using a weight of 10 for the mRNA.

ProteinPerceiver architecture
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Figure 4.2: ProteinPerceiver architecture, where input is the protein sequence and
output is the protein level.

Figure 4.2 shows the ProteinPerceiver model, which aims to measure how
much protein levels depend on the protein sequence. The main differences with
respect to the DNAPerceiver are the input and output configuration. Here the
input is the protein sequence and the output is the protein level. Although the
mRNA level prediction task is debated within the scientific community, to the
best of our knowledge, there are no publicly available models for protein level
prediction using protein sequences. In the last decade, the quantification of mRNA
levels has been available in large quantities. Instead, extracting and quantifying
proteins is more recent and less mature than mRNA extraction and quantification
techniques. Protein quantification is what scientists are most interested in biolo-
gically. However, these techniques are currently more expensive, limiting data
availability. Moreover, the mRNA level quantification can evaluate more than
20000 protein-coding genes versus approximately 2 to 8 thousand proteins for
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protein quantification. Unfortunately, given the experiments’ novelty, no compar-
ison model in the literature is available. The input consists of inputProtein and
labelProtGlio and labelProtLung as output.

We match protein sequences and proteomics labels available, assembling a
total of 10430 protein sequences for Glioblastoma and 10699 for Lung Carcinoma
with corresponding proteomic labels.

Differently from the DNAPerceiver setting, here we only adjust the dropout
keep probability to 0.7 and the attention pooling size in the convolutional query to
10 in the first layer and 5 in the following ones. Moreover, we set the maximum
length of the protein sequence to 6000 and the final weight of the MSE loss to
100 for Lung data and 3000 for Glioblastoma data. We optimize the model using
Lamb[363], a learning rate of 0.0005, and a Cosine Annealing schedule strategy
with 8000 steps of warmup.

Protein&DNAPerceiver architecture

The ProteinPerceiver model receives the protein sequence as input to predict
protein levels. However, the protein level is determined by the protein sequence
and by regulatory, transcriptional, and epigenetic factors. Although considering all
regulatory processes is not straightforward, in this paragraph, we have evaluated
the combined effect of the protein and the TSS-straddling sequence to predict the
protein levels. The model simultaneously uses inputDNA and inputProtein and
outputs labelProtGlio and labelProtLung.

TSS-straddling and protein sequences are matched together when both are
available from the Xpresso dataset[1] and the protein sequence dataset, ending
up with a total of 9815 triplets gene-protein-labels for Lung Carcinoma and 9534
triplets for Glioblastoma.

Explicitly, our model deals with two different input sequences, one for the
Perceiver flow and one for the Convolutional query. In addition, we investigated
the use of the input in an alternate manner: when the TSS-straddling sequence
is in input to the Perceiver, we use the protein sequence as a query, and vice
versa, with protein as the perceiver input, we use the TSS-straddling for the query
computation. The Results paragraph shows that the best version differs depending
on the data and the prediction. The maximum length of the protein sequence is set
to 6000, while the DNA sequence length is set to 8000. If not specified, we kept
the same hyperparameters of the DNAPerceiver configuration.

A summary of the architecture names, prediction tasks, input, and outputs is
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reported in Table 4.1.

Model Tasks Input Output

DNAPerceiver mRNA levels InputDNA labelGene
DNAPerceiver mRNA&protein levels InputDNA labelGene&labelProt
ProteinPerceiver protein levels InputProt labelProt
DNA&ProteinPerceiver protein levels InputDNA&InputProt labelProt

Table 4.1: Summary of the different configurations of our model depending on the
prediction task and the input-output setting.

4.1.3 Experimental evaluation
This paragraph discusses the results obtained and the comparison with the state-
of-the-art approaches.

Results on mRNA level prediction using Xpresso’s labels

In this setting, DNAPerceiver was trained on the Xpresso sequences and their
labels, aiming to predict the mRNA level, both from mouse and human organ-
isms (labelExprMouse and labelExprHuman). We follow the split of the original
dataset[1], thus obtaining 16377 genes for training and 1000 genes for both valid-
ation and test set. As shown in Table 4.2, DNAPerceiver performs better than the
Xpresso method in terms of r2 in human and mouse data. In human cell-line data,
it reaches an r2 of 0.62, which, compared to the 0.59 of the Xpresso model, gains
0.03 points of r2.

The basenji method has a similar mRNA level prediction task to the one
presented in this work. However, a direct comparison cannot be made as Basenji
uses Cap Analysis Gene Expression (CAGE) input data which are not available
for our dataset (Xpresso’s dataset released the sequences but not the CAGE
information). However, under his experimental conditions, Basenji reaches a
Pearson correlation coefficient ranging from 0.138 to 0.777, depending on the
genes considered. These values would translate into a coefficient of determination
r2 between 0.019 and 0.604. In this context, the DNAPerceiver model gets
consistent results.

Results on mRNA and protein levels

In this configuration, DNAPerceiver is trained on inputDNA (Xpresso sequences)
and predicts the labels from the Lung and Glioblastoma datasets for mRNA and
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Model mRNA r2

Xpresso [1] human data 0.59
Xpresso [1] mouse data 0.71

DNAPerceiver human data 0.62
DNAPerceiver mouse data 0.72

Table 4.2: Results on the test set of Xpresso dataset in predicting mRNA levels of
cell-line data. The input is the InputDNA sequence, and the output is the mRNA
level, expressed with the coefficient of determination r2.

protein levels (labelGeneLung, labelGeneGlio, labelProtLung, and labelProtGlio).
Table4.3 reports the results. High-throughput sequencing data from human tissues
is much more complex than data obtained from cell lines. Indeed, the cell lines are
systematically obtained in the laboratory to have a controlled context and genetic
variability as small as possible between the cells. By contrast, the sequencing data
from tissues (tumor tissues, too) has a high genetic variability as a multiplicity of
regulatory factors between cells and tissues are present. Given the noisy nature of
high throughput sequencing data, its mRNA level prediction is not comparable
to that of a cell line culture, but it reaches 0.181 of r2. Furthermore, our focus
is to predict the protein level using only the InputDNA sequence. As a result,
our model can predict the protein levels achieving 0.161 of r2, demonstrating its
capability to perceive the direct connection between the InputDNA sequence and
its corresponding protein level.

Model mRNA r2 proteomics r2

DNAPerceiver Lung 0.181 0.161
DNAPerceiver Glioblastoma 0.150 0.026

Table 4.3: Results on Lung and Glioblastoma data in predicting mRNA and
protein level. The input is inputDNA, taken from Xpresso[1] publication, while
predicted labels for mRNA and protein levels are labelGeneLung, labelGeneGlio,
labelProtLung, and labelProtGlio. Results are the average of the k-fold validation
method with k equal to 10.
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Results on protein level using protein sequence as input

Table4.4 reports the result of our model applied to protein sequence as input.
In this configuration of our model, named ProteinPerceiver, the input consists
of the protein sequences, as explained in the Datasets paragraph in the material
and methods paragraph. The aim is to predict the protein level given the protein
sequence, a peculiarly complex task, as discussed later in the next paragraph. The
obtained outcome varies depending on the data: for Lung data, we found that
predicting protein levels from the protein sequence is more complex, achieving a
r2 of 0.085, comparing the 0.161 obtained from the InputDNA. Nonetheless, for
Glioblastoma data, our ProteinPerceiver can score a r2 of 0.028 for protein levels,
which is slightly better compared to 0.026 obtained by the DNAPerceiver.

Despite the impact of data quality and prediction task complexity on the results,
our model can still capture a part of the relationship between the protein sequence
and its corresponding protein level.

Model proteomics r2

ProteinPerceiver Lung 0.085
ProteinPerceiver Glioblastoma 0.028

Table 4.4: Results in predicting protein levels from the protein sequence. The
input is InputPROT, while predicted labels for protein levels are labelProtLung
and labelProtGlio. Results are the average of the k-fold validation method with k
equal to 10.

Results on protein levels using TSS-straddling and protein sequences as input

We wanted to investigate further the model’s capabilities with a peculiar config-
uration, in which we give as input both the TSS-straddling (InputDNA) and the
protein sequence. Our model’s design facilitates this accomplishment, already
treating the input in a double structure: one for the perceiver flow and one for
the convolutional query. Therefore, the protein sequence was input to the per-
ceiver and the InputDNA to the convolutional query and vice-versa. We report
the results in Table4.5. In this configuration, performances also depend on the
specific data: for Lung data, surprisingly, the use of both inputs does not improve
the total performances of the model, reaching 0.141 of r2 compared to the 0.161
obtained using only InputDNA sequence. On the contrary, using both inputs
slightly improves the results on Glioblastoma data, achieving 0.031 of r2.
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Model proteomics r2

Protein&DNA Perceiver Lung 0.141
Protein&DNA Perceiver Glioblastoma 0.031

Table 4.5: Results in predicting protein levels from both the DNA sequence and
the protein sequence used as inputs. The input is InputPROT and inputDNA, and
the predicted labels for protein expression are labelProtLung and labelProtGlio.
Results are the average of the k-fold validation method with k equal to 10.

4.1.4 Discussion
In regards to predicting mRNA levels from the sequence upstream and downstream
of the TSS (thus including part of the promoter and part of the gene), DNAPer-
ceiver shows results superior to Xpresso in the case of the human cell lines and
murine samples. Unlike the Xpresso model, the DNAPerceiver model exploits
the self-attention mechanism to predict the mRNA levels. Having the same input
sequence size and output levels as Xpresso, the DNAPerceiver model achieves
superior results since long-range interactions between the most distant regions
of the promoter and the gene sequence are fully exploited in the model and not
limited by the size of the convolutional kernel. Moreover, as can be expected,
the prediction of mRNA levels in cell lines achieves better results than mRNA
level prediction in tumor samples. This aspect could be explained by the different
boundary conditions of the two situations. In the first case, the mRNA expression
is controlled to ensure the reproducibility and stability of the cell lines. In the
second case, the intrinsic samples’ variability cannot be limited and pathological
conditions profoundly alter the biological context. Since no comparable studies in
predicting protein expression levels are available, more distant works that predict
protein expression are described. In particular, Barzine et al. [22] purpose is the
imputation of unquantified proteins exploiting mRNA expression data. Indeed,
it does not answer whether it is possible to predict protein expression starting
from the gene sequence. In detail, mRNA expression values are known in the
literature to be predictive of protein expression values, as there is often a positive
correlation between the mRNA and its protein expression. Barzine et al. also
consider the variability of the same protein in different samples (e.g., people) based
on mRNA expression variability. As innovative as it is, Barzine et al. answer a
very different question, namely quantifying the expression values of those proteins
whose mRNA value is known. Fernandes et al. [92] aim to predict the expression
of proteins using the encoding of their codons. However, the prediction was made
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for Escherichia coli from two datasets with a limited number of proteins. The
first one contains the expression levels of two proteins, a DNA polymerase, and a
single-chain antibody, for 55 codon encodings. The second one contains the level
of a green fluorescent protein produced with 154 different codon encodings. The
main limitation of Fernandes et al.’s work is the number of proteins quantified
based on the specific sequence detected in the sample. Moreover, it is based on the
correlation between the levels of the green fluorescent protein and the free energy
of the protein itself. Although the purpose is similar to the Perceiver, there is no
way to make a direct comparison with our work.

Besides the improvement in mRNA level prediction, the main novelty of this
work is the first adoption of the Perceiver architecture for gene expression, and
the prediction of protein levels from the TSS and protein sequences. This aspect
is doubly challenging: 1. Protein extraction and quantification techniques have
emerged recently, so data availability still needs to be improved compared to
mRNA datasets; 2. The protein sequence has target regions for post-translation
regulators; however, the promoter region is not used as input in the ProteinPerceiver
model. It is noted that the prediction of protein levels is considerably lower than
mRNA ones, whether the prediction exploits the TSS or the protein sequence.
The complexity of the problem can explain this phenomenon. The protein level
is influenced by notable post-transcriptional and post-translational regulatory
phenomena (e.g., ubiquitination), which are not fed to the models. Moreover,
the TSS sequences (composed of the promoter and a part of the gene) have a
greater predictive power of the protein level than the protein sequences. This
behavior could depend on the presence of the promoter. Indeed, the promoter is
the region that favors the expression regulation (both of genes and, therefore, of
proteins), and it is responsible for interacting with transcription factors. When
the model is trained simultaneously with the TSS and the protein sequence, the
predictive power of protein level increases; however, it remains lower than the
prediction of protein levels using only the TSS sequence. In this sense, the TSS
sequence seems more informative than the protein one. Although the protein
expression level prediction is critical, the expression value of a protein compared
to the others is crucial too. In this sense, the predictive power of the proposed
model can be of interest to scientists. Indeed, 60% and 68% (globally and in
medulloblastoma, respectively) of the most highly expressed proteins are predicted
as expressed. In the end, the main reason for the noisy result could be attributed
to post-transcriptional regulatory processes which are widely known as crucial
players in protein expression.
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Chapter 5

Conclusions

The goal of the research activities I carried out during my Ph.D. period was to
develop new deep learning architectures based on Transformers and attention
mechanism, improving artificial intelligence technologies. Specifically, I focused
my efforts towards the replication of some fundamental human abilities that
connects vision and language, such as describing in natural language a given
visual stimuli, called image captioning, or matching images and texts, called
cross-modal retrieval. Connecting vision and language motivated most of the
works presented in the previous chapters, and it has been tackled by addressing the
mentioned two main research tasks, along with some variants such as novel object
captioning and visual question answering. Moreover, in the end, I expanded the
scope of attention mechanism to the languages of life: the DNA and the protein
sequences, with the goal to predict and discover knowledge from these fascinating
life codes.

In the first part, we addressed the problem of image captioning by reporting a
thorough quantitative and qualitative analysis of the literature on the task, and by
proposing new deep neural networks based on Transformer architectures that have
achieved new state-of-the-art results. We also introduce a solution for one of its
variants, novel object captioning, that shows superior performances.

In the second part, we instead directed our attention to cross-modal retrieval,
another important task that effectively combines vision and language by matching
images and texts. In this regard, we have first tackled the problem by exploiting
fully-attentive paradigm, devising an aggregation function that condenses informa-
tion from a set of elements. Then, we have addressed the task by introducing an

Transforming vision and language with attention 161



CHAPTER 5. CONCLUSIONS

efficient Transformer architecture making use of distillation in order to fill in the
gap between effectiveness and efficiency. Furthermore, we have also investigated
visual-semantic models for artistic and cultural heritage domains, which represents
more complex and challenging scenarios.

Finally, in the last part of the thesis we addressed the gene and protein expres-
sion, other compelling tasks associated with different languages: the DNA and
the protein sequences. On this matter, we devised a method based on Perceiver
architecture that achieved remarkable results.

In the following, I summarize the contributions made by this thesis and draw
the final conclusions on the results achieved so far.

Image captioning and novel object captioning

Connecting vision and language by creating deep learning systems capable of
automatically describing images in natural language is one of the major challenges
in artificial intelligence. In this context, we addressed the image captioning task
from different perspectives.

Firstly, we claimed that fully-attentive architectures represent the best perform-
ing tool available today to address vision and language tasks. To this end, we
presented one of the first Transformer-based architectures for image captioning
which encapsulates a multi-layer encoder for image regions and a multi-layer
decoder which generates the output sentence. To exploit both low-level and high-
level contributions, encoding and decoding layers are connected in a mesh-like
structure, weighted through a learnable gating mechanism. Noticeably, this con-
nectivity pattern is unprecedented for other fully-attentive architectures. Moreover,
our visual encoder integrates relationships in a multi-level fashion between image
regions by exploiting learned a priori knowledge, modeled via persistent memory
vectors. We demonstrated that our solution surpasses all previous methods for
image captioning, reaching a new state of the art on the online COCO evaluation
server and ranking first among all other published proposals. As a complementary
contribution, we validated the performance of our model also when describing
novel objects not present in the training set.

Secondly, inspired by knowledge distillation technique, we investigated the use
of the mean teacher learning paradigm applied to the image captioning task. We
presented CaMEL, Captioner with Mean tEacher Learning, a novel Transformer-
based network that is trained with the interaction of two different language models
that learn from each other through knowledge distillation and model averaging.
Experimentally, we validated our method with different knowledge distillation
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strategies and visual feature extractors, surpassing the current state of the art
on the COCO dataset without using external data and pre-training strategies.
Furthermore, CaMEL achieves similar performance to other recent proposals that
make use of large-scale pre-training, while being much smaller in terms of number
of parameters.

Finally, driven by the desire to apply captioning systems to more real-world
scenarios, we have presented a fully-attentive approach for novel object captioning
that learns to select and describe unseen visual concepts. Our method is based on
a class-independent region selector and an image captioning model trained with
a differentiable grid beam search algorithm that generates sentences with given
constraints, in an end-to-end fashion. Experimental results have shown that our
model achieves a new state of the art on the held-out COCO dataset, demonstrating
its effectiveness in successfully describing novel objects.

Cross-modal retrieval

While image captioning methods combine vision and language in a generative
manner, cross-modal retrieval architectures build common representations to
connect the two domains and retrieve textual elements given visual queries, and
vice versa. In this context, we addressed the problem either by using supervised
solutions or semi-supervised approaches exploiting the knowledge learned on
large-scale datasets to retrieve items on a different domain, such as that of art and
cultural heritage.

Regarding the supervised setting and motivated by the fact that aggregating
features has always played a critical role in deep learning architectures and retrieval,
we proposed a novel aggregation function based on a variant of the cross-attention
mechanism, that reduces sets or sequences of elements into a single compact
representation in a learnable fashion. We specifically tailored our method for
cross-modal retrieval and experimentally demonstrated that our approach achieves
better performances when compared to other commonly used reduction functions.
Furthermore, for the typical supervised setting we presented an efficient and
effective architecture for cross-modal retrieval. Specifically, we proposed to learn
an alignment score by independently forwarding the visual and the textual pipelines
using a state-of-the-art Vision-Language Transformer as a backbone. Then, we
used the scores produced by the alignment head to learn a visual-textual common
space, which can produce easily indexable fixed-length features. Specifically,
we approached the problem using a learn-to-rank distillation objective, which
empirically demonstrated its effectiveness over the standard hinge-based triplet
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ranking loss to optimize the common space. The experiments conducted on COCO
confirmed the validity of our approach. The results demonstrated that this method
helps fill the gap between effectiveness and efficiency, enabling this system to be
deployed in large-scale cross-modal retrieval scenarios.

On a different setting, we tackled the task of building visual-semantic retrieval
approaches for the cultural heritage and digital humanities domain. To this aim, we
proposed a semi-supervised approach which does not rely on labelled data on the
artistic domain and translates the knowledge learned on ordinary visual-semantic
datasets to the more challenging case of artistic data. After introducing Artpedia,
a novel dataset for the task composed of illustrations and textual descriptions
coming from historical manuscripts, we validated the proposed strategy through
extensive experiments and analyses. Moreover, our method also discriminates
between visual and contextual sentences of the same image.

Gene and protein expression

Since Transformer architectures are well suited to deal with sequential data, we
also investigated their use applied to different life languages, DNA and proteins,
aiming to predict the gene and protein expressions. Various papers have addressed
mRNA level prediction in the literature, which mainly includes convolutional
or long short-term memory networks. We instead presented three Perceiver-
type architectures for mRNA levels prediction on cell lines and high-throughput
human samples. Furthermore, we introduced a novel task, which consists on the
prediction of protein levels from the TSS-straddling and protein sequences. The
results have shown the advantages of our architecture in predicting mRNA levels
compared to competitors. On the other hand, protein level prediction benefits
more from the TSS-straddling sequence than the protein one. This aspect could be
explained by the presence of the promoter region in the TSS-straddling sequence.
Although various experimental conditions have been considered, other biological
post-transcriptional and post-translation regulations can be included in the models
to enhance predictions.

Future works and open problems
The Transformer revolution has undoubtedly brought astonishing advancements
and breakthroughs in artificial intelligence over the last few years. For sure this
technology will contribute to new improvements in the following years and in
many machine intelligence applications. All disciplines employing some sort of
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language to express rules, relations or functions will be affected by this revolution,
from NLP to genomics, finance and also vision.

Large language models (LLMs), made by Transformer building blocks, are
unlocking new possibilities in areas such as search engines, natural language
processing, healthcare, robotics and code generation. As an example, the recent
ChatGPT released by OpenAI in December 2022 impressed the entire world due to
its impressive capability in generating compelling meaningful texts given natural
prompts and commands. Another worth mentioning breakthrough is AlphaFold,
made by DeepMind in 2020, which predicts with extremely high accuracy the
3D protein structure of hundreds of millions of proteins, given only its amino
acid sequence, a century-long problem in biology. We will surely witness other
incredible uses of this technology in the future.

Regarding Image captioning and cross-modal retrieval, they are intrinsically
complex challenges for machine intelligence as they integrate difficulties from
both Computer Vision and NLP. However, many open challenges remain since
accuracy, robustness, and generalization results are far from satisfactory. Similarly,
requirements of fidelity, naturalness, and diversity are not yet met. Specifically, we
can trace three main directions for the image captioning field. Firstly, procedural
and architectural challenges: since image captioning models are data greedy,
pre-training on large-scale datasets, even if not well-curated, is becoming a solid
strategy. In this regard, promoting the public release of such datasets will be
fundamental to fostering reproducibility and allowing fair comparisons. The
growing size of pre-training models is also a concern, and the community will
need to investigate less computationally-intensive alternatives to promote equality
in the community.

Secondly, generalization, diversity and long-tail concepts: while pre-training
on web-scale datasets provides a promising direction to increase generalization and
promoting long-tail concepts, specializing in particular domains and generating
captions with different styles and aims is still among the main open challenges. Al-
though we discussed some attempts to encourage naturalness and diversity, further
research is needed to design models that are suitable for real-world applications.
In this sense, models which can deal with long-tail concepts or image captioning
variants such as novel object captioning offers a valuable promise of modeling
real-life scenarios and generalizing to different contexts.

Thirdly, design of trustworthy AI solutions: due to its potential in human-
machine interaction, image captioning needs solutions that are transparent and
acceptable for end-users, framed as overcome bias, and interpretable. Since most
vision-and-language datasets share common patterns and regularities, datasets
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bias and overrepresented visual concepts are major issues for any vision-and-
language task. In this sense, some effort should be devoted to the study of fairness
and bias: two possible directions entail designing specific evaluation metrics
and focusing on the robustness to unwanted correlations. Further, despite the
promising performance on the benchmark datasets, state-of-the-art methods are
not yet satisfactory when applied in the wild. A possible reason for this is the
evaluation procedures used and their impact on the training approaches currently
adopted. In this sense, the design of appropriate and reproducible evaluation
protocols and insightful metrics remains an open challenge. Finally, since existing
image captioning algorithms lack reliable and interpretable means for determining
the cause of a particular output, further research is needed to shed more light on
model explainability, focusing on how these deal with different modalities or novel
concepts.

Publications and achievements
The efforts presented in this thesis have resulted in publications in international
conferences and journals. Among all the others, the work on image captioning
adopting fully-attentive paradigm, called Meshed-Memory Transformer reported
in Sec. 2.2, has been accepted at the IEEE/CVF Conference on Computer Vision
and Pattern Recognition 2020, and is among the most cited paper of the task
in recent years. Also, the comprehensive survey on image captioning presented
in Sec. 2.1, has resulted in a journal paper on IEEE Transactions on Pattern
Analysis and Machine Intelligence. The works on cross-modal retrieval and
cultural heritage, as well, have resulted in several publications which have been
widely appreciated by the community. Some of the other presented results, instead,
are currently under revision in major conferences or journals.

As a complementary result of this thesis, I have contributed together with
other colleagues, to the development of a PyTorch library called Speaksee, spe-
cifically designed for visual-semantic tasks. It contains utility functions and
re-implementations of state-of-the-art models for different tasks that combine
vision and language, such as image captioning, cross-modal retrieval, and visual-
question answering. It is worth noting that most of our first works that integrate
visual-semantic techniques were based on this library.

As a final note, I would like to thank all my colleagues from the AImagelab
and the NVIDIA AI Technology Center, together with my tutor and supervisors
for the advice and opportunities, without which this work would not have been
possible.
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