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Abstract

Artificial Neural Networks (ANNs) have been established as the centrepiece
of contemporary Artificial Intelligence, steadily raising the bar for what
can be accomplished by computer programs thanks to their effectiveness
and versatility. While they shine especially for their capability for gener-
alisation, these systems impose the strict requirement that their training
procedure should insist on independent and identically distributed data. In
contrast with human intelligence – which seamlessly allows us to acquire
knowledge continuously – ANNs forget previously acquired knowledge
catastrophically whenever their training data distribution changes over
time. Such a fundamental limitation prevents the development of intelli-
gent systems capable of quick adaptation, crucially tying model updates
to a cumbersome offline retraining procedure.

Continual Learning (CL) is a rapidly growing area of machine learning
whose aim is counteracting the catastrophic forgetting phenomenon in
ANNs through purposefully designed approaches. Among these, a promin-
ent role is played by Rehearsal-Based Methods (RBM), which operate by
storing few pieces of previously encountered data for later re-use, thus
striking a favourable balance between efficacy and efficiency.

This thesis encompasses the contributions to CL made by the candidate
during his doctoral studies. Starting from a review of recent literat-
ure, it highlights the relevance of RBMs and shows that the decades-old
Experience Replay baseline is competitive with current state-of-the-art
approaches when carefully trained. Subsequently, this manuscript focuses
on the proposal of novel RBMs, which expand on the basic replay formula
by leveraging knowledge distillation ([X-]DER), implicit dynamic adapt-
ation of network capacity (LiDER) and geometric regularisation of the
model’s latent space (CaSpeR). Extensive experimental analyses highlight
the merits of the proposed approaches, shedding light on the specific
properties they confer on the in-training model.

Finally, this thesis investigates the applicability of RBMs beyond the
typical incremental classification setting. Namely, a novel CL experi-
mental scenario is introduced to provide more realistic evaluations w.r.t.
common benchmarks in literature, an investigation is presented concern-
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ing the viability of CL when limited supervision is available, a thorough
study is conducted on the interplay between pre-training and CL. As a
result, architectures and best practices are introduced that bridge the gap
between standard CL evaluations and real-world applications.



Sommario

Le reti neurali artificiali (Artificial Neural Networks – ANN) hanno acqui-
sito un ruolo di massimo rilievo nel contesto delle applicazioni contempo-
ranee di Intelligenza Artificiale, portando ad un incremento costante delle
potenzialità dei programmi informatici grazie alla loro efficacia e versa-
tilità. Benché eccellenti nella loro capacità di generalizzazione, queste
richiedono strettamente che il loro addestramento sfrutti dati indipendenti
e identicamente distribuiti. Mentre l’intelligenza umana permette natu-
ralmente di acquisire nuovi concetti in maniera incrementale, le ANN
dimenticano la conoscenza pregressa in modo catastrofico ogniqualvolta
intervenga una variazione nella distribuzione dei dati di addestramento.
Questa limitazione fondamentale impedisce lo sviluppo di sistemi intelli-
genti capaci di adattarsi rapidamente al contesto in cui operano e vincola
l’aggiornamento dei modelli a onerose procedure di riaddestramento.

L’apprendimento continuo (Continual Learning – CL) è una branca in
rapido sviluppo del machine learning che si prefigge come obiettivo lo
sviluppo di architetture volte a compensare la dimenticanza catastrofica
nelle ANN. Tra le soluzioni proposte, un ruolo di primaria importanza
è rivestito dai metodi rehearsal (Rehearsal-Based Methods - RBM), che
evitano la necessità di riaddestramento mediante l’immagazzinamento e
il riutilizzo una modica quantità di dati pregressi, individuando così un
compromesso ottimale tra efficacia e efficienza.

Questa tesi raccoglie i contributi scientifici nell’ambito del CL prodotti
dal candidato nel corso delle sue attività di dottorato. Inizialmente, si pre-
senta un esame della letteratura recente, evidenziando la rilevanza degli
RBM e mostrando che il noto approccio Experience Replay – proposto per la
prima volta negli anni ’90 – resta competitivo rispetto allo stato dell’arte
quando si assumono opportuni accorgimenti operativi. Successivamente,
il lavoro si focalizza sulla proposta di nuovi RBM che sfruttano i principi
di distillazione di conoscenza ([X-]DER), adattamento dinamico implicito
della capacità del modello (LiDER) e regolarizzazione geometrica dello
spazio latente del modello (CaSpeR). Gli approcci proposti sono convalidati
mediante estese analisi sperimentali, volte anche a mettere in risalto le
specifiche proprietà da essi conferite al modello.
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La parte finale di questa tesi presenta analisi dell’applicabilità di RBM
a scenari che superano il tipico assetto sperimentale di classificazione
incrementale: un nuovo esperimento volto a perseguire una modellazione
più realistica dei cambi di distribuzione nei dati di ingresso, uno studio
sulla applicabilità di CL in regime di supervisione limitata e una analisi
sull’interazione tra CL e il pre-addestramento. Questi studi portano allo
sviluppo di architetture e prassi operative volte a colmare il divario tra la
letteratura e la applicazione di sistemi CL ad applicazioni realistiche.
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Chapter 1

Overview

1.1 Catastrophic Forgetting

Among the defining traits of human intelligence is the capacity to seam-
lessly and continually acquire new knowledge about the surrounding
world; the human brain allows us to not only master novel and difficult
tasks (e.g., driving cars), but also to do so while remembering what was
previously learnt (e.g., riding a bicycle) without experiencing significant
inference or forgetting. Artificial Neural Networks (ANNs) have recently
come to represent an invaluable tool for allowing computer systems to
perform similarly complex tasks on a variety of domains [56, 158, 170, 70].
We witness an unprecedented proliferation of Artificial Intelligence (AI)
applications, bringing the general public in closer contact than ever with
the quirks and peculiarities of these systems.

One fundamental limitation which clearly breaks the long-standing
parallelism between the human brain and ANNs is the latter’s dramatic
failure on past data when trained on a stream of data whose distribution
changes over time. The seminal studies by McCloskey and Cohen [109]
and Ratcliff [137] highlight that this catastrophic forgetting effect is much
more severe than the gradual forgetting curve observed in human test
subjects [13] and that its root cause lies in the very structure of ANNs,
whose shared set of weights is greedily optimised on current data through
backpropagation (as illustrated in Fig. 1.1.

While initially measured on small and shallow models, catastrophic
forgetting remains fundamentally relevant in modern Deep Neural Net-
works (DNNs) [49]. As it hinders the adaptation to mutating data, this
phenomenon has a major impact on the life cycle of any modern AI applic-
ation required to stand the test of time; developers and engineers must
therefore periodically assess the performance of their deployed models
and possibly carry out very expensive re-training and update procedures.
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Fig. 1.1: Data from Barnes and Underwood [13] and McCloskey and Co-
hen [109]. A comparison between human and ANN performance on a
two-task key-value learning experiment. While the 2nd task is being
learnt, human subjects gradually forget the associations learnt in the 1st
task; the same phenomenon is dramatically faster (catastrophic) in ANNs.

For this reason, the last few years have seen a renewed interest in the
study of forgetting and development of solutions to reduce its incidence.
The corresponding area in Machine Learning (ML) literature, typically
labelled as Continual Learning (CL) [36, 127], has experienced swift growth
in exposure at major AI conferences in recent years (see Fig. 1.2). Fur-
thermore, industrial players also begin signalling strong interest on the
subject, motivated by the possibility to achieve more robust and efficient
operation of Deep Learning (DL) models [152, 74].

While several classes of CL approaches have been studied (a detailed
breakdown will be presented in Sec. 2.5), one of the first proposed and most
straightforward solutions to prevent catastrophic forgetting is given by
Rehearsal-Based CL Methods (RBMs) [137, 143]. These operate by collecting
some of the encountered data in a dedicated memory buffer and later re-
using the gathered information to allow the model to keep training on past
sample distributions. There are several factors making RBMs particularly
appealing: i) Experience Replay (ER) [143, 28] – the simple baseline given
by the repeated optimisation of in-memory items – is extremely easy to
implement and already provides a very robust remedy to forgetting; ii)
RBMs can easily be made to scale by adjusting the memory buffer size;
iii) they are more forgiving to the learner, as the availability of past data
can be used to revert forgetting after it has begun. Still, striving for
effective exploitation of memorised data leads to challenging research
questions concerning the characterisation, updating, management and
usage of replay data.

1The reported statistics were obtained from a filtering of community-sourced CL paper
list available at https://github.com/xialeiliu/Awesome-Incremental-Learning.

https://github.com/xialeiliu/Awesome-Incremental-Learning
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Fig. 1.2: The increase in popularity of CL: Count of CL-themed papers at
major Machine Learning and Computer Vision conferences (left), overall
amount of CL papers in major venues by year (right)1.

1.2 Contributions and Organisation
This thesis encompasses the studies on CL conducted by the candidate
throughout his doctoral studies. The contributions are organised as fol-
lows:

• Part I presents an overview of the CL problem.

– this Chap. 1 provides an overview of the problem of catastrophic
forgetting and briefly introduces CL and RBMs.

– Chap. 2 formalises the CL classification problem, the experi-
mental settings, benchmarks and evaluation metrics used in CL
literature and, particularly, in this thesis. Finally, it presents a
brief overview of the state of the art, with an emphasis on the
approaches that will serve as competitors for the experiments
presented in the following.

• Part II covers the proposal of several novel RBMs, each meant to
address specific challenges in the incremental training of deep
models.

– Chap. 3 initially frames the well-known Experience Replay (ER)
RBM baseline in the context of modern literature. Subsequently,
it highlights some possible pitfalls in the way ER is trained
and proposes architectural modifications to improve its overall
effectiveness.

– Chap. 4 introduces Dark Experience Replay (DER), a novel RBM
that prevents forgetting by leveraging self-knowledge distilla-
tion, while also preserving the simplicity of ER. The chapter
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includes a thorough evaluation of the proposed baseline against
several competitors on multiple CL benchmarks and a detailed
empirical analysis aiming at highlighting the core properties
of the proposed method.

– Chap. 5 re-evaluates DER and highlights some key limitations
concerning its handling of secondary knowledge and its produc-
tion of unified predictions. Consequently, an extended version
of DER, called eXtended Dark Experience Replay (X-DER) is
proposed; an extensive suite of analytical experiments is then
presented, providing an in-depth analysis of the operation of
X-DER.

– Chap. 6 focuses on the uneven availability of input-stream and
replay examples in RBMs and highlights that this determines
overfitting of the latter to the detriment of the learner’s de-
cision boundary. To avoid this, it introduces Lipschitz-Driven
Experience Replay (LiDER), a purposely designed regularisation
term based on Lipschitz-constant regularisation. Through CL
experiments and additional analysis, it is shown that LiDER can
be beneficially combined with state-of-the-art (SOTA) RBMs.

– Chap. 7 highlights that RBMs might fail at producing a disen-
tangled latent space when trained incrementally. This effect
can be averted by introducing a spectral-geometry motivated
loss term called Continual Spectral Regulariser (CaSpeR). This
leads to increased compactness on the latent space of SOTA
RBMs, resulting in improved performance.

• Part III encompasses studies that go beyond typical CL experimental
scenarios, meaning to bridge the gap between the theoretical study
and the application of incremental learning systems.

– Chap. 8 proposes MNIST-360, a novel benchmark in line with
the General Continual Learning (GCL) setting guidelines of [35]
which features no clear task boundaries and requires the learner
to deal with both sudden and gradual input distribution shifts.
It is highlighted that only a small subset of methods in CL
literature (all RBMs) are compatible with this setting.

– Chap. 9 introduces Continual Semi-Supervised Learning (CSSL),
a scenario that relaxes the assumption – hard to meet in prac-
tical scenarios – that annotation all examples in the input
stream can be timely annotated by a human supervisor. Do-
ing so reveals that standard CL approaches are dramatically
hindered and highlights the need for CSSL-specific approaches.
In this regard, a first solution called Contrastive Continual
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Interpolation Consistency (CCIC) is proposed along with an in-
vestigation into the applicability of the previously introduced
LiDER in CSSL.

– Chap. 10 investigates the implication of the commonly adopted
strategy of pre-training ML models when working in CL and
highlights that the pre-training is itself subject to catastrophic
forgetting and jeopardised in later tasks. A solution called
Transfer without Forgetting (TwF) is then proposed to retain
pre-training knowledge and facilitate the transfer of effective
features while the model is trained continuously.

• Finally, Part IV wraps up the thesis by summarising the presen-
ted results and outlining potential future developments of CL and
perspective research directions.



Chapter 2

Technical Background

2.1 Continual Learning Problem
While catastrophic forgetting can be studied in conjunction with any ML
task (e.g., segmentation [22, 189], detection [130, 69], generation [200], cap-
tioning [38], etc.), this thesis focuses on continual classification problems.
Such a choice is in line with the majority of CL literature and allows us
to highlight the key issues of incremental model operation with simple
and easy-to-follow experiments. In the remainder of this manuscript, we
will always use CL to indicate continual learning classification problems
unless otherwise stated.

In CL, a model f with parameters θ is trained on a sequence of T tasks
{T0, . . . , TT−1}. The ith task consists of input-label pairs {x(n)

i , y
(n)
i }

|Ti|
n=1 ⊂

Xi × Yi. While these data-points are i.i.d. within Ti, the overall training
procedure does not abide by the i.i.d. assumption, as the data distribution
changes between tasks. The objective of CL is minimising the risk over
all tasks:

LCL ≜
T−1∑
i=0

E
(x,y)∼Ti

[
L(fθ(x), y)

]
, (2.1)

where L indicates the loss associated with the classification task (e.g., the
categorical cross-entropy) given prediction fθ(x) and ground-truth label
y. While pursuing the optimal solution to Eq. 2.1 – θ∗ = argminθ LCL – the
learner is not given free access to all data: only one task can be learnt
at any given time and with a limited number of observations. To prevent
the performance deterioration on past data associated with catastrophic
forgetting, CL models combine the optimisation of the empirical risk on
the current task Tc with a separate regularisation term LR:

L̂CL ≜ E
(x,y)∼Tc

[
L(fθ(x), y)

]
+ LR. (2.2)

7
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The additional term LR can vary significantly for different models. This
gives rise to distinct classes of CL approaches, which are presented in
detail in Sec. 2.5.

2.2 Continual Learning Scenarios
The definition of the CL classification problem provided in the previous
section is general enough to allow for the formulation of different experi-
mental settings, with varying characteristics and degrees of complexity.
As the field was initially characterised by subtle but critical differences
in the way models were evaluated, early CL works did not allow for a
straightforward comparison of results presented in different papers, even
when referring to the same datasets. A rigorous taxonomy of possible
experimental CL designs was then introduced by Van de Ven et al. [168],
encompassing the three so-called academic scenarios. While this gave
practitioners and researchers a common language for the description of
CL experiments, these settings are often criticised for their failure to
model key aspects of realistic incremental applications [5, 36]. As a result,
additional modern scenarios have been proposed, which are meant to be
more realistic and challenging by imposing further restrictions on what
models are allowed to do while learning. Both kinds of settings will be
covered in detail in this section.

For the sake of comparability with the majority of works in literature,
the novel RBMs proposed in Part II of this thesis are evaluated on the
former standardised settings. Conversely, Part III comprises studies
of non-standard CL settings, possibly described as additional modern
scenarios.

2.2.1 Academic Scenarios
All three academic scenarios in [168] present the model with a supervised
classification problem split into tasks which are observed sequentially.
During each task, the learner can only access a portion of the overall
dataset; the change of task is notified to the model so that specific steps
may be taken prior to moving on to the next task. Depending on the
specific decision function that must be learnt, Van de Ven et al. distinguish
the following:

• Task-Incremental Learning (Task-IL) presents the model with disjoint
classification tasks (i.e., Yi ∩ Yj = ∅, with Yi the set of classes shown
in task Ti) and – upon evaluation – always clarifies the task that
must be recalled. Typically, this means that the model additionally
receives a data-point’s task identity t ∈ J during its forward step, i.e.,
it must learn a task-conditioned classification function f : X ×J → Y .
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Since this facilitates the disentanglement of knowledge belonging
to distinct tasks and easily leads to saturated performance, Task-IL
has been identified as the easiest of the classical scenarios [45, 6].
Still, this setting is particularly relevant for the quantification of
forgetting occurring in the model, as its results are unaffected by
the classifier bias linked to imbalanced data presentation [182];

• Domain-Incremental Learning (Domain-IL) presents all classes to the
model during each task, making the input subject to a task-dependent
transformation. Task identities need not be made available at test
time: all classes are shown during each task and the model must
provide a prediction irrespective of the task it is observing, i.e.,
the model must learn a task-independent classification function f :
X → Y . Domain-IL experiments require the employment of dedicated
datasets either obtained by applying classes of transformations on top
the data-points of classification datasets (e.g., for image classification,
rotations, pixel permutations, etc. applied on top of MNIST [88],
CIFAR [83], etc.) or already comprising of multiple domains (e.g.,
the DomainNet dataset, originally employed for Domain Adaptation
Problems [129]);

• Class-Incremental Learning (Class-IL) consists of a disjoint classifica-
tion problem like Task-IL; however, the task identity is not provided
at test time, meaning that the model must learn a classification func-
tion identifying both the source task and class within it f : X → J×Y .
The learner is thus presented with the additional challenge to incre-
mentally learn a unified classifier [60], which may problematically
lead to the accumulation of bias in favour of the currently seen
classes [182, 3]. As this is regarded as the most difficult and mean-
ingful of the three scenarios [45], it is followed by the majority of
the evaluations in the following of this manuscript.

2.2.2 Novel Scenarios
Although the academic scenarios operate a clear distinction w.r.t. the
problem that will be solved by the online learner, they leave some degree
of freedom regarding crucial factors in the way the experimental setting
is practically constructed. For this reason, novel scenarios have been
proposed which are gaining significant traction in current CL literature.
We list the most relevant proposals in the following:

• Online Continual Learning is generally based on either Task-IL or
Class-IL and introduces the additional requirement that data-points
can only be shown once to the model, on the basis that any real-world
continual learner would never be subject to the same input twice [105,
141, 26]. For this reason, it forbids performing multiple training
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epochs on any task. While this is not problematic for datasets
including a large number of examples per class (e.g., MNIST), it can
lead to underfitting if the opposite is true (e.g., CIFAR-100) [53]. Most
recently, Caccia et al. further proposed an extension of this setting
by requiring that the model should be possibly evaluated at any time
during training (anytime evaluation) [19];

• Task-Free Learning (sometimes also referred to as Data-Incremental
Learning) further expands the Class-IL setting by mandating that
task identities should not be made available even at training time [5,
67, 177, 134, 36, 157]. Similarly to what happens if an incremental
learner is deployed on an in-the-wild stream of data, this setting
allows a task change to occur at arbitrarily at any point in time and
the model is not given the chance to prepare for the task boundary
by carrying out additional operations;

• Data-Free Class-Incremental Learning is also defined on top of Class-
IL, but instead questions the opportunity of storing and replaying
previous examples [193, 161, 99, 47]. This specification is usually
vaguely motivated by alleged privacy concerns and effectively dis-
qualifies all RBMs from evaluation. As the latter consistently achieve
the highest accuracy values in all other settings, this scenario effect-
ively gives practitioners the means to further the study of non-replay
CL methods without focusing too much on performance.

The novel CL settings introduced in Part III of this thesis also go beyond
the academic settings by specifying additional experimental requirements.
Specifically, the General Continual Learning (GCL) setting proposed in
Chap. 8 can be seen as a special case of Task-Free Learning, with the
additional introduction of a concurrent soft domain shift in addition to the
existing hard class shift; the Continual Semi-Supervised Learning (CSSL)
setting proposed in Chap. 9 rejects the hypothesis of full supervision being
available for all data-points on the input stream, limiting annotations to
just a few per class. The experiments in Chap. 10 formally adhere to the
Class-IL and Task-IL, but explicitly assume that the employed models are
pre-trained at the beginning of CL and investigate the consequences of
this hypothesis.

2.3 Continual Learning Benchmarks
This section outlines the main characteristics of the CL benchmarks
used in the remainder of this thesis. We report a brief overview in
Tab. 2.1; unless otherwise stated, all experiments presented in the following
chapters will abide by these specifications, adopt Stochastic Gradient
Descent (SGD) as an optimiser and employ a validation set consisting of
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10% of the training data for the purpose of hyper-parameter tuning. All
of the presented benchmarks refer to image classification tasks, with the
sole exception of S-NTU60, which involves action classification.

• Sequential MNIST (S-MNIST) [168] is obtained by splitting the clas-
sical MNIST image classification dataset [88] into 5 tasks with 2
classes each. While S-MNIST is a simple and well-known bench-
mark, it has been criticised as not fully representative of modern
CV tasks [184, 45]. Each task includes approximately 6000 training
images and 1000 test images;

• Sequential Fashion-MNIST (S-FMNIST) [30] consists of 5 tasks fea-
turing 2 classes each, with 6000 and 1000 28× 28 images per class.
It is based on the Fashion-MNIST dataset [184] which was designed
as a drop-in replacement for MNIST, allowing for the seamless re-
purposing of MNIST-based models on a more challenging benchmark;

• Sequential CIFAR-10 (S-CIF10) [199] is organised in 5 tasks with
2 classes each and 5000 and 1000 32 × 32 RGB images per class
for training and testing respectively, coming from the CIFAR-10
dataset [83];

• Sequential CIFAR-100 (S-CIF100) [199, 138, 28] is obtained by splitting
the CIFAR-100 dataset [83] into 10 consecutive tasks, each comprising
of 10 classes with 500 and 100 32× 32 images each for training and
testing respectively;

• Sequential CORe50 (S-CORe50) [108] is comprised of 50 classes of
common household items pictured at 128× 128 resolution on varying
backgrounds, with around 2400 examples per class. We follow the
SIT-NC protocol described in [108] and organise these classes in 9
tasks, the first of which includes 10 classes whereas the following
ones 5 each;

• Sequential Tiny ImageNet (S-TinyImg) is obtained by splitting the
Tiny ImageNet dataset [163] into 10 tasks with 20 classes each. Each
image comes in RGB at a 64× 64 resolution, each class includes 500
training images and 50 test images;

• Sequential miniImageNet (S-miniImg) [28, 43, 40] is obtained from
miniImageNet [171], a 100-class subset of the popular ImageNet [39]
dataset, split in 20 classification tasks. Each task presents 84 × 84
RGB images out of 5 disjoint classes, each class features 500 and 100
training and test images respectively;

• Sequential CUB-200 (S-CUB200) [44] derives from a sequential split
of the Caltech-UCSD Birds-200 fine-grained visual classification data-
set [174]. This benchmark includes a very limited amount of data,
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with just 30 training and test images per class. For this reason, we
always start from an ImageNet pre-trained model when working on
it in our experiments;

• Sequential SVHN (S-SVHN) derives from a sequential split of the
The Street View House Numbers (SVHN) Dataset [120]. Classes are
not balanced and contain an average of approximately 7300 training
images and 2600 test images;

• Permuted MNIST (P-MNIST) [81] is a Domain-IL classification task
obtained by applying a random pixel permutation on MNIST [88]
images. Each task therefore consists of approximately 60000 training
images and 10000 test images;

• Rotated MNIST (R-MNIST) [105] is a Domain-IL classification task
obtained by applying a random rotation on MNIST [88] images, with
an angle in the [0, π) interval. As in the case of P-MNIST, each task
includes approximately 60000 training images and 10000 test images;

• Sequential NTU-RGB+D-60 (S-NTU60) is obtained by splitting into
tasks the NTU-RGB+D action classification dataset [153]. Each input
point consists of 3D-space coordinates referring to 25 body joints
tracked for 300 frames on up to 2 subjects. We adopt the cross-
subject data-split [153], reserving distinct subjects for train and test
data, resulting in 40091 and 16487 training and validation samples
respectively, i.e., approx. 6600 and 2700 images for each of the 6
tasks (with 10 classes each).

In addition to the ones listed above, we introduce a novel benchmark
called MNIST-360 in Chap. 8. As detailed later, this is also obtained
by transforming the basic MNIST dataset; however, it abides by the
requirements of the newly proposed GCL setting and thus cannot be
applied to any of the academic scenarios.
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2.4 Evaluation Metrics
As CL experiments span multiple tasks, several evaluation metrics have
been proposed in literature to express distinctive aspects of the learning
dynamics. Let ati denote the model accuracy on the ith task after training
on task Tt, the following measures have been defined:

• Final Average Accuracy (FAA) assesses the final average performance
on the overall joint classification problem after learning all tasks
incrementally:

FAA ≜
T−1∑
j=0

aT−1
j , (2.3)

where the
∑

symbol denotes the averaging operation. This measure
provides a compact summary of the trade-off between learning a task
in an incremental manner or doing so jointly by allowing a direct
comparison with the i.i.d. baseline. For this reason, FAA is largely
adopted in literature [105, 35, 6] and it is the main performance
indicator used in this manuscript;

• Final Average Incremental Accuracy (FAIA) [138, 60] is an alternative
formulation of FAA taking into account the accuracy at the end of
each task, thus also providing a compact summary of the historic
performance:

FAIA ≜
T−1∑
i=0

i∑
j=0

aij . (2.4)

This metric usually yields slightly higher values w.r.t. FAA and might
lead to reader confusion if the difference is not clearly specified;

• Final Average Forgetting (FAF) [25, 27, 26] measures the average
performance degradation occurring on past tasks between their peak
and final accuracy:

FAF ≜
T−2∑
j=0

fj , s.t. fj = max
l∈{0,...,T−2}

alj − aT−1
j . (2.5)

This measure can also take on a negative value in the case of
a model which improves its accuracy on past tasks over time (a
phenomenon known as positive backward transfer);

• Final Average Adjusted Forgetting (FAAF) is an adjusted version of
FAF that we first proposed in the original paper for the approach
presented in Chap. 7. This variant aims at allowing an easier
comparison of the forgetting rate between models with different
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peak accuracy by focusing on performance degradation alone and
excluding backward transfer:

FAAF ≜
T−1∑
j=0

[
a∗j − aT−2

j

alj

]+
,

s.t. alj = max
t∈{j,...,T−1}

atj , ∀j ∈ {0, . . . , T − 2},
(2.6)

where [·]+ indicates lower-bound clipping to zero;

• Final Backward Transfer (FBWD) [105] is a measure of accuracy
degradation that – opposite to FAF – accounts for the performance
increase on previously-learnt classes:

FBWD ≜
T−2∑
j=0

aT−1
j − ajj . (2.7)

Such a measure is typically relevant for Domain-IL settings, where
knowledge about a class can be improved in hindsight. It is otherwise
typically negative for Class-IL and Task-IL, provided that the classes
presented in different tasks are sufficiently dissimilar;

• Final Forward Transfer (FFWD) [105] is somewhat complementary
to FBWD in that it measures the model’s performance improvement
over yet-to-be-seen classes:

FFWD ≜
T−1∑
j=1

aj−1
j − ainitj , (2.8)

where ainitj denotes the accuracy on task Tj of the randomly initialised
model. A high FFWD indicates that the model is handling learning
so as to maximise generalisation, by improving its accuracy on
classes of the jth task w.r.t. its initialisation.

2.5 State of the Art
In this section, we present a review of some of the most important
CL approaches, which will serve as competitors in the experiments in
the following of this work. CL methods are usually categorised in the
three families [45, 35] which we present in the following subsections.
Additionally, CL experiments usually express a lower and upper bound
for the results by reporting two baseline approaches: Finetuning (FT) and
Joint Training (JT). The former consists of directly training the DNN on
the incoming stream of data with no additional remedy to catastrophic
forgetting; the latter instead trains the backbone model on all available
data jointly and is therefore not subject to forgetting at all.
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2.5.1 Architectural Methods
Architectural methods are typically very effective in counteracting for-
getting, as they devote distinguished sets of parameters to distinct tasks.
Most of them are characterised by a multi-headed architecture [147] or
otherwise use the provided task information to map portions of the model
to specific tasks [151]. In both cases, their use is limited to the Task-IL
scenario, as their operation depends on the availability of task labels at
prediction time. Among them, we mention the following:

• Progressive Neural Networks (PNN) [147] is the archetypal architec-
tural method, in that it straightforwardly devotes a separate replica
of the backbone network to each task. Additionally, it facilitates
knowledge transfer from previously instantiated backbones to new
ones by introducing dedicated adaptation layers, that serve as bridges
between them. While this methodology avoids forgetting by design,
it has a steep memory requirement which grows linearly with the
number of tasks;

• Packing Multiple Tasks into a Single Network (PackNet) [107] man-
ages the backbone model by identifying the important weights after
each task and freezing them. The remaining parameters are pruned
out and devoted to new tasks. This leads to a strict compartmental-
isation of model weights, which define distinct sub-networks used
in different tasks. At evaluation time, a prediction is made by only
using those weights that are assigned to the target task;

• Hard Attention to the Task (HAT) [151] learns task-specific attention
masks to sparsify the allocation of network parameters to any given
task. By so doing, it achieves a similar behaviour to PackNet, but
also allows a degree of weight sharing between tasks, as it employs
soft masks.

2.5.2 Regularisation Methods
Regularisation-based methods do not alter the model’s architecture, but in-
stead condition its evolution by means of additional loss function terms to
prevent forgetting previous tasks. Such terms typically entail constraints
either on the model’s response [96, 149] or on its parameters [81, 199, 142].
We list the following:

• Learning without Forgetting (LwF) [96] applies functional regularisa-
tion by applying knowledge distillation [59] between the in-training
model and a previous snapshot taken at the last task boundary w.r.t.
current training examples. A notable variant to this approach is
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MultiClass LwF (LwF.MC), which adopts a slightly different loss
function1 and is designed to operate in the Class-IL setting [138];

• Progress & Compress (P&C) [149] is a second representative of the
functional regularisation family which, unlike LwF, employs a sep-
arate backbone for the exclusive learning of the current task. At
task boundaries, it distils the acquired knowledge into a unified
Knowledge Base model, in charge of preserving information on all
previous tasks;

• Elastic Weight Consolidation (EWC) [81] is a well-known approach
based on the regularisation of those model parameters that are
identified as particularly relevant for past tasks. This is accomplished
by estimating the Fisher Information Matrix after each task, which
is used as a per-weight importance measure in later learning. As this
is a cumbersome and memory-expensive procedure, a more efficient
approximation called online Elastic Weight Consolidation (oEWC) has
also been proposed [149];

• Synaptic Intelligence (SI) [199] similarly prevents the change of
parameters which are deemed important to previous tasks. However,
instead of estimating such importance at the task boundary like
EWC, it operates online by keeping track of the cumulative loss
decrease which can be ascribed to each parameter;

• Online Structured Laplace Approximation (OLAP) [142] proposes a
refinement on the parameter-importance approach by leveraging
a sophisticated block-diagonal Kronecker factored approximation
of the loss Hessian. This is in contrast with the simple diagonal
approximation employed by EWC and thus allows keeping track of
the interactions between different weights;

• Stable SGD (sSGD) [113] adopts a slightly different approach with
respect to previous methods, as it introduces specific alterations to the
model’s training regime with the purpose of biasing the optimisation
towards flat minima of the loss landscape.

2.5.3 Rehearsal-Based Methods
Rehearsal-Based Methods (RBMs) operate by maintaining a fixed-size work-
ing memory of previously encountered exemplars, which are then used to
prevent forgetting by either replaying them directly and/or using them
as an additional source of regularisation. As shown by the experiments
in the following of this manuscript, RBMs are characterised by robust
operation and usually outperform regularisation baselines on Domain-IL

1LwF.MC is effectively equivalent to iCaRL without any memory buffer.
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and Class-IL experiments. Even though rehearsal could be suggestive
of the biological operation of memory in the animal brain [21, 139], the
development of CL models is mostly unrelated to any biological insights.

• Experience Replay (ER) [137, 143] is the most straightforward ap-
proach to rehearsal and among the first historically proposed ap-
proaches for countering catastrophic forgetting. In it, a small
memory buffer is allocated containing an i.i.d. sample of all previ-
ously encountered training data. Usually, the buffer is populated
through the well-known reservoir sampling [173], which operates
online and assigns each item on the stream the same probability of
being included in the memory. In later tasks, data from the stream
is interleaved with data sampled from the buffer, allowing for a joint
optimisation. ER remains a strong baseline and the basis for many
SOTA approaches in current literature;

• Gradient-based Sample Selection (GSS) [6] introduces a more refined
sampling algorithm w.r.t. reservoir by explicitly selecting those
samples whose induced gradient on the model best approximates
the overall gradient of the original task. By so doing, they provide
a more robust anchor for keeping the backbone model within the
feasible region of the learnt task;

• Experience Replay with Regular Polytope Classifier (ER-RPC) [132] com-
plements ER with the Regular Polytope Classifier proposed in [131].
Such a classifier constrains the parameters of the final classifica-
tion layer to have constant values, designed to keep them equally
distributed in output space. This implicates that all seen and unseen
classes in the classification problem are kept at equal distance;

• Meta-Experience Replay (MER) [141] complements ER with a meta-
learning objective with the purpose of maximising transfer and
minimising interference. In doing so, it employs the Reptile al-
gorithm [122] to compute a candidate weight modification for each
batch example and finally aggregates all proposed updates into a
comprehensive across-batch update. As a consequence, MER effect-
ively adopts a batch size of 1, which dramatically slows its operation
compared to ER and other methods;

• Incremental Classifier and Representation Learning (iCaRL) [138] ad-
opts a self-knowledge distillation loss term similar to LwF to prevent
the learnt representations from deteriorating in later tasks. On top
of this, its predictions leverage a prototype-based nearest-mean-of-
exemplars classifier which compares the features of input examples
with the mean feature produced by all buffer examples of each
class, generally leading to robust predictions even with complex
benchmarks and small memory buffers;
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• Experience Replay with Asymmetric Cross-Entropy (ER-ACE) [19] iden-
tifies and addresses class imbalances in the predictions made by ER
caused by the different availability of stream and buffer exemplars.
By simply separating the cross-entropy contribution of the classes in
the two data sources, the authors achieve increased accuracy and
reduced interference;

• Learning a Unified Classifier Incrmentally via Rebalancing (LU-
CIR) [60] builds on top of iCaRL by proposing several modifications
that promote separation in feature space and thus result in an
incrementally learnt classifier that is less affected by the bias
between current- and previous-task predictions;

• Bias Control (BiC) [182] similarly deals with the problem of imbal-
anced predictions in ER, but does so by means of an additional
regularisation term resembling the objective of LwF and introducing
a dedicated model layer that is trained after each task to equalise
predictions so as to counteract bias;

• Hindsight Anchor Learning (HAL) [26] improves ER by learning a set
of data-points which maximise forgetting and subsequently intro-
ducing a regularisation term which anchors network responses on
them, so as to prevent interference on its weakest spots;

• Function Distance Regularisation (FDR) [15], similarly to LwF and
iCaRL, employs a self-distillation loss term against responses at the
task boundary to regularise the model in function space to prevent
forgetting in later tasks;

• Pooled Outputs Distillation Network (PODNet) [42] expands on iCaRL
by extending the self-distillation loss term to convolutional layers
and allowing for multi-modal representations in the proxy-based
classifier;

• Contrastive Continual Learning (CO2L) [23] proposes to facilitate know-
ledge transfer from samples stored in the buffer by optimising a
contrastive learning objective to avoid the potential bias introduced
by a cross-entropy objective. However, a linear classifier needs to be
first trained for the purpose of inference;

• Gradient Episodic Memory (GEM) [105], unlike previously listed ap-
proaches, does not use its memory buffer for rehearsal. Instead,
it exploits its data by building one Quadratic Programming (QP)
constraint per previous task which explicitly aims at minimising the
interference between the gradient of previous-task data and current
inputs;
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• Averaged Gradient Episodic Memory (A-GEM) [27] proposes an efficient
approximation of GEM, which replaces the multiple QP constraints
with an easier-to-compute averaged objective;

• Greedy Sampler and Dumb Learner (GDumb) [135] is an experimental
method that also deviates from the standard rehearsal formula. It
avoids training on input data entirely, limiting itself to gathering
data into the memory buffer for later use. When an evaluation is
required, GDumb trains a new model on the memory buffer from
scratch. As it manages to outperform several competitors, this
approach questions the significance of recent advances in CL.
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Novel Rehearsal Methods for
Continual Learning



Chapter 3

Rethinking Experience Replay

3.1 Motivation
In this chapter, we assess the role of ER [137] as a viable Class-IL baseline
method by comparing it with more recent SOTA RBMs. The focus on
the latter class of methods derives from architectural methods being
generally not applicable outside of the Task-IL setting – as discussed in
Sec. 2.5 – and from the tendency of regularisation-based approaches to
underperform when compared to RBMs on Class-IL [6, 45].

While recently proposed RBMs are often shown to outperform a simple
replay baseline [6, 4, 141, 138, 26], they typically operate by introducing
additional regularisation terms that imply an increase in computational
requirements and memory complexity. On the contrary, ER presents a
very straightforward formulation, produces a limited overhead w.r.t. FT,
but is exposed to several issues when applied to the Class-IL setting:

(a) repeated rehearsal on a limited memory buffer produces overfitting1;

(b) incrementally learning a classifier produces a bias towards newer
classes, to the detriment of earlier tasks [182, 60];

(c) the typical random sampling procedures applied for buffer popula-
tion [141, 28] can be prone to failure cases (e.g., some classes may
be left out when the buffer is small).

In the following, we illustrate how ER can be brought to a performance
in line with contemporary RBMs by introducing a few modifications (a
bag of tricks) that address the above-mentioned issues. As these can be
easily applied to other models, this chapter generally aims at constituting
a quick reference for improving the design practices of CL approaches.

1An early-sampled item in the S-CIF10 protocol (buffer size 500; replay batch size 32) is
replayed approximately 5000 times.

22
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3.2 Experience Replay
ER realises the generalised CL problem formulation of Eq. 2.2 by introdu-
cing a very simple additional regularisation term:

LR = E
(x,y)∼M

[
CE
(
fθ(x), y

)]
, (3.1)

where M denotes a memory buffer, i.e., a small fixed-size storage that is
used for saving encountered exemplars and labels from previous tasks.
During each training step, ER merges some of these items with the
current batch: consequently, the network rehearses past tasks as it learns
current data and thus achieves an approximation of Eq. 2.1.

This practical solution only introduces two additional hyper-parameters
to fθ, namely the replay buffer size |M| and the number of elements that
we draw from it at each step. As typically done in literature [141, 28], our
baseline employs the reservoir sampling strategy [173] (see Alg. 3.1). For a
balanced classification problem, this approach guarantees that each input
exemplar has the same probability |M|/∑i |Ti| of entering the replay
buffer. We prefer this approach both to herding [138] and the class-wise
FIFO [28] (a.k.a. ring buffer) strategies. Unlike reservoir, the former needs
to retain the entire training set of each task; conversely, the latter fails
to exploit the whole memory in earlier task and presents a higher risk of
overfitting [28].

3.3 Training Tricks
In this section, we go over the details of some issues encountered by
ER in the Class-IL setting. Consequently, we propose effective tricks to
mitigate them by introducing some slight alterations in the base model.
Specifically, Sec. 3.3.1, 3.3.4 and 3.3.5 propose improvements for the replay
buffer (their extension to other RBMs is thus trivial). On the other hand,
Sec. 3.3.2 and 3.3.3 present even more general tricks that can be applied
to any Class-IL-capable CL method, as we show in Sec. 3.4.4.

3.3.1 Independent Buffer Augmentation (IBA)
Data augmentation is an obvious strategy for improving the general-
isation capabilities of a DNN [180]. When dealing with CL scenarios,
data augmentation is typically applied on the input stream of data from
the current task. However, a RBM also learns from a second, more
overfitting-prone source of data: its replay buffer. In addition to the
regular augmentation performed on the input stream, we propose the
adoption of Independent Buffer Augmentation (IBA). This requires storing
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Fig. 3.1: Graphical comparison between rehearsal on augmented examples
(a) and Independent Buffer Augmentation (b).

non-augmented examples in the memory and subjecting them to inde-
pendent data augmentation when drawn for later replay. This is done
to introduce additional variety in the rehearsal examples and minimise
overfitting on the memory.

While this may appear as a simple expedient, its application in liter-
ature should not be taken for granted. As an example, the CL methods
implemented in the codebases of [105]2 and [6]3 store the augmented
examples in the memory buffer and re-use them as-they-are, as illustrated
in Fig. 3.1a. On the contrary, we remark that it is much more beneficial
to show the model replay examples that undergo distinct transformations,
as shown in Fig. 3.1b.

3.3.2 Bias Correction (BiC)

The sequential presentation of data within the Class-IL setting is known
to give rise to a bias on model predictions, favouring classes from the
current task [60, 182]. Such bias is not localised to its final classification
layer, but rather linked to the whole model, meaning that the trivial
solution of zeroing the classifier is not beneficial.

Hou et al. [60] address this issue structurally by devising a specific
margin-ranking loss term aimed at keeping representations from different
tasks separated. Instead, Wu et al. propose a much simpler and modular
solution in [182], which we also apply here: the addition of a simple Bias
Correction Layer to the model. This layer consists of two parameters α
and β, used to compensate the kth output logit ℓk ≜ hθ(x)k, where we use h

2https://github.com/facebookresearch/GradientEpisodicMemory
3https://github.com/rahafaljundi/Gradient-based-Sample-Selection

https://github.com/facebookresearch/GradientEpisodicMemory
https://github.com/rahafaljundi/Gradient-based-Sample-Selection
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to indicate pre-softmax model responses (fθ(·) ≜ softmaxhθ(·)), as follows:

qk =

{
α · ℓk + β if k was trained in the last task
ok otherwise

. (3.2)

This a layer is applied downstream of the classifier to yield the final output
at test time. Thanks to its small size, it can be easily trained at the end
of each task by leveraging a limited number of exemplars. While [182]
employs a separate validation set for this purpose, we find it sufficient
to exploit the same replay buffer we use for ER. Parameters α and β are
optimised through the cross-entropy loss, as follows:

LBiC = −
∑
k

1y=k log[softmax(qk)]. (3.3)

3.3.3 Exponential LR Decay (ELRD)
It could be argued that not learning anything new is one of the best
ways to preserve previous knowledge. To this aim, we propose to decrease
the learning rate progressively at each iteration; we found exponential
decay particularly effective. Exponential-based rules for decaying the
learning rate were early introduced in literature to speed up the learning
process [7, 95]. CL algorithms that exploit this technique [81, 138] do so in
a task-wise manner (namely, the schedule starts again at the beginning
of each task). Differently, we point out that decreasing the learning rate
for the whole duration of the training relieves catastrophic forgetting. We
thus recommend computing the learning rate for the jth training example
as follows:

lrj = lr0 · γNex , (3.4)
where Nex is the number of input examples seen so far, lr0 indicates the
initial learning rate for training and γ is a hyper-parameter tuned to
make the learning rate approximately 1/6 of the initial value at the end
of the training.

It is worth noting that decreasing the learning rate yields an addi-
tional regularisation objective, which penalises weights change between
subsequent steps. This achieves a similar effect to the loss terms de-
signed by the parameter-importance family of regularisation-based CL
approaches described in Sec. 2.5 [81, 199, 25]. However, these approaches
are characterised by extra overhead that is instead avoided by ELrD.

3.3.4 Balanced Reservoir Sampling (BRS)
As outlined in Sec. 3.2, reservoir sampling is an online update procedure
used to populate a fixed-size buffer with data coming from the input
stream. It guarantees each exemplar from that stream to be represented
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Alg. 3.1: Balanced Reservoir Sampling
1: Input: exemplar (x, y), replay buffer M,
2: number of seen examples N .
3: if |M| > N then
4: M[N ]← (x, y)
5: else
6: j ← RandInt([0, N ])
7: if j < |M| then

8: M[j]← (x, y)

Reservoir Sampling

9: ỹ ← argmax ClassCounts(M, y)
10: k ← RandChoice({k̃;M[k̃] = (x, y), y = ỹ})
11: M[k]← (x, y)

Balanced Reservoir Sampling

12: end if
13: end if

in the buffer with the same probability, making it equivalent to an offline
random sampling at each time step. For a dataset featuring C distinct
classes and a buffer of size |M|, this implies the following probability of
leaving out at least one class:

P =

(
1− 1

C

)|M|

. (3.5)

This results in leaving 1/P classes out of M, which becomes especially
critical when dealing with small buffers: considering |M| ≈ C, that
probability swiftly increases from 0.25 for C = 2 to 0.349 for C = 10 (to
0.367 for C →∞).

Such an issue can be overcome by resorting to the ring buffer [28]
or the herding [138] strategy; however, these are not optimal in terms of
buffer exploitation or computational overhead. The former reserves a slice
as large as |M|/C for each class: since classes are shown incrementally,
this leaves the main part of the buffer empty. The latter changes the
dimension of such slices with the number of seen classes, always reserving
|M|/Cseen slots for each class (where Cseen indicates the number of seen
classes). Despite its increased efficiency in terms of memory, herding
additionally requires performing a forward pass over the training set at
the end of each task. Instead, we propose Balanced Reservoir Sampling
(see Alg. 3.1), which introduces a small modification to reservoir to balance
the number of exemplars per class within the buffer. Instead of replacing
a random exemplar when a newer one is inserted (line 8 of Alg. 3.1),
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Fig. 3.2: (a-c) comparison of basic, Balanced and Loss-Aware reservoir.
If a new item is sampled from the stream and M is full: (a) reservoir
randomly discards an exemplar; (b) BRS randomly discards an exemplar
from the most represented class; (c) LARS selects what item to discard with
a probability given by its loss score. (d) Number of exemplars per class
when applying different sampling strategies to the toy dataset described
in Sec. 3.3.4, error bars indicate standard deviation. We consider a buffer
size of 12 items, with the objective of sampling exactly 2 item per class.

we look for the element to be removed among those belonging to the
most represented class (lines 9-11). The difference is also graphically
exemplified in Fig. 3.2a-b.

To facilitate understanding, we compare Balanced Reservoir with reser-
voir on a toy dataset of 1020 items belonging to 6 distinct classes (170
items per class). Fig. 3.2d shows the number of samples per class retained
at the end of each test. BRS and reservoir achieve a Mean Squared Error
of 0.28 and 1.64 respectively w.r.t. the ideal solution of storing exactly 2
items per class, giving quantitative evidence for the merit of our proposal.

3.3.5 Loss-Aware Reservoir Sampling (LARS)
To reduce the risk of overfitting buffer data-points, we introduce here an

additional variation to the sampling strategy. Taking inspiration from [6],
we wish to make room for new examples by discarding those that are less
important for preserving the performance. The authors of [6] devise both
a rigorous Integer Quadratic Programming-based objective and a more
efficient approximated greedy strategy for this purpose. However, since
they resort to comparison between the gradients of individual examples,
their proposal implies a clear increase in time complexity w.r.t. to plain
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Alg. 3.2: Loss-Aware Balanced Reservoir Sampling
1: Input: exemplar with associated loss score (x, y, s),
2: replay buffer M, number of seen examples N .
3: if |M| > N then
4: M[N ]← (x, y, s)
5: else
6: j ← RandInt([0, N ])
7: if j < |M| then
8: Sbalance ← {ClassCounts(y);∀(x, y, s) ∈M}
9: Sloss ← {−s;∀(x, y, s) ∈M}

10: α←∑
k |Sbalance[k]|/

∑
k |Sloss[k]|

11: S ← Sloss · α+ Sbalance
12: probs← S/

∑
k S[k]

13: k ← RandInt([0, |M|],probs)
14: M[k]← (x, y, s)
15: end if
16: end if

reservoir. Instead, we propose using the training loss value directly as
a much simpler yet effective indicator of example importance. Indeed,
the overall expected loss of the buffer can be computed without back-
propagation and it should be maximised at all times, thus promoting the
retention of exemplars that have not been fit (see Fig. 3.2c).

Making reservoir loss-aware, requires identifying and replacing the
elements displaying low loss values. These can be naïvely computed by
feeding all the replay examples into the model before the replacement
phase. However, this becomes computationally inefficient when the buffer
is large, motivating us to adopt an online update of the loss values:
for every example stored in the buffer, we also save the original loss
score incurred in its optimisation. As this is a scalar value, the memory
overhead that results from storing it is negligible w.r.t. the cost of storing
the example to be replayed. To keep the scores up to date, whenever
the corresponding items are drawn for replay we replace the stored loss
values with the current losses that are yielded by the model.

Since they are complementary and address separate issues, we combine
Loss-Aware Reservoir (LARS) and BRS into a single algorithm (Alg. 3.2).
To do so, we: i) compute a Sbalance score vector given by the frequency
of each class (line 8); ii) estimate an importance score Sloss, given by
the negative loss value of each example (line 9); iii) normalise these two
terms to ensure an equal contribution and sum them to form a single
score vector S (lines 10-11). Finally, we assign a replacement probability
to each item proportional to the combined score (lines 12-14).
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FAA S-FMNIST S-CIF10

FT 20.11 19.62
JT 84.47 92.13

|M| 200 500 1000 200 500 1000

A-GEM 49.73 49.47 50.98 19.90 20.35 19.81
GEM 69.46 75.91 79.62 28.14 34.69 36.68
HAL 72.59 77.59 80.79 25.92 27.99 29.10
iCaRL 75.46 77.54 78.13 41.26 41.34 42.03
ER 72.54 79.02 81.39 24.06 27.06 31.38
ER+Tricks 76.07 80.11 82.46 59.18 62.60 70.99

Tab. 3.1: Class-IL FAA of SOTA RBMs on S-FMNIST and S-CIF10.

FAA S-CIF100 S-CORe50

FT 8.54 8.89
JT 70.66 49.51

|M| 200 500 1000 200 500 1000

A-GEM 9.17 9.23 9.12 9.33 9.42 8.96
GEM 9.18 14.12 17.88 – – –
HAL 7.63 9.66 10.43 11.53 12.40 8.53
iCaRL 20.73 24.74 25.52 8.01 7.23 8.05
ER 9.66 11.50 12.36 19.48 28.54 32.66
ER+Tricks 21.26 24.90 36.05 25.63 33.33 37.44

Tab. 3.2: Class-IL FAA of SOTA RBMs on S-CIF100 and S-CORe50.

3.4 Experiments
We test our proposal on four Class-IL settings, following the specifics
outlined in Sec. 2.3: S-FMNIST, S-CIF10, S-CIF1004 and S-CORe50. Results
are expressed as FAA and averaged over 10 independent runs.

3.4.1 Comparison with the State of the Art
In this section, we draw a comparison between ER equipped with our tricks
(ER+Tricks) and SOTA RBMs, namely iCaRL, GEM, A-GEM and HAL. We
test ER in combination with the reservoir sampling strategy, while GEM,
A-GEM, HAL use a ring buffer and iCaRL employs herding. Tab. 3.1 and
3.2 report the results for different buffer sizes (200, 500, 1000), with FT and
JT respectively providing a lower and upper bound.

The experiments on S-FMNIST show that ER+Tricks consistently sur-
passes all competitors. Due to the mentioned weakness of reservoir, the

4For S-CIF100 we deviate from Tab. 2.1 and apply no learning rate decay.



30 Part II · Novel Rehearsal Methods for Continual Learning

FAA S-FMNIST S-CIF10 S-CIF100

ER 72.54 24.06 9.66
+ IBA – 44.78 13.90
+ BiC 73.43 49.27 17.73
+ ElrD 74.19 51.02 20.27
+ BRS 74.66 52.75 20.64
+ LARS 76.07 59.18 21.26

Tab. 3.3: Class-IL FAA of ER as
more tricks from Sec 3.3 are ad-
ded (|M| = 200).

72

73

74

75

76

77

A
cc

ur
ac

y
[%

]

S-FMNIST

Non
e

IB
A

20

29

38

47

56

65
S-CIF10

iCaRL

HAL

iCaRL

GEM

BiC
ElrD BRS

LARS
Non

e
BiC

ElrD BRS
LARS

Fig. 3.3: FAA on S-FMNIST and S-
CIF10 as more training tricks are ap-
plied to ER, with |M| = 200. FAA of
competitor methods also reported.

tricks prove especially beneficial when the memory buffer is smaller. How-
ever, ER proves to be an already strong baseline, as revealed by GEM and
A-GEM consistently performing worse than it. HAL starts out on par with
ER at reduced buffer size but achieves weaker results when the latter in-
creases. Interestingly, iCaRL only performs better than ER at memory size
200. This is due to the herding strategy, through which the method fills
the buffer with the best possible exemplars for its classification procedure.
By so doing, iCaRL gains an advantage over methods using reservoir and
ring sampling that is however less prominent for larger |M|.

Experiments on the harder S-CIF10 and S-CIF100 protocols show GEM
and iCaRL prevailing over naïve ER. In particular, iCaRL sets a very
high bar on hard datasets thanks to its simple and effective nearest-
mean-of-exemplars classification rule. Nevertheless, the application of our
proposed tricks gives ER+Tricks an edge over the competition. Notably,
HAL encounters some failures on S-CIF100.

Even on S-CORe50, the tricks yield a boost in performance compared to
naïve replay, outperforming the other approaches. In contrast with what
we have observed for S-CIF10 and S-CIF100, iCaRL does not achieve reli-
able performance. We ascribe this finding to the nature of S-CORe50: this
dataset shows very similar entities (e.g., slightly different plug adapters)
as separate classes. While such subtle differences are successfully learnt
by ER, iCaRL strictly depends on its nearest-mean-of-exemplars classifier,
which struggles to distinguish such fine-grained details.

3.4.2 Influence of Each Trick

To quantify the effect of each trick presented in Sec. 3.3, we apply them
increasingly to ER (Tab. 3.3, Fig. 3.3). Since we do not apply data aug-
mentation to the input batches of S-FMNIST, we do not employ it on
buffer points either. IBA proves to be very effective on both S-CIF10 and
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FAA S-CIF10 S-CIF100

|M| 200 500 1000 200 500 1000

A-GEM 19.90 20.35 19.81 9.17 9.23 9.12
+ IBA 20.23 19.97 21.15 9.16 9.34 9.39

GEM 28.14 34.69 36.68 9.18 14.12 17.88
+ IBA 22.62 23.01 20.25 13.69 16.74 15.21

HAL 25.92 27.99 29.10 7.63 9.66 10.43
+ IBA 32.33 41.77 49.28 8.19 11.39 12.91

Tab. 3.4: Evaluation of the impact of IBA on Class-IL (Sec. 3.3.1).

FAA No tricks BiC CBiC CBiC+ElrD

SI 19.91 24.67 33.15 35.51
oEWC 20.04 25.71 40.36 43.85

Tab. 3.5: Class-IL FAA of regularisation methods on S-FMNIST when
adding a buffer with |M| = 500.

S-CIF100, providing a very meaningful FAA boost when compared to the
initial performance. This turns out to be especially remarkable in the
former setting, where it almost doubles the initial accuracy. Both BiC and
ELrD present a solid positive effect, especially when considering the two
most difficult settings. Finally, the proposed sampling strategies (BRS and
LARS) prove particularly beneficial on S-FMNIST and S-CIF10.

Overall, we observe a remarkable performance boost on S-CIF10 and
S-CIF100 (+146% and +120% respectively), showing that the proposed
tricks are very effective on challenging datasets where ER leaves room
for improvement.

3.4.3 Applicability of IBA to Other RBMs

As it allows to virtually draw from a larger amount of data and often
entails no additional costs in terms of annotations or storage, one would
expect data augmentation to always be beneficial for the training of RBMs.
Surprisingly, by testing the proposed IBA on competitor RBMs, we find that
this is not always the case. Interestingly, Tab. 3.4 shows that there is not
a clear trend: while HAL always improves its performance in a consistent
way, GEM suffers from a severe degradation on S-CIF10. We conjecture
that this could be due to the way GEM makes use of the buffer: the
inequality constraints given by augmented examples prove sub-optimal
for retaining the performance on the original tasks.
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3.4.4 Applicability to non-Rehearsal Methods

In this section, we showcase the application of BiC and ElrD to two
prior-based approaches, namely oEWC [149] and SI [199]. We recall from
Sec. 2.5 that these operate by identifying the most important parameters
whenever a task change occurs, subsequently preventing their change.
While effective in the Task-IL scenario, they tend to completely forget all
tasks but the latest in Class-IL. As observed in [182], this is mainly due to
an implicit bias induced by the optimisation of the current task.

As BiC only compensates the responses related to the last task, it proves
effective only under the hypothesis that previous tasks are equally biased.
This holds true for ER and other RBMs, which rehearse an equal number
of exemplars from all previous tasks at each iteration. Conversely, oEWC
and SI do not access past examples at all, which discourages the classifier
from predicting older tasks. To shed light on these issues, we conduct
the following simple experiment: i) for each test example, we compute
the output distribution over the classes; ii) we average the probabilities
over all exemplars task-wise; iii) we normalise the results to describe
them as probability distributions and show them in Fig. 3.4. We observe
that BiC effectively reduces the bias displayed by oEWC towards the last
task. However, since the model also shows a tendency to predict classes
of earlier tasks, BiC cannot manage to balance out all prior probabilities.

For this reason, we combine oEWC and SI with a tailored variant of BiC,
which we call Complete Bias Correction (CBiC). Whilst BiC only corrects
the logits related to the latest task, CBiC adjusts the responses related
to each task independently. Technically, CBiC applies an additive offset
βt to the logits related to each task t. Fig. 3.4 shows that this approach
favourably results in a flatter distribution for oEWC, which is closer to the
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one of JT. This is confirmed by the FAA results reported in Tab. 3.5, which
also illustrates how also applying ElrD further increases its performance.

As a final note, we remark that ER is evenly biased w.r.t. previous
tasks, making BiC and CBiC equally effective on it. For this reason, we
advise using the former for ER as it is simpler and thus easier to train.

For a fair comparison among the listed methods, we report their run-
times in Fig. 3.5. This experiment employs the S-FMNIST dataset, with
|M| = 200 and identical run conditions for all methods (a single Nvidia
GeForce RTX 2080).

Thanks to its simplicity, plain ER is remarkably faster than all other
methods. Conversely, GEM is by far the slowest method: as it relies on
a demanding QP constraint for each task, its wall-clock time increases
remarkably as the training progresses. By comparison, A-GEM is clearly
much faster, given that it only applies one similar constraint at all times.
iCaRL, HAL and ER+Tricks have similar medium-to-long execution times
linked to the extra computation required at task boundaries. In this phase,
the herding strategy of iCaRL examines all examples of the previous task,
HAL computes one anchor point per class and ER+Tricks trains the Bias
Control module. A potentially slowing-down factor for our proposal is the
increased amount of computation required by BRS and LARS; however,
as reservoir samples more frequently at the beginning of training, this
effect fades in subsequent tasks.

3.5 Conclusions
In this chapter, we introduced a collection of simple training tricks meant
to enhance ER on the Class-IL setting. The effectiveness of our proposals
was shown by means of an experimental comparison among SOTA RBMs
on increasingly harder datasets: at the cost of a limited growth in
computational requirements, ER equipped with our tricks outperforms
more sophisticated approaches. Finally, we showed that some of the tricks
can be beneficially applied even to regularisation CL methods.

In proposing novel RBMs, the following chapters will consistently apply
IBA, shown here as one of the most effective training tricks, while Chap. 7
will leverage BRS as it explicitly requires a balanced memory buffer for
the design of geometrical learning constraints. Our next proposals do not
apply the other tricks presented in this chapter; however, several of them
will provide alternative approaches for dealing with the biased prediction
problem addressed by BiC.

Following the original proposal of these tricks, other influential works
have studied the same topics. Among them, we find approaches designed
to remove prediction bias [3, 19], a detailed investigation into the role of
factors such as learning rate decay in continual learning [113], balanced
variants of reservoir sampling very similar to our BRS [78, 33].





Chapter 4

Knowledge Distillation Replay
along the Training Trajectory

4.1 Motivation
In the previous chapter, we have shown that ER constitutes a very reliable
baseline for CL thanks to its simple formulation. Here, we propose
an improved baseline method that pursues improved performance while
remaining in line with the simplicity of ER. Our proposal stems from the
observation that the replay objective of ER is entirely model-independent:
as every replay example is presented to the learner in pair with its ground-
truth target, the learning signal does not depend on the learner at all: it
is merely a repeated presentation of the same raw information that was
originally made available on the input stream.

Here, we propose a change in the replay objective, breaking the sym-
metry with current-task data and requiring that the model learn from past
data through self-knowledge distillation [59]. Our resulting approach is
called Dark Experience Replay (DER) because the new learning objective
facilitates the transfer of dark knowledge [58], i.e., a richer character-
isation of the replay examples conveyed by the unabridged probability
distribution of past model responses.

In contrast with other CL approaches that resort to knowledge distil-
lation [96, 138], our proposal is less memory-intensive, since it does not
require the availability of a previous model snapshot, but rather stores
the distillation targets directly in the memory buffer. Furthermore, our
approach samples its distillation targets throughout the entire optim-
isation trajectory, rather than learning from a fully converged teacher
(e.g., at the previous task boundary). While this may seem sub-optimal,
we empirically show that our baseline exhibits remarkable qualities: it
converges to flatter minima and achieves better model calibration at the

35
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cost of a limited memory and training time overhead.
The design of DER aims at a fully online operation with no reliance on

task boundaries at any time of the CL training and easy adaptability to
both sudden and gradual changes in the input distribution. This makes our
approach naturally compatible with the GCL setting that will be presented
later in Chap. 8.

4.2 Dark Experience Replay
Designing a Class-IL CL model implies devising an opportune LR for
Eq. 2.2 with the purpose of allowing the model to fit the current task well
while still faithfully approximating the behaviour observed on the old ones.
An effective approach towards this goal which does not over-constrain
the network’s parameters is given by simply requiring the learner to
mimic its original responses for past samples, in a typical self-distillation
paradigm:

LR = α

c−1∑
i=0

E
x∼Ti

[
DKL

(
fθ∗

i
(x) || fθ(x)

)]
, (4.1)

where θ∗i denotes the optimal set of parameters at the end of task i, Tc is
the current task and α is a hyper-parameter meant to balance the trade-off
between the plasticity and stability of the CL model in Eq. 2.2. In spite of
its simplicity, the objective in Eq. 4.1 requires the availability of Ti data
for previous tasks, which violates the constraints of CL. To compensate for
the absence of this data source, we need to introduce a replay buffer Mt

dedicated to storing past experiences for task t. Differently from typical
RBMs [6, 26, 141], we do not use the buffer for storing the ground-truth
labels y, but rather the network’s logits ℓ ≜ hθt(x)

1. We therefore rewrite
Eq. 4.1 as follows:

LR = α

c−1∑
t=0

E
(x,ℓ)∼Mt

[
DKL

(
softmax(ℓ) || fθ(x)

)]
. (4.2)

To lift the dependency on known task boundaries for buffer population,
we adopt reservoir sampling [173]. By so doing, we keep a unified memory
buffer M, guaranteeing that all examples on the input stream are given
the same probability of being stored in it. This motivates a further rewrite
of Eq. 4.2 as follows:

LR = α · E
(x,ℓ)∼M

[
DKL

(
softmax(ℓ) || fθ(x)

)]
. (4.3)

It should be noted that the strategy outlined in Eq. 4.3 implies sampling
logits ℓ along the optimisation trajectory. These targets may account

1With hθ indicating pre-softmax model responses of fθ(·), as defined in Sec. 3.3.2.
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for a backbone behaviour that diverges from the one of a teacher fully
converged on the reference task. Even if this is counter-intuitive, we
empirically observe that the usage of such sub-optimal logits does not hurt
performance and that it produces beneficial effects in terms of flatness of
the attained minima and calibration (see Sec. 4.4).

Under mild assumptions [59], the optimisation of the KL divergence in
Eq. 4.3 is equivalent to minimising the Euclidean distance between the cor-
responding pre-softmax responses (i.e., logits); such a formulation should
be preferred as it avoids the information loss occurring in probability
space due to the squashing function (e.g., softmax) [102]. This allows us
to provide the final formulation for our proposed Dark Experience Replay
(DER), which we also outline in Alg. 4.1:

LDER ≜ α · E
(x,ℓ)∼M

[
∥ℓ− hθ(x)∥22

]
. (4.4)

4.2.1 Dark Experience Replay++
On the one hand, reservoir allows DER not to depend on known task
boundaries; on the other, it might introduce a vulnerability in the case
of sudden distribution shifts occurring in the input stream. In this case,
logits that are highly biased by the training on previous tasks might
be sampled for later replay, providing unreliable information. Such a
shortcoming can be mitigated by replaying ground-truth labels – as done
by ER – in conjunction with logits. For this reason, we further propose
Dark Experience Replay++ (DER++), which combines the objective of Eq. 4.4
with an additional term promoting higher conditional likelihood of buffer
data-points w.r.t. their ground-truth labels:

LDER++ ≜ α E
(x,y,ℓ)∼M

[
∥ℓ− hθ(x)∥22

]
+ β E

(x′,y′,ℓ′)∼M

[
CE
(
y′, fθ(x

′)
)]
, (4.5)

where β is an additional coefficient balancing the last term2 (DER++
collapses to DER when β = 0). The extended objective of Eq. 4.5 produces
a minimal overhead w.r.t. Eq. 4.4; the detailed procedure for DER++ can be
found in Alg. 4.2.

4.2.2 Relation with Other Distillation-Based CL Methods
While both our proposal and LwF [96] leverage self-knowledge distillation
in CL, they adopt remarkably different approaches. LwF does not replay
past examples, but rather adopts the model at the last task boundary as a
teacher and encourages the similarity between its responses and the ones
of the current learner w.r.t. current-task data. Alternatively, iCaRL [138]

2The model is not overly sensitive to α and β: setting them both to 0.5 yields stable
performance.
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Alg. 4.1: Dark Experience Replay
1: Input: dataset D, parameters θ, scalar α, learning rate λ
2: M← {}
3: for (x, y) in D do
4: (x′, ℓ′)← sample(M)
5: (xt, x

′
t)← (augment(x),augment(x′))

6: ℓ← hθ(xt)

7: θ ← θ + λ∇θ[CE(y, fθ(xt)) + α ∥ℓ− hθ(x
′
t)∥22

8: M← reservoir(M, (x, ℓ))
9: end for

Alg. 4.2: Dark Experience Replay++
1: Input: dataset D, parameters θ, scalars α, β, learning rate λ
2: M← {}
3: for (x, y) in D do
4: (x′, y′, ℓ′)← sample(M)
5: (x′′, y′′, ℓ′′)← sample(M)
6: (xt, x

′
t, x

′′
t )← (augment(x),augment(x′),augment(x′′))

7: ℓ← hθ(xt)

8: θ ← θ + λ∇θ[CE(y, fθ(xt)) + α ∥ℓ− hθ(x
′
t)∥22 + β CE(y′′, fθ(x′′

t ))]
9: M← reservoir(M, (x, y, ℓ))

10: end for

distils knowledge for past outputs w.r.t. past exemplars, which is similar to
our proposed methods. However, the former exploits the network appointed
at the end of each task as the sole teaching signal. On the contrary,
our methods store logits sampled throughout the optimisation trajectory,
which could be compared to having a slightly different teacher for each
replay example.

A proposal which is very similar in spirit to DER is given by the
application of Function Distance Regularisation (FDR) for catastrophic
forgetting prevention (Sec. 3.1 of [15]). Like FDR, we use past exem-
plars and network outputs to align past and current outputs. However –
similarly to iCaRL – FDR depends on the availability of task boundaries
for storing network responses at convergence. The empirical analysis
we present in Sec. 4.4 indicates that not only this requirement can be
relaxed without experiencing a drop in performance, but doing so endows
DER and DER++ with additional remarkable properties and allows them to
attain higher FAA on the evaluated benchmarks. All things considered,
we remark that the motivation behind [15] lies chiefly in studying how
the training trajectory of DNNs can be characterised in a functional L2

Hilbert space, whereas the potential of function-space regularisation for
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Continual Learning problems is only coarsely addressed with a single
experiment on S-MNIST. In this respect, we present extensive experiments
on multiple CL settings as well as a detailed analysis (Sec. 4.4) providing
a deeper understanding on the effectiveness of this kind of regularisation.

4.3 Experiments
We present here an extensive suite of CL benchmarks encompassing all
the academic settings introduced in Sec. 2.2.1. Experiments on the Class-
IL and Task-IL protocols encompass S-MNIST, S-CIF10 and S-TinyImg;
experiments on the Domain-IL setting exploit P-MNIST and R-MNIST.
Results are presented in terms of FAA, FAF, FBWD and FFWD, averaged
over 10 independent runs.

Our evaluation presents the following competitors: two regularisation-
based methods (oEWC, SI), two methods leveraging Knowledge Distillation
(iCaRL, LwF), one architectural method (PNN) and seven RBMs (ER, GEM,
A-GEM, GSS, FDR, HAL, MER3). We report the results of our evaluations
in Tab. 4.1-4.4 for FAA, Tab. 4.5 for FAF, Tab. 4.6 for FFWD and Tab. 4.7
for FBWD; in these tables, ‘-’ indicates experiments that could not be
run, either due to setting compatibility issues (e.g., PNN, iCaRL and LwF
on Domain-IL) or intractable training time (e.g., GEM, HAL and GSS on
S-TinyImg).

DER and DER++ achieve SOTA performance in almost all presented
settings. When compared to oEWC and SI, the gap in FAA across all
settings appears unbridgeable, suggesting that regularisation towards old
sets of parameters does not suffice to prevent forgetting. We argue that
this could also be due to weights importance being computed in earlier
tasks and thus failing to adapt to subsequent training phases. While
being computationally more efficient, LwF performs worse than SI and
oEWC on average. PNN, which achieves the strongest results among
non-rehearsal methods, attains lower accuracy than replay-based ones in
spite of its memory footprint being much higher at any buffer size.

When compared to rehearsal methods, DER and DER++ show strong
performance in the majority of benchmarks, especially in the Domain-IL
scenario (Tab. 4.4). For these problems, a shift occurs on the input domain,
but not on classes: hence, the relations among them also likely persist4.
For this reason, we argue that leveraging soft targets in place of hard
ones (ER) carries valuable information [59], exploited by DER and DER++
to preserve the inter-class similarity structures through the data-stream.

3MER is only presented on S-MNIST as we experienced an intractable training time on
other benchmarks (e.g., while DER takes approximately 2.5 hours on S-CIF10, MER takes
300 hours).

4As an example, if it is true that during the first task of R-MNIST number 2s visually
look like 3s, this still holds true when a different rotation is applied in the following tasks.
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FAA S-MNIST

Method Class-IL Task-IL

JT 95.57±0.24 99.51±0.07

FT 19.60±0.04 94.94±2.18

oEWC 20.46±1.01 98.39±0.48

SI 19.27±0.30 96.00±2.04

LwF 19.62±0.01 94.11±3.01

PNN - 99.23±0.20

|M| 200 500 5120 200 500 5120

ER 80.43±1.89 86.12±1.89 93.40±1.29 97.86±0.35 99.04±0.18 99.33±0.22

MER 81.47±1.56 88.35±0.41 94.57±0.18 98.05±0.25 98.43±0.11 99.27±0.09

GEM 80.11±1.54 85.99±1.35 95.11±0.87 97.78±0.25 98.71±0.20 99.44±0.12

A-GEM 45.72±4.26 46.66±5.85 54.24±6.49 98.61±0.24 98.93±0.21 98.93±0.20

iCaRL 70.51±0.53 70.10±1.08 70.60±1.03 98.28±0.09 98.32±0.07 98.32±0.11

FDR 79.43±3.26 85.87±4.04 87.47±3.15 97.66±0.18 97.54±1.90 97.79±1.33

GSS 38.90±2.49 49.76±4.73 89.39±0.75 95.02±1.85 97.71±0.53 98.33±0.17

HAL 84.70±0.87 87.21±0.49 89.52±0.96 97.96±0.21 98.03±0.22 98.35±0.17

DER 84.55±1.64 90.54±1.18 94.90±0.57 98.80±0.15 98.84±0.13 99.29±0.11

DER++ 85.61±1.40 91.00±1.49 95.30±1.20 98.76±0.28 98.94±0.27 99.47±0.07

Tab. 4.1: FAA results on S-MNIST.

FAA S-CIF10

Method Class-IL Task-IL

JT 92.20±0.15 98.31±0.12

FT 19.62±0.05 61.02±3.33

oEWC 19.49±0.12 68.29±3.92

SI 19.48±0.17 68.05±5.91

LwF 19.46±0.31 63.65±1.80

PNN - 95.13±0.72

|M| 200 500 5120 200 500 5120

ER 48.33±1.57 60.98±1.48 84.30±0.73 91.49±0.92 94.19±0.32 97.02±0.15

GEM 25.54±0.76 26.20±1.26 25.26±3.46 90.44±0.94 92.16±0.69 95.55±0.02

A-GEM 20.04±0.34 22.67±0.57 21.99±2.29 83.88±1.49 89.48±1.45 90.10±2.09

iCaRL 60.58±1.32 55.42±4.16 63.47±1.33 93.97±0.53 91.43±1.84 95.47±0.26

FDR 30.91±2.74 28.71±3.23 19.70±0.07 91.01±0.68 93.29±0.59 94.32±0.97

GSS 39.07±5.59 49.73±4.78 67.27±4.27 88.80±2.89 91.02±1.57 94.19±1.15

HAL 34.90±2.55 46.19±4.14 64.99±3.71 83.14±3.66 86.08±2.48 89.01±2.64

DER 61.93±1.79 70.51±1.67 83.81±0.33 91.40±0.92 93.40±0.39 95.43±0.33

DER++ 64.88±1.17 72.70±1.36 85.24±0.49 91.92±0.60 93.88±0.50 96.12±0.21

Tab. 4.2: FAA results on S-CIF10.
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FAA S-TinyImg

Method Class-IL Task-IL

JT 59.99±0.19 82.04±0.10

FT 7.92±0.26 18.31±0.68

oEWC 7.58±0.10 19.20±0.31

SI 6.58±0.31 36.32±0.13

LwF 8.57±0.11 16.57±0.37

PNN - 67.84±0.29

|M| 200 500 5120 200 500 5120

ER 8.77±0.17 11.06±0.32 29.93±0.47 38.97±0.97 49.89±0.73 67.89±0.50

A-GEM 8.07±0.08 8.06±0.04 7.96±0.13 22.77±0.03 25.33±0.49 26.22±0.65

iCaRL 14.72±0.59 20.18±0.56 31.60±0.33 42.84±0.92 52.07±0.58 64.54±0.30

FDR 8.70±0.19 10.54±0.21 28.97±0.41 40.36±0.68 49.88±0.71 68.01±0.42

DER 11.87±0.78 17.75±1.14 36.73±0.64 40.22±0.67 51.78±0.88 69.50±0.26

DER++ 10.96±1.17 19.38±1.41 39.02±0.97 40.87±1.16 51.91±0.68 69.84±0.63

Tab. 4.3: FAA results on S-TinyImg.

FAA Domain-IL

Method P-MNIST R-MNIST

JT 94.33±0.17 95.76±0.04

FT 40.70±2.33 67.66±8.53

oEWC 75.79±2.25 77.35±5.77

SI 65.86±1.57 71.91±5.83

|M| 200 500 5120 200 500 5120

ER 72.37±0.87 80.60±0.86 89.90±0.13 85.01±1.90 88.91±1.44 93.45±0.56

GEM 66.93±1.25 76.88±0.52 87.42±0.95 80.80±1.15 81.15±1.98 88.57±0.40

A-GEM 66.42±4.00 67.56±1.28 73.32±1.12 81.91±0.76 80.31±6.29 80.18±5.52

FDR 74.77±0.83 83.18±0.53 90.87±0.16 85.22±3.35 89.67±1.63 94.19±0.44

GSS 63.72±0.70 76.00±0.87 82.22±1.14 79.50±0.41 81.58±0.58 85.24±0.59

HAL 74.15±1.65 80.13±0.49 89.20±0.14 84.02±0.98 85.00±0.96 91.17±0.31

DER 81.74±1.07 87.29±0.46 91.66±0.11 90.04±2.61 92.24±1.12 94.14±0.31

DER++ 83.58±0.59 88.21±0.39 92.26±0.17 90.43±1.87 92.77±1.05 94.65±0.33

Tab. 4.4: FAA results on P-MNIST and R-MNIST.
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FAF

|M| Method S-MNIST S-CIF10 P-MNIST R-MNIST
Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL

– FT 99.10±0.55 5.15±2.74 96.39±0.12 46.24±2.12 57.65±4.32 20.82±2.47

oEWC 97.79±1.24 0.44±0.16 91.64±3.07 29.33±3.84 36.69±2.34 36.44±1.44

– SI 98.89±0.86 5.15±2.74 95.78±0.64 38.76±0.89 27.91±0.31 23.41±0.49

LwF 99.30±0.11 5.15±2.74 96.69±0.25 32.56±0.56 - -
PNN - 0.00±0.00 - 0.00±0.00 - -
ER 21.36±2.46 0.84±0.41 61.24±2.62 7.08±0.64 22.54±0.95 8.87±1.44

MER 20.38±1.97 0.82±0.21 - - - -
GEM 22.32±2.04 1.19±0.38 82.61±1.60 9.27±2.07 29.38±2.56 12.97±4.82

20
0

A-GEM 66.15±6.84 0.96±0.28 95.73±0.20 16.39±0.86 31.69±3.92 20.05±1.12

iCaRL 11.73±0.73 0.28±0.08 28.72±0.49 2.63±3.48 - -
FDR 21.15±4.18 0.52±0.18 86.40±2.67 7.36±0.03 20.62±0.65 13.66±2.52

GSS 74.10±3.03 4.30±2.31 75.25±4.07 8.56±1.78 47.85±1.82 20.71±6.50

HAL 14.54±1.49 0.53±0.19 69.11±4.21 12.26±0.02 79.00±1.17 83.59±0.04

DER 17.66±2.10 0.57±0.18 40.76±0.42 6.57±0.20 14.00±0.73 6.53±0.32

DER++ 16.27±1.73 0.66±0.28 32.59±2.32 5.16±0.21 11.49±0.31 6.08±0.43

ER 15.97±2.46 0.39±0.20 45.35±0.07 3.54±0.35 14.90±0.39 8.02±1.56

MER 11.52±0.56 0.45±0.17 - - - -
GEM 15.57±1.77 0.54±0.15 74.31±4.62 9.12±0.21 18.76±0.91 8.79±1.44

50
0

A-GEM 65.84±7.24 0.64±0.20 94.01±1.16 14.26±4.18 28.53±2.01 19.70±3.14

iCaRL 11.84±0.73 0.30±0.09 25.71±1.10 2.66±2.47 - -
FDR 13.90±5.19 1.35±2.40 85.62±0.36 4.80±0.00 12.80±1.28 7.21±1.89

GSS 60.35±6.03 0.89±0.40 62.88±2.67 7.73±3.99 23.68±1.35 18.05±9.89

HAL 9.97±1.62 0.35±0.21 62.21±4.34 5.41±1.10 82.53±0.36 88.53±0.77

DER 9.58±1.52 0.45±0.13 26.74±0.15 4.56±0.45 8.07±0.43 3.96±2.08

DER++ 8.85±1.86 0.35±0.15 22.38±4.41 4.66±1.15 7.67±1.05 3.57±0.09

ER 6.08±1.84 0.25±0.23 13.99±1.12 0.27±0.06 5.24±0.13 3.10±0.42

MER 3.22±0.33 0.07±0.06 - - - -
GEM 4.30±1.16 0.16±0.09 75.27±4.41 6.91±2.33 6.74±0.49 2.49±0.17

51
20

A-GEM 55.10±10.79 0.63±0.21 84.49±3.08 11.36±1.68 23.74±2.23 18.10±1.44

iCaRL 11.64±0.72 0.26±0.06 24.94±0.14 1.59±0.57 - -
FDR 11.58±3.97 0.95±1.61 96.64±0.19 1.93±0.48 3.82±0.12 3.31±0.56

GSS 7.90±1.21 0.18±0.11 58.11±9.12 7.71±2.31 89.76±0.39 92.66±0.02

HAL 6.55±1.63 0.13±0.07 27.19±7.53 5.21±0.50 19.97±1.33 17.62±2.33

DER 4.53±0.83 0.32±0.08 10.12±0.80 2.59±0.08 3.51±0.03 2.17±0.11

DER++ 4.19±1.63 0.23±0.06 7.27±0.84 1.18±0.19 2.96±0.14 1.62±0.50

Tab. 4.5: FAF results for the Experiments of Sec. 4.3.
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FFWD

|M| Method S-MNIST S-CIF10 P-MNIST R-MNIST
Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL

– FT −11.06±2.90 2.33±4.71 −9.09±0.11 −1.46±1.17 0.32±0.85 48.94±0.10

oEWC −7.44±4.18 −0.13±8.12 −12.51±0.02 −4.09±7.97 0.69±0.97 52.45±8.75

– SI −9.50±5.27 −1.34±5.42 −12.64±0.20 −2.33±2.29 0.71±1.89 53.09±0.73

LwF −12.39±4.06 1.30±5.40 −10.63±5.12 0.73±4.36 - -
PNN - N/A - N/A - -
ER −12.12±2.21 −0.86±3.24 −11.02±2.77 2.10±1.27 1.37±0.48 66.79±0.05

MER −11.03±3.40 −2.18±3.51 - - - -
GEM −10.26±3.08 −0.16±5.89 −7.50±7.05 0.13±3.54 0.42±0.35 54.06±4.35

20
0

A-GEM −10.04±3.11 2.39±6.96 −11.37±0.08 −0.34±0.13 0.83±0.57 54.84±10.45

iCaRL N/A N/A N/A N/A - -
FDR −12.06±2.22 −0.81±3.89 −12.75±0.30 −2.42±0.86 −1.24±0.06 60.71±8.17

GSS −11.31±2.58 2.99±6.61 −7.08±10.01 6.17±2.06 0.04±0.85 57.28±4.47

HAL −11.15±3.56 −0.20±3.99 −11.94±0.80 −0.02±0.10 1.72±0.08 59.95±3.71

DER −10.16±3.78 3.23±5.24 −11.89±0.88 0.27±7.12 1.23±0.26 64.69±2.02

DER++ −12.42±1.84 −2.33±5.69 −4.88±6.90 2.68±0.11 0.91±0.45 67.21±2.13

ER −10.42±3.42 1.02±5.55 −8.42±4.83 −3.12±4.02 0.56±2.52 65.52±1.56

MER −10.59±3.83 0.89±5.03 - - - -
GEM −10.59±3.26 0.11±5.66 −12.53±0.65 1.36±3.05 0.17±0.59 54.19±2.37

50
0

A-GEM −9.74±3.60 1.10±7.30 −6.38±8.64 6.36±3.88 0.03±1.20 52.50±0.51

iCaRL N/A N/A N/A N/A - -
FDR −9.27±2.80 4.73±5.08 −6.23±8.79 3.71±2.70 −0.32±0.43 65.97±1.02

GSS −10.16±3.48 0.17±5.32 −7.84±4.43 2.11±3.31 0.89±0.94 58.19±4.42

HAL −9.02±5.06 0.79±7.26 −7.15±7.57 3.06±1.03 1.33±0.23 64.21±3.16

DER −7.96±2.57 1.17±6.37 −13.26±1.08 −4.52±2.39 0.21±1.21 72.45±0.14

DER++ −10.90±4.88 −2.92±5.32 −6.29±8.89 −0.31±1.86 −0.35±0.01 67.05±0.11

ER −10.97±3.70 0.17±3.46 −8.45±10.75 −1.05±5.87 1.46±1.15 73.03±1.59

MER −10.50±3.35 −0.33±5.81 - - - -
GEM −9.51±3.83 −0.28±9.16 −9.18±4.27 −1.24±0.83 1.03±0.89 62.06±3.01

51
20

A-GEM −11.31±3.44 1.14±7.08 −8.01±6.31 −3.94±0.82 0.43±0.39 51.05±1.34

iCaRL N/A N/A N/A N/A - -
FDR −9.25±4.65 −1.30±5.90 −7.69±5.95 −0.52±0.54 −0.13±0.54 72.54±0.35

GSS −10.89±3.52 −2.19±6.64 −9.88±2.21 −0.13±5.24 0.34±1.49 63.39±4.55

HAL −10.06±4.46 0.16±7.43 −10.34±3.22 0.32±1.09 0.52±0.47 66.00±0.09

DER −11.59±4.34 −2.42±5.22 −5.98±8.44 2.37±3.98 0.32±0.18 71.12±0.53

DER++ −10.71±2.95 0.20±9.44 −11.23±2.67 4.56±0.02 0.06±0.22 72.11±1.81

Tab. 4.6: FFWD results for the Experiments of Sec. 4.3.
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FBWD

|M| Method S-MNIST S-CIF10 P-MNIST R-MNIST
Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL

– FT −99.10±0.55 −4.98±2.58 −96.39±0.12 −46.24±2.12 −57.65±4.32 −20.34±2.50

oEWC −97.79±1.24 −0.38±0.19 −91.64±3.07 −29.13±4.11 −36.69±2.34 −24.59±5.37

– SI −98.89±0.86 −3.46±1.69 −95.78±0.64 −38.76±0.89 −27.91±0.31 −22.91±0.26

LwF −99.30±0.11 −6.21±3.67 −96.69±0.25 −32.56±0.56 - -
PNN - 0.00±0.00 - 0.00±0.00 - -
ER −21.36±2.46 −0.82±0.41 −61.24±2.62 −7.08±0.64 −22.54±0.95 −8.24±1.56

MER −20.38±1.97 −0.81±0.20 - - - -
GEM −22.32±2.04 −1.14±0.48 −82.61±1.60 −9.27±2.07 −29.38±2.56 −11.51±4.75

20
0

A-GEM −66.15±6.84 −0.06±2.95 −95.73±0.20 −16.39±0.86 −31.69±3.92 −19.32±1.17

iCaRL −11.73±0.73 −0.23±0.06 −28.72±0.49 −1.01±4.15 - -
FDR −21.15±4.18 −0.50±0.19 −86.40±2.67 −7.36±0.03 −20.62±0.65 −13.31±2.60

GSS −74.10±3.03 −4.29±2.31 −75.25±4.07 −8.56±1.78 −47.85±1.82 −20.19±6.45

HAL −14.54±1.49 −0.48±0.20 −69.11±4.21 −11.91±0.52 −15.24±1.33 −11.71±0.26

DER −17.66±2.10 −0.56±0.18 −40.76±0.42 −6.21±0.71 −13.79±0.80 −5.99±0.46

DER++ −16.27±1.73 −0.55±0.37 −32.59±2.32 −5.16±0.21 −11.47±0.33 −5.27±0.26

ER −15.97±2.46 −0.36±0.20 −45.35±0.07 −3.54±0.35 −14.90±0.39 −7.52±1.44

MER −11.52±0.56 −0.44±0.17 - - - -
GEM −15.47±2.03 −0.27±0.98 −74.31±4.62 −9.12±0.21 −18.76±0.91 −7.19±1.40

50
0

A-GEM −65.84±7.24 −0.54±0.20 −94.01±1.16 −14.26±4.18 −28.53±2.01 −19.36±3.18

iCaRL −11.84±0.73 −0.25±0.09 −25.71±1.10 −1.06±4.21 - -
FDR −13.90±5.19 −1.27±2.43 −85.62±0.36 −4.80±0.30 −12.80±1.28 −6.70±1.93

GSS −60.35±6.03 −0.77±0.62 −62.88±2.67 −7.73±3.99 −23.68±1.35 −17.45±9.92

HAL −9.97±1.62 −0.30±0.26 −62.21±4.34 −5.41±1.10 −11.58±0.49 −6.78±0.87

DER −9.58±1.52 −0.39±0.18 −26.74±0.15 −4.56±0.45 −8.04±0.42 −3.41±2.18

DER++ −8.85±1.86 −0.34±0.16 −22.38±4.41 −4.66±1.15 −7.62±1.02 −3.18±0.14

ER −6.07±1.84 0.03±0.36 −13.99±1.12 0.08±0.06 −5.24±0.13 −2.55±0.53

MER −3.22±0.33 0.05±0.11 - - - -
GEM −4.14±1.43 0.16±0.85 −75.27±4.41 −6.91±2.33 −6.74±0.49 −0.06±0.29

51
20

A-GEM −55.04±10.93 0.78±4.16 −84.49±3.08 −9.89±0.40 −23.73±2.22 −17.70±1.28

iCaRL −11.64±0.72 −0.22±0.08 −24.94±0.14 −0.99±1.41 - -
FDR −11.58±3.97 −0.87±1.66 −96.64±0.19 −1.89±0.51 −3.81±0.13 −2.81±0.47

GSS −7.90±1.21 −0.09±0.15 −58.11±9.12 −6.38±1.71 −19.82±1.31 −17.05±2.31

HAL −6.55±1.63 0.02±0.20 −27.19±7.53 −4.51±0.54 −4.27±0.22 −2.25±0.01

DER −4.53±0.83 −0.31±0.08 −10.12±0.80 −2.59±0.08 −3.49±0.02 −1.73±0.10

DER++ −4.19±1.63 −0.13±0.09 −6.89±0.50 −1.16±0.22 −2.93±0.15 −1.18±0.53

Tab. 4.7: FBWD results for the Experiments of Sec. 4.3.
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Fig. 4.1: Results for the model analysis. [↑] higher is better, [↓] lower is
better.

We also observe that methods resorting to gradients (GEM, A-GEM, GSS)
seem to be less effective in this setting, possibly due to gradients from
different tasks being similar and hard to disentangle.

The gap in performance we observe in Domain-IL is also found in
the Class-IL setting, as DER is remarkably capable of learning how
classes from different tasks are related to each other. This is not so
relevant in Task-IL, where DER performs on average on par with ER. In it,
classes only need to be compared in exclusive subsets and maintaining an
overall vision is not particularly rewarding. DER++ manages to effectively
combine the strengths of both methods, resulting in generally better
accuracy even in this scenario. Interestingly, iCaRL proves very effective
when using a small buffer; we believe that this is due to its helpful herding
strategy, ensuring that all classes are equally represented in memory.

4.4 Analysis

In this section, we provide an in-depth analysis of DER and DER++ by
comparing them against FDR and ER. In doing so, we gather insights on
the employment of logits sampled throughout the optimisation trajectory,
as opposed to ones at task boundaries and ground-truth labels.
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4.4.1 DER Converges to Flatter Minima
Recent studies [24, 65, 76] link DNN’s capability for generalisation to
the geometry of the loss function, namely the flatness of the attained
minimum. While these works link flat minima to good train-test general-
isation, here we are interested in examining their weight in CL.

Intuitively, if the optimisation converges to a sharp minimum w.r.t.
T1...k, the attained solution will show little tolerance w.r.t. local perturba-
tions. For this reason, we expect the drift produced in parameter space
by fitting Tk′ (for k′ > k) to produce a serious drop in performance. The
contrary happens if T1...k is optimised by attaining a flat minimum of the
loss function: the model has room for exploring the neighbouring regions
of the parameter space – where one may find a new optimum for task k′ –
without experiencing a severe failure on tasks 1, . . . , k.

We conjecture that the effectiveness of our proposal is linked to its
ability to attain flatter and more robust minima, thus allowing for easier
generalisation to yet unseen data. To validate this hypothesis, we charac-
terise the flatness of the training minima of FDR, ER, DER and DER++ by
means of two distinct metrics.

Firstly, as done in [205, 206], we consider the model at the end of
training and add independent Gaussian noise with growing σ to each
parameter. This allows us to evaluate its effect on the average loss across
all training examples. As shown in Fig. 4.1a (S-CIF10, |M| = 500), ER and
FDR reveal higher sensitivity to perturbations than DER and DER++.

Furthermore, [24, 65, 76] propose measuring flatness by evaluating
the eigenvalues of ∇2

θL̂CL: sharper minima correspond to larger Hessian
eigenvalues. At the end of training on S-CIF10, we compute the empirical
Fisher Information Matrix F =

∑∇θL̂CL ∇θL̂T
CL/N w.r.t. the whole training

set (as an approximation of the intractable Hessian [24, 81]). Fig. 4.1b
reports the sum of its eigenvalues Tr(F ): as one can see, DER and
especially DER++ produce the lowest eigenvalues, which translates into
flatter minima thus confirming our intuition. It is worth noting that FDR’s
outlying large Tr(F ) in the case of |M| = 5120 could be linked to its low
performance in S-CIF10, Class-IL.

4.4.2 DER Produces More Calibrated Networks
Calibration is a desirable property for any statistical model which meas-
ures how much the confidence of its predictions corresponds to its accuracy.
Ideally, we expect output distributions whose shapes mirror the probabil-
ity of being correct, thus providing an immediate quantification of how
much one can trust any prediction. Recent works highlight how modern
DNNs – despite largely outperforming the models from a decade ago – are
significantly less calibrated [52], as they tend to yield overconfident pre-
dictions [84]. In real-world applications, AI tools should support decisions



Chap. 4 · Knowledge Dist. Replay along the Training Trajectory 47

in a continuous and online fashion (e.g., weather forecasting [18] or eco-
nometric analysis [48]); therefore, calibration represents an appealing
property for any CL system aiming for employment outside of a laboratory
environment.

Fig. 4.1c and Fig. 4.1d respectively show the value of the Expected Cal-
ibration Error (ECE) [118] during the training and the reliability diagram
at the end of it for S-TinyImg. We observe that DER and DER++ achieve a
lower ECE than ER and FDR without further application of a-posteriori
calibration methods (e.g., Temperature Scaling, Dirichlet Calibration, etc.).
This means that models trained using Dark Experience are less overcon-
fident and, therefore, easier to interpret. As a final remark, Liu et al. link
this property to the capability to generalise to novel classes in a zero-shot
scenario [101], which could translate into an advantageous starting point
for the subsequent tasks for DER and DER++.

4.4.3 DER Constructs a More Informative Buffer
As network responses provide a richer description of the corresponding
data-point than ground-truth labels, we posit that the effectiveness of DER
can also result from the increased amount of knowledge contained in
its memory buffer: when compared to the one built by ER, the former
represents a more informative summary of the overall CL problem. To
validate this intuition, we train a new learner only on data stored in the
buffer and evaluate its resulting accuracy. We run this test using the
memories produced by DER, ER, and FDR and show the test-set accuracy
in Fig. 4.1e. We observe that DER and DER++ produce the highest perform-
ance, surpassing ER, and FDR. This is particularly evident for smaller
buffer sizes, indicating that DER’s buffer should be especially preferred in
scenarios with severe memory constraints.

In addition to pure performance, we are also interested in quantifying
the ease with which a model trained on the buffer can be specialised
to an already seen task: this would be required if new examples from
an old distribution could become available on the stream. To simulate
this scenario, we sample 10 samples per class from the test set and then
fine-tune the model on them with no regularisation; Fig. 4.1e reports the
average accuracy on the remainder of the test set of each task: even in
this benchmark, DER’s buffer yields better performance than ER and FDR,
providing additional insights on its representation capabilities.

4.4.4 Training time
When deploying a continual learner in the wild, one typically cares about
reducing the overall processing time, since training needs to keep up with
the rate at which data is made available on the stream. In this regard,
we assess the performance of DER, DER++ and other RBMs in terms of
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wall-clock time (seconds) at the end of the last task. To guarantee a fair
comparison, we conduct all tests under the same conditions, running each
benchmark on a Desktop Computer with an NVIDIA Titan X GPU and
an Intel i7-6850K CPU. Fig. 4.1f reports the execution time measured on
S-CIF10, further breaking down the time needed for each of 5 tasks. We
conclude that DER has a comparable running time w.r.t. other RBMs such
as ER, FDR, and A-GEM and is much faster than approaches such as GEM
and GSS.

4.5 Conclusions
In this chapter, we introduced DER, a simple RBM which exploits self-
knowledge distillation to retain past experience by storing previous model
activations in the memory buffer. DER has a similar complexity to ER
but attains superior results proving capable of outperforming the SOTA
on several CL classification benchmarks, spanning multiple scenarios.
By means of additional analysis, we highlighted some key properties
possessed by our proposal, namely its tendency to attain flatter minima,
achieve higher calibration and store richer information in its buffer.

The next chapter will focus on identifying some possible shortcom-
ings of DER and subsequently proposing an improved version of our
baseline model. The distillation-based approach to rehearsal pioneered in
this chapter also constitutes the basis for our approach to pre-training
preservation in CL, which will be the subject of Chap. 10.

Since its original publication, DER has gained large popularity as a
competitor in CL literature, mostly thanks to its ease of implementation
and reliability. Additionally, the original codebase for this work has grown
into the Mammoth CL library5, which is freely available and used for
experiments by several published CL papers to date [106, 197, 17, 54, 94, 9,
46, 19].

5https://github.com/aimagelab/mammoth

https://github.com/aimagelab/mammoth


Chapter 5

Past, Present and Future in
Knowledge Distillation Replay

5.1 Motivation
This chapter identifies and overcomes some limitations of DER, the simple
RBM baseline proposed in Chap. 4. Specifically, we extend our previous
method by allowing it to update its replay memory to absorb novel inform-
ation regarding past data and to actively prepare for learning yet unseen
classes. This results in an updated RBM called eXtended Dark Experience
Replay (X-DER), which we analyse in detail by means of thorough Class-IL
experiments and extensive ablation studies.

To facilitate the discussion of the issues affecting DER, we first intro-
duce a detailed terminology to describe the responses of a CL classification
model. Subsequently, we provide an analysis of DER’s limitations, paving
the way for the proposal of X-DER.

5.1.1 Terminology
To allow for a simpler exposition, we assume in the following that all
presented tasks consist of an equal number of classes (|Y| ≜ |Y0| = |Y1| =
· · · = |YT |), which is in line with the majority of Class-IL benchmarks
presented in Sec. 2.3. We introduce the following categorisation which
splits the output space of the model at task Tc (see also Fig. 5.1):

• Past Logits (ℓpa[c], with pa[c] ≜ {0, 1, . . . , c · |Yi| − 1}): logits modelling
the probabilities of classes observed up to the current task c;

• Present Logits (ℓpr[c], with pr[c] ≜ {c · |Yi|, . . . , (c+ 1) · |Y| − 1}): logits
referring to the classes appearing in the current task c;

49
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Logit inserted at task 𝒯 ǁ𝑐

MODEL

Model at task 𝒯𝑐

Past Present

Future past

Future

0 𝒯 ǁ𝑐 𝒯𝑐 t-1

Fig. 5.1: An illustration depicting the Class-IL timeline. Tc is the task
that is currently being learnt by the model; Tc̃ indicates the task at which
the example entered the memory buffer.

• Future Logits (ℓfu[c], with fu[c] ≜ {(c+ 1) · |Yi|, . . . , T · |Y| − 1}): logits
corresponding to unseen classes. They are not employed for clas-
sifying examples seen thus far but will become significant in the
following tasks.

It is noted that the proportion of these partitions changes throughout
training, as logits move from one partition to the other when changing
task. Only for buffer data-points, we additionally identify Future Past
Logits, an additional class of logits that comprises some past and present
logits:

• Future Past Logits (ℓfp[c;j], with fp[c; j] ≜ {j · |Y|, . . . , (j + 1) · |Y| − 1},
j ∈ {c̃ + 1, . . . , c}): given an exemplar (x, y, ℓ) ∈ M stored at task c̃
(c̃ < c), these logits model the classes of the jth task discovered after
the insertion of the example into the buffer.

In the remainder of this chapter, we use the expression prediction head
to indicate a subset of contiguous logits within the classifier pertaining
to the classes introduced in the same task. As we work in the Class-IL
scenario, this should not suggest that distinct prediction heads within a
classifier work independently, as the model’s predicted probability always
spans all seen classes.

We now present two key limitations affecting DER and DER++ w.r.t.
their handling of future and future past logits in the memory buffer. A
proposal for overcoming these issues is presented later in Sec. 5.2.

5.1.2 (L1): Future Past Blind Spot
Sec. 4.4.3 showed that DER and DER++ possess a richer and more inform-
ative memory buffer w.r.t. ER. This is due to their storing logits in its
memory buffer, which not only encode the ground-truth label for each
replay example, but rather a full probability distribution accounting for
its similarity with other classes as well (the so-called secondary informa-
tion [114]). However, upon close examination, we see that the information
carried by these logits is limited to classes already seen at the time an
example is inserted in M.
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Fig. 5.2: An illustration of DER++’s blindness for future past classes. For
the test examples belonging to four different classes introduced in T4
of S-CIF100, we show the average prediction at the end of the last task,
omitting ℓpr[4]. The model shows a clear prediction bias favouring classes
shown in earlier tasks.

Indeed, when inserting an example in the rehearsal memory, we can
reasonably assume that past and present logits encode all the information
useful for later replay. However, by the time we move to subsequent tasks,
the model discovers new classes and – with them – their relations with the
ones learnt previously (i.e., future past information). Unfortunately, DER
and DER++ fail to capture this information and cannot learn these rela-
tions through replay, as the future past portion of their target distillation
logits precedes the effective observation of the corresponding classes.

We illustrate this phenomenon experimentally in Fig. 5.2, which depicts
for four classes of S-CIF100’s T4 (i.e., “mouse”, “palm tree”, “otter” and “pine
tree”) the average predictions produced by the model on the test set of S-
CIF100 at the end of the last task, omitting the logits that refer to classes
introduced at T4 to focus exclusively on secondary information. For each
class, we observe that DER++-ACE1 mostly emphasises the relations with
classes that belong to previous tasks. It should be noted that such a result
cannot be attributed to a particular choice of the order in which classes are
encountered, as shown in the additional results that we present in Sec. 5.4.1
(Fig. 5.8 reports a reversed-class-order version of this experiment showing
that DER++-ACE is vice versa led to emphasise the secondary information
w.r.t. classes that are here neglected as they belong to subsequent tasks).

As a final note, we remark that this limitation does not apply to those
distillation-based models that use previous network checkpoints to compute
the regularisation objective [96, 138, 60]. In fact, as the teacher is updated
at every task boundary, its responses change and come to include future
past logits. The downside of this strategy, however, is that the update
concerns past logits as well as future past ones, making the teaching
signal vulnerable to forgetting (newer teachers struggle on old tasks).

1In this experiment, we equip DER++ with Asymmetric Cross-Entropy (ACE) [19], to
compensate the L2 bias issue described in the next section (otherwise, its effect would
overshadow L1).
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(a) Considering only examples of previous
S-CIF100 tasks misclassified by DER++, the
percentages of predictions won by each pre-
diction head, revealing a clear bias towards
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(c) Average logit values stored in the memory buffer by DER++ (left) and X-DER (right) for
the first 50 classes of S-CIF100. For DER++, future logits (red) are strongly biased towards
negative values. Thanks to the future preparation adopted by X-DER, its future logits (green)
are comparable to past ones (blue).

Fig. 5.3: Three illustrations highlighting bias in DER++.

5.1.3 (L2): Overemphasis of Present Logits

The accumulation of bias towards present classes has a clear negative
impact on performance, as investigated in Sec. 3.3.2 and also confirmed
by several recent works [182, 3, 19, 114]. This issue also affects DER
and DER++: similarly to [182], we can quantitatively characterise it by
evaluating how predictions distribute across different prediction heads (as
training progresses). In particular, we focus our analysis on misclassified
examples belonging to tasks prior to the current one and highlight in
Fig. 5.3a that the (wrong) prediction predominantly ends up in the last
observed task.

The negative bias towards past classes can be ascribed to the optim-
isation of the cross-entropy loss on examples from the current task. As
pointed out in [19], when a new task is presented to the net, an asymmetry
arises between the contributions to weights updates of replay data and
current examples: the gradients of new (poorly fit) examples prevail
(Fig. 5.3b). If we only aim at learning the current task, this is desirable
as it favourably dampens logits of past classes and prevents confusion.
However, a hasty attenuation of earlier classes clashes with the goal of
producing a unified classifier.
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Fig. 5.4: X-DER uses distinct objectives for different partitions of the
output space: i) it applies Cross-Entropy in isolation on the head of the
current task; ii) it relieves forgetting by applying Knowledge Distillation
on examples from M; iii) it warms future logits, tied to unseen classes.
Predictions inM are updated to deal with secondary information (future
past) relating old examples with the classes emerging later on the stream.

Similarly, we observe a consistent negative bias towards future classes.
We again ascribe this behaviour to the cross-entropy loss: since its applic-
ation spans all prediction heads, the future ones are always given zero
post-softmax targets and are thus strongly pushed towards pre-softmax
negative values. Again, this desirably prevents future classes from being
predicted; however, we mean future heads to accommodate the learning
of future tasks. Therefore – if the negative bias accumulates so strongly
on these heads – the recovery from that situation may slow down and
complicate the learning of new tasks. In this regard, Fig. 5.3c illustrates
the behaviour of future logits and compares the average responses of
both DER++ (Fig. 5.3c, left) and the new approach we propose in Sec. 5.2
(Fig. 5.3c, right). We observe that the former consistently exhibits negat-
ive values for unseen classes, whereas the latter avoids bias accumulation
on the account of the regularisation it imposes on future logits.

5.2 eXtended Dark Experience Replay
By addressing the above-discussed limitations of DER and DER++, we
propose an enhanced model called eXtended Dark Experience Replay (X-
DER). A visual overview of the proposed approach is presented in Fig. 5.4.

5.2.1 Future Past Update
To deal DER and DER++’s failure to capture future past secondary inform-
ation, we devise a simple procedure designed to keep the memory buffer
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Alg. 5.1: Update of future past logits
1: Input: memory bufferM, buffered example (x, y, ℓM) ∈M
2: new logits ℓ, attenuation rate γ (default 0.8)
3: ℓMgt ← one-hot(y) · ℓM
4: ℓfpmax ← maxj∈fp[c;c] ℓj ▷ get maximum future past logit
5: h← min(γ · ℓMgt /ℓfpmax, 1) ▷ compute the rescaling factor
6: for j in fp[c; c] do
7: ℓMj ← h · ℓj
8: end for
9: M← update-record(M, (x, ℓM, y)) ▷ save new logits intoM

up to date. Let us suppose the model is learning task Tc and an example
(x, y, ℓM) ∈M from a previous task Tc̃ is sampled from the memory buffer
for replay. Current model output ℓ ≜ hθ(x)

2 now contains the secondary
information of task Tc for x, which is missing in ℓM. Therefore, we
propose to implant the corresponding logits ℓfp[c;c] into the memory entry
containing ℓM. Such an operation only involves the present prediction
head and is applied both while learning Tc̃ and at the end of it.

From a technical perspective, we do not simply overwrite previous
logits with new ones. Since nothing prevents the value range of logits
from changing in subsequent tasks, simply implanting their values in the
memory buffer could produce unstable targets3. especially relevant if we
consider and using these for later replay would exacerbate the issue even
more. Instead, we carefully re-scale the portion tied to future past so that
its maximum logit ℓfpmax = maxj∈fp[c;c] ℓj is lower than the ground-truth
one ℓMgt = one-hot(y) · ℓM already in memory. Formally:

ℓMk ←− ℓk ·min(γ
ℓMgt

ℓfpmax
, 1), k ∈ fp[c; c] (5.1)

where γ ∈ [0, 1] is a hyper-parameter controlling the attenuation rate. For
a in-detail exposition of the update procedure, please refer to Alg. 5.1.

5.2.2 Future Preparation
Most Class-IL methods exploit the information available up to the current
task to prevent the leak of past knowledge. Here, we take an extra step and
argue that the same care should be placed on preparing prediction heads
to accommodate future classes. The underlying intuition is illustrated in
Fig. 5.5: considering JT on all tasks (Fig. 5.5, left) as the optimal solution
we have to approximate, standard CL approaches (Fig. 5.5, centre) focus

2With hθ indicating pre-softmax model responses of fθ(·), as defined in Sec. 3.3.2.
3For instance, the accumulation of bias highlighted in Sec. 5.1.3 is likely to produce

targets whose future-past portion significantly overshoots the present.
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Fig. 5.5: X-DER introduces pretext tasks for anticipating unseen classes.

only on a (growing) part of the overall problem, i.e., the tasks seen up to
the current one. Instead, we claim that even a coarse guess on unseen
tasks can lead to a better estimate of the overall CL objective (Eq. 2.1).

X-DER pursues this goal directly through optimisation (Fig. 5.5, right)
by encouraging the (yet-to-be-established) semantics of logits correspond-
ing unseen classes to be consistent across instances of the same class. As
outlined by the field of contrastive self-supervised learning [31, 198], the
skilful use of data augmentation techniques can produce useful repres-
entations even when no label is made available to the learner. As such
information is not available for future classes while training, we expect a
contrastive objective to be an effective warm-up strategy for future tasks.

Intuitively, the auxiliary objective we present in the following encour-
ages each future prediction head to yield similar responses for similar
examples. However, as we are given the labels of both the examples of the
current task and the memory buffer, we refine the contrastive objective
by incorporating class supervision. As shown in [77], we can leverage it
to pull together representations of examples from the same class and to
do the opposite for different classes.

In practice, given a batch of N examples, we extend it by appending
N additional views of the original items (obtained through strong data
augmentation). We then consider the model response ℓ(xi) ≜ hθ(xi) for the
ith example: in particular, we firstly focus on the (normalised) jth future
prediction head (s.t. j ∈ {c+1, . . . , T−1}), which we denote with ℓ̃fu[c;j](xi) ≜
L2Norm(ℓ{j·|Y|,...,(j+1)·|Y|−1}(xi)). We then compute the following loss term:

LSC(xi, yi; j) = −
∑

p∈P (i)

log
exp(ℓ̃fu[c;j](xi) · ℓ̃fu[c;j](xp)/τ)

2N∑
k=1
k ̸=i

exp(ℓ̃fu[c;j](xi) · ℓ̃fu[c;j](xk)/τ)

, (5.2)

where P (i) = {p ∈ {1, . . . , 2N} ; i ̸= p ∧ yi = yp} stands for the positive
set (i.e., the indices of examples sharing the label of the ith item) and
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τ is a positive scalar value that acts as a temperature. The full future
preparation objective is simply obtained by further averaging the values
of Eq. 5.2 across all future heads:

LFP(xi, yi) =

T−1∑
j=c+1

LSC(xi, yi; j). (5.3)

Since Eq. 5.3 encourages unused heads to convey additional semantics
about the examples seen so far, we find it beneficial to also include future
logits in replay. Moreover, as new classes emerge in later tasks, we
account for the corresponding semantic drift by applying the update
procedure outlined in Sec. 5.2.1 on these logits also.

5.2.3 Bias Mitigation

Sec. 5.1.3 presents the accumulation of bias on the current prediction
head as a key weakness of DER and DER++. As also observed in other
recent works [3, 114, 19], this issue can be mitigated by revising the
way the cross-entropy loss is applied during training. Given an example
from the current task, we do not compute the softmax activation over all
logits, but rather restrict its application to those modelling the scores of
current-task classes. This removes the predictions of past classes from
the equation and avoids their penalisation by the outweighing gradients
of novel examples. In formal terms, we compute the following objective:

LS-CE(xi, yi) = CE(softmax(ℓpr[c](xi)), yi). (5.4)

While this modification has an important effect on the input stream, it is
not strictly necessary when working on buffered examples of previous
tasks assuming that they are class-balanced; for this reason, we apply
Eq. 5.4 on the input stream and instead apply the softmax across the logits
of all seen classes for replay data:

LM-CE(xi, yi) = CE(softmax(ℓpa[c](xi)), yi). (5.5)

As a side effect of the introduction of LS-CE and LM-CE, we are not
training all prediction heads at once: nothing prevents past and future
responses from overshooting present ones and causing trivial classifica-
tion errors. We address this issue by introducing an extra optimisation
constraint limiting the activation of past and future heads: we require
their values for current-task examples to be lower than a safeguard
threshold, identified as the logit ℓgt(xi) ≜ one-hot(yi) · ℓ(xi) corresponding
to the ground-truth class. In doing so, we penalise the maximum past
(future) logit ℓpa-max(xi) = maxj∈pa[c] ℓj(xi) (ℓfu-max(xi) = maxj∈fu[c] ℓj(xi)) if
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Fig. 5.6: Overview of which loss terms cover which prediction heads.

it oversteps ℓgt(xi):

LPFC(xi, yi) =max(0, ℓpa-max(xi)− ℓgt(xi) +m)+

max(0, ℓfu-max(xi)− ℓgt(xi) +m), (5.6)

where m is a hyper-parameter that controls the strictness of the penalty.

5.2.4 Overall Objective
To sum up, eXtended Dark Experience Replay (X-DER) optimises the fol-
lowing loss as a proxy of Eq. 2.1:

LX-DER ≜ LDER + LS/M-CE + LF, (5.7)

where LDER is given in Eq. 4.4, LS/M-CE regroups the application of Eq. 5.4
and 5.5 on input and buffer data respectively:

LS/M-CE = E
(x,y)∼Tc

(x′,y′)∼M

[
LS-CE(x, y) + β · LM-CE(x

′, y′)
]
, (5.8)

and LF regroups Eq. 5.3 and 5.6:

LF = E
(x,y)∼Tc

(x′,y′)∼M

[
λLFP(x||x′, y||y′)︸ ︷︷ ︸

Eq. 5.3
Future Preparation

+η LPFC(x||x′, y||y′)︸ ︷︷ ︸
Eq. 5.6

Past/Future Constraint

]
. (5.9)

While outlining these objectives we introduce the additional hyper-
parameters β, λ and η governing the contribution of each term to the
overall loss. For the sake of clarity, Fig. 5.6 proposes a visual breakdown
of the loss terms and the involved partitions of the classifier. For a deeper
technical understanding of X-DER, we refer the reader to the pseudo-code
provided in Alg. 5.2.
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Alg. 5.2: eXtended Dark Experience Replay (X-DER)
1: Input: tasks T0, T1, . . . , TT−1, parameters θ, learning rate lr,
2: bufferM, scalars α, β, λ, η,m, data aug/strong-aug routines.
3: M← {}
4: for c in 0, 1, . . . , T − 1 do
5: for x, y in Tc do
6: xM, yM, ℓM ← sample(M)
7: ℓ, ℓ′ ← hθ(aug(x)), hθ(aug(x

M))
8: LS-CE ← CE(softmax(ℓpr[c]), y) + β · CE(softmax(ℓ′pa[c]), y

M)

Sep. Cross Entropy (Eq. 10 and 13)

9: M← logits-update(M, (xM, yM, ℓM), ℓ′) ▷ see Alg. 5.1

10: xM, yM, ℓM ← sample(M)
11: ℓ′ ← hθ(aug(x

M))
12: LDER ← α ∥ℓM − ℓ′∥22

Dark Experience Replay (Eq. 5)

13: M← logits-update(M, (xM, yM, ℓM), ℓ′)

14: xM, yM, _← sample(M)
15: X ,Y ← [x, xM], [y, yM]
16: X ,Y ← [str-aug(X ), str-aug(X )], [Y,Y]
17: LFP ← LFP(X ,Y)

Future preparation (Eq. 9)

18: xM, yM, _← sample(M)
19: X ,Y ← [x, xM], [y, yM]
20: ℓ← hθ(aug(X ))
21: ℓgt ← {one-hot(Y[n]) · ℓ[n]}|X|

n=1 ▷ logits of ground-truth class
22: ℓpa-max ← {maxj∈pa[c] ℓ[n]j}|X|

n=1 ▷ maximum past logits
23: ℓfu-max ← {maxj∈fu[c] ℓ[n]j}|X|

n=1 ▷ maximum future logits
24: LPFC ← max(0, ℓpa-max − ℓgt +m) + max(0, ℓfu-max − ℓgt +m)

Past/Future Constraints (Eq. 11)

25: LF ← λLFP + ηLPFC

26: LX-DER ← LS-CE + LDER + LF ▷ overall loss (Eq. 12)
27: θ ← θ − lr · ∇θLX-DER ▷ gradient step
28: end for
29: x, y ← sample(Tc,num-items = |M|/c+ 1)
30: ℓ← hθ(aug(x))
31: M← remove-items(M,num_items = |M|/c+ 1)
32: M←M∪ (x, y, ℓ)

Insertion of the new items into M

33: end for
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5.3 Experiments

5.3.1 Experimental Settings
In this section, we present a comprehensive suite of Class-IL experiments
aimed at evaluating the merits of X-DER against the SOTA. With respect
to previous chapters, we choose to employ longer and more complex
CL benchmarks such as S-CIF100, S-miniImg and the newly introduced
action classification benchmark S-NTU60, aimed at evaluating the impact
of catastrophic forgetting on non-image data (i.e., skeletal graphs that
expand in time) and Graph CNNs architectures [80]. All experimental
settings are in accordance with Tab. 2.1 and results are presented in terms
of FAA and FAF, averaged over 5 independent runs.

In addition to the usual upper and lower bound results provided by JT
and FT respectively, we report the result for our baseline methods – DER
and DER++ – and present the following Class-IL competitors: LwF.MC, ER,
GDumb, ER-ACE, ER-RPC, BiC, iCaRL and LUCIR.

Since we also wish to validate the design choices of our proposal, we
further compare against the four following ablative variants of X-DER:

• X-DER without memory update (X-DER no mem
update), which does not update

logits through the sequence of tasks;

• X-DER without future heads (X-DER w/out
future), which handles new classes

in the simplest manner possible – by adding a new prediction head
only when the new task is presented;

• X-DER with CE on future heads (X-DER CE
future), a baseline that uses

future heads like our proposal but – in line with what is done by DER
and DER++ – includes them in the computation of the stream-specific
portion of the separated cross-entropy loss thus targeting them with
zero probabilities while training;

• X-DER with RPC on future heads (X-DER RPC
future), which does not

require the semi-supervised learning objective of Sec. 5.2.2, but
rather deals with future preparation by using the fixed Regular
Polytope Classifier proposed in [132]. As detailed in Sec. 2.5, this
approach ensures that prediction weights are equally distant by
design.

5.3.2 Results
By examining Tab. 5.3.2, we can make the preliminary consideration that
the considered regularisation approach (LwF.MC) consistently underper-
forms online RBMs4. This observation aligns with the results in previous

4i.e., all RBMs but GDumb.
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FAA (FAF) S-CIF100 S-miniImg S-NTU60

JT 70.44 (−) 53.55 (−) 85.75 (−)

FT 9.43 (89.82) 4.51 (77.38) 15.74 (92.85)
LwF.MC 16.22 (54.89) 12.20 (23.96) 28.24 (46.50)

|M| 500 2000 2000 5000 500

ER 22.10 (73.64) 38.58 (53.28) 14.57 (64.49) 21.42 (50.36) 51.77 (48.54)
GDumb 9.98 (−) 20.66 (−) 15.22 (−) 27.79 (−) 27.59 (−)
ER-ACE 38.75 (40.04) 49.72 (25.71) 22.60 (23.74) 27.92 (19.72) 52.14 (23.33)
ER-RPC 22.34 (71.94) 38.33 (52.33) 15.60 (61.00) 24.69 (46.34) 49.40 (48.10)
BiC 36.02 (51.85) 46.39 (40.49) 12.96 (57.19) 14.45 (56.55) 29.20 (66.16)
iCaRL 46.52 (22.06) 49.82 (18.07) 22.58 (16.46) 22.78 (16.37) 45.83 (21.48)
LUCIR 40.59 (34.55) 41.73 (25.41) 14.97 (43.83) 17.61 (39.01) 58.06 (32.58)

DER 36.60 (54.99) 51.89 (34.54) 22.96 (48.78) 29.83 (36.38) 49.49 (43.09)
DER++ 38.25 (50.54) 53.63 (33.66) 23.44 (46.69) 30.43 (37.11) 55.32 (35.95)

X-DER no mem
update 42.67 (24.03) 56.55 (9.24) 25.76 (16.76) 31.40 (13.50) 57.66 (12.52)

X-DER w/out
future 45.61 (33.31) 55.00 (22.94) 21.71 (36.92) 27.45 (18.39) 61.02 (9.80)

X-DER CE
future 47.67 (25.12) 55.61 (10.52) 27.18 (36.12) 30.69 (16.80) 61.58 (10.94)

X-DER RPC
future 48.53 (26.94) 57.00 (12.65) 26.38 (38.33) 29.91 (28.29) 62.41 (8.88)

X-DER 49.93 (19.90) 59.14 (12.58) 28.19 (20.45) 31.70 (15.87) 64.86 (9.95)

Tab. 5.1: Experimental results on multiple Class-IL settings. Results
reported as FAA and FAF (in parentheses).

chapters and in [6, 45], suggesting that the adoption of a replay memory
is essential for achieving solid performance in Class-IL.

As it only learns from its memory buffer, the offline training of GDumb
allows it to observe (few) examples from all classes jointly, avoiding issues
related to bias by design. On S-miniImg, which features a long sequence of
tasks, this is sufficient to outperform methods that do not compensate bias
(e.g., ER, DER, ER-RPC). However, since it entirely discards the remaining
data from the input stream, GDumb produces a lower FAA w.r.t. to most
online-learning methods.

Among ER-based approaches, ER-ACE stands out as the most effective
thanks to its loss, carefully designed to prevent interference between the
learning of the current task and the replay of old data. This trait allows
to protect previously acquired knowledge, resulting in lower FAF.

On average, methods combining rehearsal and distillation achieve
better performance w.r.t. simple replay. iCaRL limits forgetting consist-
ently and achieves balanced accuracy on all seen tasks thanks to its
nearest-mean-of-exemplars classifier. This is rewarding on the medium-
length S-CIF100 benchmark but proves sub-optimal on both S-miniImg
and S-NTU60 (due to forgetting on the former and to lack of fitting of the
current task on the latter). Differently, LUCIR delivers a high accuracy
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Fig. 5.7: For the experimental settings reported in Tab. 5.3.2, the average
test-set accuracy after each observed tasks.

on the last few encountered tasks, proving very effective on the short
S-NTU60 but struggling on longer sequences. While its performance is
adequate on S-CIF100, BiC is characterised by the highest FAF on all other
benchmarks, leading to a FAA score close to the one of LwF.MC.

Our previous proposals DER and DER++ qualify as strong baselines
when combined with a large-enough memory buffer. However, due to the
limitations explored in Sec. 5.1.2 and 5.1.3, they occasionally fall short of
approaches that contrast bias more effectively (ER-ACE, iCaRL, LUCIR for
|M| = 500 on S-CIF100; ER-ACE and LUCIR on S-NTU60).

Compared to the current SOTA, X-DER delivers higher accuracy and
lower forgetting across all benchmarks. As one can observe from a
close exam of its incremental accuracy values (Fig. 5.7), the proposed
enhancements lead to increased performance retention on past tasks,
lifting its score over competitors significantly as training progresses.

To achieve deeper understanding, we further compare X-DER against
its ablative baselines. By omitting to update the content of the memory
buffer, X-DER nomem

update shows a significant drop in performance (especially
relevant for smaller |M|).

Comparatively, the strategy adopted for preparing future logits seems
less influential. The proposed contrastive preparation loss of X-DER
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yields the lowest FAF rates, validating our intuition to use past data
to prepare future learning. Adopting the theoretically grounded but
fixed design of X-DER RPC

future comes at a steady but non-negligible cost in
performance across all benchmarks. X-DER CE

future shows that dampening
future heads by indiscriminately applying CE leads to a further decrease
in accuracy; however, even this approach is still preferable to X-DER w/out

future,
which produces higher FAF metrics. Its result stresses the importance of
preparing the model for future classes and confirms that using future
heads and replaying their logits acts as a remedy against forgetting.

5.4 Analysis
This section features an extended set of analytical experiments charac-
terising X-DER w.r.t. the aspects presented in Sec. 4.4 and beyond.

5.4.1 X-DER Compensates Future Past Blindness

In this section, we assess whether the proposed X-DER is effective in
dealing with the delicate issue discussed in Sec. 5.1.2. We repeat the
preliminary experiment of Fig. 5.2 to record the the average output
distribution delivered by DER++-ACE, X-DER and JT and report the detailed
results in Fig. 5.8. For each model, we present two settings: in the first,
classes are shown to the model in the usual order (forward order, blue
bars); in the second, we reverse that order (backward order, orange bars).

Let us first focus on the class “mouse” (first panel) and consider the
output of JT; this method does not learn continually but rather acts as an
upper bound providing us with reference inter-class similarities. In the
case at hand, it reveals that mouse examples mostly activate the logits
associated with hamsters and shrews. As expected, inverting the order of
the classes does not alter the distribution produced by JT.

Instead, DER++-ACE shows differentiated behaviours: in forward order,
it captures only the mouse-hamster similarity; vice versa, it learns about
the mouse-shrew similarity only when trained in reverse order. This is a
clear exemplification of limitation L1 at play: when training on classes
in a forward order, hamster, mouse and shrew are learnt during the 3rd,
5th and 7th incremental task of S-CIF100 respectively. Accordingly, DER++-
ACE replay targets include the association of mouse examples with high
logits for the hamster class, but do not encode meaningful information
regarding the shrew class, which is learnt in a later task. The opposite
happens when the reverse order is applied (shrews are learnt before mice).

Instead, X-DER shows a more coherent activation pattern when training
in either order and is effective in capturing similarities with future classes
as well as past ones. We primarily ascribe this behaviour to the update of
future past targets in replay (Sec. 5.2.1).
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Fig. 5.8: Handling of future past logits – additional results.
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KD SS-ERR SS-NLL

|M| 500 2000 500 2000
ER ¦ – ¦ 0.71 0.68 ¦ 4.00 4.32
ER-ACE ¦ – ¦ 0.63 0.60 ¦ 2.64 2.81

DER ¦ ✓* ¦ 0.67 0.64 ¦ 2.22 2.21
DER++ ¦ ✓* ¦ 0.67 0.64 ¦ 2.22 2.25

LUCIR ¦ ✓ ¦ 0.60 0.59 ¦ 2.21 2.22
iCaRL ¦ ✓ ¦ 0.60 0.60 ¦ 1.90 1.94

X-DER no mem
update ¦ ✓* ¦ 0.64 0.61 ¦ 2.14 2.10

X-DER ¦ ✓ ¦ 0.57 0.56 ¦ 1.83 1.82

Tab. 5.2: Secondary information metrics (lower is better). – indicates no
use of Knowledge Distillation (KD) while training, ✓* indicates KD of
past logits only, ✓ indicates KD of all logits (including future past).

5.4.2 X-DER Produces Better Continual Teachers
This section investigates the effectiveness of X-DER against forgetting of
old tasks. We build upon the seminal work of [111], which has recently
proposed a statistical approach to explaining Knowledge Distillation [59].
Essentially, the authors assume that the teacher’s response Pt(y|x) con-
stitutes an approximation of the true Bayes class-probability distribution
P∗(y|x), which represents the suitability of each class y for a given input
x (i.e., an encoding of confusion among classes in model prediction). With
respect to one-hot targets, it is proven that minimising the risk associated
with P∗ gives the student an objective with lower variance, which aids
generalisation. However, the true P∗ cannot be accessed and an imperfect
estimate must be used instead (e.g., the response of a teacher net). In
that sense, the better the estimation of the true Bayes probabilities, the
higher the generalisation capabilities of a student learning through the
corresponding risk.

In the following, we leverage this newly introduced theory to shed
light on key properties that characterise X-DER, namely the improved
retention of secondary information, the increase informativeness of the
constructed memory buffer and its calibration.

Analysis of Secondary Information

A compelling line of works analyses Bayes class-probabilities in the key
secondary information [188, 114], i.e., for each non-maximum prediction
score, the model’s belief about the semantic cues of the corresponding
class within the input image. Unsurprisingly, Yang et al. identify the
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preservation of secondary information as a key property of KD [188]: they
empirically find that teachers with richer secondary information lead to
students that generalise better. However – when dealing with catastrophic
forgetting – it is problematic to capture rich secondary information, given
that it only becomes available progressively as tasks advance.

Seeking to measure how effectively distinct CL approaches capture
secondary information, we follow the setup proposed in [114] and – after
training on S-CIF100 – we evaluate their predictive capability when
ignoring the ground-truth class and instead using a coarse labelling,
given by regrouping the 100 classes into their natural 20 super-classes.
According to the authors of [114], a model achieving a high classification
score in this setup proves more effective in retaining better secondary
information, as classes belonging to the same super-class can be assumed
to have higher visual similarity than the ones of different super-classes.

The retained secondary information can be quantified by two met-
rics [114]: on the one hand, the Secondary-Superclass Error (SS-ERR)
equals 1 minus the probability of predicting the right super-class when
the maximum logit is discarded during softmax computation; on the
other, the Secondary-Superclass NLL (SS-NLL) considers the negative
log-likelihood when using super-classes as labels.

The results in Tab. 5.2 show that X-DER, iCaRL and LUCIR consistently
end up predicting the correct coarse classes (lower SS-ERR) and do so more
confidently (lower SS-NLL). This is in line with our expectations: as these
methods handle hindsight-learnt similarities between newly discovered
classes and old ones, the corresponding teaching signal leads the student
towards richer secondary information. In contrast, DER and DER++ yield
lower metrics due to i) their distillation targets neglecting logits of future
past, ii) the existence of a large bias towards the last seen classes. To
verify the importance of i), we also run this evaluation on the variant of
X-DER that does not update its buffer logits (X-DER nomem

update, Sec. 5.3.1); this
expectedly results in metrics comparable to DER and DER++. ER – which
applies no distillation at all – is also affected by issues i) and ii); indeed,
it produces the highest metrics among the evaluated methods. On the
contrary, ER-ACE – which addresses ii) through its segregated objective –
attains lower metrics closing in on DER and DER++. This highlights that
bias control too plays a primary role in the capture and conservation of
secondary information.

Offline Training on Memory Buffer

Distinct RBMs compared in Sec. 5.3.2 retain different summaries of the
previously encountered knowledge: approaches such as ER, iCaRL and
LUCIR keep labels of the recorded samples, DER and DER++ use the
responses provided by the model at insertion time, while X-DER exploits
responses that are updated as future past logits become available. As done
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Fig. 5.9: Accuracy of models trained from scratch on memory buffers of
ER (Labels), DER++ (Logits, Both), and X-DER (Logits, Both). The resulting
accuracy measures the informativeness of the memory buffer.

previously in Sec. 4.4.3, we assess the amount of reliable information
retained by these approaches by training a model from scratch using only
the data available in the final buffers constructed by ER, DER++ and X-
DER. We compute the performance achieved by the resulting models after
training for 70 epochs and show the results on S-CIF100 and S-miniImg
in Fig. 5.9.

In line with the theoretical results of [111], we observe that relying
on logits yields lower generalisation error w.r.t. learning from labels
alone and combination of hard and soft supervision signals leads to slight
improvements both for DER++ and X-DER. Most significantly, the use of
updated logits of X-DER results in a steady improvement: when compared
to DER++, we observe an average gain of 6% (when using logits alone)
and 6.25% (combined with labels). Based on the considerations above, we
attribute this additional regularisation effect to the exploitation of future
past logits, which arguably drives the model towards a better estimate of
the true Bayes class-probabilities.

Calibration of Continual Learners: A New Perspective

A key issue that needs solving is coming up with a way to assess the
quality of the approximation of the P∗. Menon et al. [111] suggest that a
rough quantification can be obtained through ECE [52]. Remarkably, this
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Fig. 5.10: Effect of several regularisation methods on net calibration
(S-CIF100). While most of them degrade with lower memory size (left),
X-DER yields robust performance.

provides a more meaningful interpretation to the experiment conducted
in Sec. 4.4.2, in which we identified the higher degree of calibration of
DER and DER++ as a key factor underlying their improved accuracy.

On these premises, we here repeat the evaluation on top of our new
proposal. Fig. 5.10 shows the results obtained on S-CIF100: X-DER attains
a lower ECE compared to other approaches. This not only applies to models
replaying ground-truth labels such as ER, but also to DER and DER++,
which use soft labels. This last finding further confirms our intuition that
the improvements of X-DER can be linked to a better estimation of the
underlying Bayes class-probabilities.

5.4.3 Future Preparation Matters
One of the key constituents of X-DER is the employment of a pretext
task to warm up unused heads, leading to the gentler adaptation of the
network to unseen data distributions and ultimately lowering the risk of
forgetting. To verify whether this happens, we consider a setting where
the model is given a few data-points of the incoming tasks to be used for
few-shot adaptation and verify how well the feature space spanned by
future heads trained as specified in Sec. 5.2.2 fulfils this purpose.

We consider several RBMs (including ER, DER, DER++ and our X-DER)
and, firstly, stop their training after the 6th task of S-CIF100. In Fig. 5.11a,
we measure their performance on each of the remaining four tasks
separately by fitting a Nearest Neighbour (NN) classifier on top of the
activations given by the corresponding future prediction head, without
finetuning the model on the new target data. We repeat this evaluation at
varying training set sizes (ranging from one to fifty shots per class) and
observe that X-DER achieves the best results among the tested approaches.

To paint a more comprehensive picture, we take into consideration
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Fig. 5.12: On S-CIF100 and S-miniImg, an analysis of how the number of
heads pre-allocated in preparation of future tasks affects the FAA.

the transfer from all encountered task (and not only the 6th) and assess
how the capabilities linked to forward transfer evolve one task after the
other. To do so, for each observed task Tt ranging from the first to the
penultimate, we initially define the performance curves NNt→t̃(k) over the
unseen tasks t̃ > t, where k indicates the number of shots per class (for
reference, Fig. 5.11a depicts NN5→t̃(k) ∀t̃ ∈ {6, 7, 8, 9}). Subsequently, we
summarise each curve with the Area Under the Curve AUCt→t̃ and finally
average the latter across t̃ (e.g., AUC5 ≜

∑9

t̃=6
AUC5→t̃), thus providing a

compact generalisation measure w.r.t. all future tasks.
Fig. 5.11b then reports the trend of the AUCt for the tested model.

We do not observe a clear distinction in their performance on earlier
tasks; however, the AUC curve of X-DER widens the gap as the number of
seen tasks increases (it scales better to the number of seen tasks). This
suggests that the more and more diverse the data present in the memory
buffer, the higher the chances that optimising Eq. 5.3 will lead to good
forward transfer on unseen data.

Pre-allocation of Future Tasks

In proposing X-DER, we have supposed that the overall number of tasks
T can is known in advance. This allows us to instantiate a last fully-
connected layer large enough to accommodate the logits for all seen and
unseen classes. However, in practical scenarios, we may not know how
many tasks will be encountered from the outset, bringing into question
whether our approach can still be applied to those settings.

We here present a straightforward modification that enables the number
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of future tasks to be unknown. We initially set up the last layer to expose
t̃+1 prediction heads: precisely, the one dedicated to the first task and the
remaining t̃ to future tasks. In addition, we instantiate a new head at the
end of each task, so as to always have t̃ spare heads for incoming tasks.

Fig. 5.12 depicts how such a modification affects performance for
varying t̃. We draw the following conclusions: i) given the slight gap in
performance between X-DER and the proposed variant, knowing the overall
number of tasks does not appear necessary for achieving good results; ii) a
higher number of pre-allocated heads positively influences FAA. This latter
finding suggests that future logits also play a role against forgetting:
we conjecture that the rehearsal of future logits might represent an
additional guard against forgetting even if they do not encode a prediction
probability, as they still provide a reminder of past neural activities.

5.4.4 Why Local Minima Geometry Matters in CL
Effectiveness of Flat Minima in Continual Learning

In Sec 4.4.1, we reported some agreed-upon hypotheses on the relation
between the nature of the local minima attained by a CL model and the
thereby linked generalisation capabilities. Flatness around a loss minim-
iser is regarded as a remarkable property for CL settings: intuitively, a
loss region tolerant towards local displacements favours later optimisation
trajectories that entail a less severe drop in performance for old tasks.

As a proof of concept, we used two common metrics to characterise
the geometry of the minima and verify that DER and DER++ exhibit
favourably flatter minima. A similar approach was recently taken in [113],
which assessed the impact of different training regimes on forgetting
and showed that forgetting diminishes when strategies known to affect
the width of the minima (e.g., higher initial learning rates, dropout,
small batch sizes, etc.) are applied. Since such a matter is still largely
explained through intuition, we propose an empirical experiment showing
the general importance of flat minima in CL. Given a sequence of two
tasks, we deliberately drive the optimisation of the former towards a
wider minimum. Differently from [113], we explicitly pursue this objective
by introducing a tailored term in the loss function. In this regard, we
evaluate two distinct approaches:

• LFR [186], which seeks to minimise the ℓ1-norm of the loss gradi-
ents w.r.t. a malign example forged so that: i) it lies in the ε-
neighbourhood centred on a given (benign) example; ii) it maximises
the norm of the gradients. The authors prove that the robustness
towards this kind of attack favourably relates to the flatness of the
loss surface;

• LLR [136], which promotes loss smoothness around the local neigh-
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on the test-set of the former task. LFR and LLR, which encourage flatter
minima, lead to higher retention of performance.

bourhood. As before, it consists of a regularisation term that depends
on adversarial examples: supposing a smooth and approximately
linear loss surface, the first-order Taylor expansion on w.r.t. these
inputs should represent a good approximation of the value of the
loss function. Consequently, LLR simply seeks to minimise the error
one commits when using such an approximation.

We train the network on the former task pairing the CE loss with either
flattening regularisation and then measure the forgetting incurred by ER
after the second task. As a baseline, we consider the results achieved when
the additional regularisation is not applied during the former task. We
conduct this evaluation on top of nine possible combinations of adjacent
tasks of S-CIF100 and report the results in Fig. 5.13. The application of
either regularisation technique upper-bounds the baseline across all tasks
configurations.

This provides strong empirical evidence towards the benefits of attain-
ing flat loss minimisers in CL and it corroborates the intuition behind the
effectiveness of those self-distillation-based approaches (e.g., iCaRL, LwF,
DER and DER++, etc.) which are known to lead to such a regime [205, 204].

Measuring the Flatness

Having established the significance of flat minimisers in CL problems, we
present here the two quantitative evaluations first introduced in Sec. 4.4.2
to illustrate the stability and flatness of the optima observed for X-DER
and other CL approaches.

Firstly, we measure how weight perturbations affect the expected loss
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Fig. 5.14: Analysis of minima attained by distinct approaches.

over the entire CL problem L̂CL (Eq. 2.2) w.r.t. to the training set [121, 76]:

Lσ ≜
T−1∑
i=0

E
(x,y)∼Ti

θ̃∼N (θ,σ)

[
L̂CL

(
fθ̃(x), y

)]
; (5.10)

specifically, we follow the hints of [93, 121] and weigh the perturbation
according to the magnitude of parameters (σi = α|θi|), thus preventing
degenerate solutions [121]. With reference to Fig. 5.14a, it can be seen that
logit-replay based models such as DER, DER++ and X-DER consistently
preserve a lower value for Eq. (5.10). Among them, X-DER exhibits a
higher tolerance to perturbations especially in the high-σ regime, which
suggests that its attained minima are overall harder to disrupt when
compared to the other methods.

A complementary flatness measure [24, 65, 76] examines the eigen-
values of the Hessian of the overall loss function ∇2

θL̂CL, approximated
by computing the empirical Fisher Information Matrix on the training
set [24, 81]:

F ≜
T−1∑
i=0

E
(x,y)∼Ti

[
∇θL̂CL

(
fθ(x), y

)
∇θL̂CL

(
fθ(x), y

)T]
. (5.11)

As done in Sec. 4.4.2, we estimate the sum of the eigenvalues of F through
the trace of the matrix Tr(F ), reported in Fig. 5.14b. Even according to
this metric, DER, DER++ and X-DER reach flatter minima w.r.t. other
approaches. Remarkably, X-DER produces lower Tr(F ) values, suggesting
that its improved accuracy can be linked to the local geometry of the loss.
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5.4.5 X-DER Provides Better Explanations for its Predictions
In this section, we present a final analysis aimed at assessing the quality
of knowledge acquired by the model. To do so, we focus on ER, DER and X-
DER and evaluate their responses through model explanation experiments
to get insights into the reasons underlying their predictions.

Model Explanations for Primary Information

Motivated by the investigation carried out in [32], wish to assess the
quality of the visual concepts encoded in the intermediate layers of the
network. More precisely, we are interested in determining whether the
use of Knowledge Distillation leads to more refined visual concepts in CL
regimes, even with catastrophic forgetting in action.

Since there is no agreement on the exact definition of visual concepts
and on how to quantify them given a DNN, we follow [32] and apply
the evaluation protocol proposed in [202], called pointing game, which
characterises the spatial selectiveness of a saliency map in the localisation
of target objects. This evaluation consists of the following steps: i) given
a trained model, take an inference step on a test image and construct
an explanation map (e.g., Grad-CAM [150]); ii) given the explanation map,
check whether the point with the maximum score falls into the object
region (usually defined through annotated segmentation maps); iii) if it
does, we have a hit (a miss otherwise); iv) summarise the results through
the average Pointing Accuracy (PA):

PA ≜

T ·|Y|−1∑
y=0

#hity
#hity +#missy

. (5.12)

PA gives us a compact quantification of whether the CL model ascribes
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its score to the expected spatial locations within the target image, by
focusing on the foreground and not the background of the target image.

As the datasets considered so far do not come with segmentation
maps, we run this experiment on S-CUB2005. On top of that, we extract
explanation maps through the Grad-CAM algorithm [150] and use them to
compute the resulting PA, which is reported in Fig. 5.15 along with the

5It must be noted that, due to the low amount of data in this dataset, we need to resort to
a model pre-trained on the ImageNet dataset as done in [27, 32]. We do not follow the exact
benchmark settings of Tab. 2.1, but adopt here ResNet-18 as a backbone, train for 70 epochs,
use a 0.2× learning rate drop at epochs 20, 40, 60 and optimise our model with RAdam [100]
instead of SGD.
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incremental classification accuracy. Compared to other approaches, X-DER
appears less prone to forgetting the reasoning behind its predictions, as
also highlighted by the qualitative examples shown in Fig. 5.16.

Model Explanations for Secondary Targets

After investigating the ability of CL models to motivate their predictions
through the right evidence, we now take one more step and devise a
similar analysis aimed at measuring whether the same localisation can
be successfully applied to secondary information. If we suppose that a
test image also contains a background item from the problem’s training
set, we would wish for the models’ predictions to capture this secondary
information and distribute so as to signal its presence. Furthermore,
if the learner can correctly encode the presence of multiple objects in
its response, we also expect its activation maps to convey meaningful
information for the purpose of their localisation.

To investigate this matter, we evaluate several RBMs by initially
training them on S-CIF100. Then, we construct a synthetic benchmark
obtained by selecting small image patches from COCO 2017 [97] which



Chap. 5 · Past, Present and Future in Knowledge Distillation Replay 77

depict classes also present in CIFAR-100 and stitching them over CIFAR-
100 images6. As shown in Fig. 5.17, the patches are cut through ground-
truth segmentation masks and pasted on CIFAR-100 images to simulate
secondary semantic content. Finally, we exploit the linear evaluation
protocol [31] to assess the representation quality of secondary targets:
we freeze the backbone network’s parameters and only train a linear
classifier on top of its features.

We compare the performance of several methods in terms of F1 score
and PA for the stitched secondary targets and report the results in Fig. 5.18.
We observe that the approaches relying on Knowledge Distillation perform
better according to both considered metrics. Notably, X-DER achieves
the best metrics, providing a further confirmation of its effectiveness in
retaining rich secondary information.

5.5 Conclusions
This chapter started with a preliminary analysis, showing that – while
effective – the approach proposed in Chap. 4 discards informative semantic
data about the relation between old and novel classes and suffers from a
classification bias in favour of recently acquired knowledge.

To address these issues, we proposed X-DER, an extended version of
our previous proposal that introduces several innovations addressing the
above-mentioned issues. X-DER was first tested with experiments on
multiple Class-IL datasets, then further analysed with extensive ablation
studies highlighting the reasons for its effectiveness against forgetting.

One of the key insights provided by this chapter, i.e., the effectiveness
of preparing the learner for future learning in CL, will also constitute the
basis for the RBMs proposed in the next chapters. In particular, Chap. 6
will achieve this goal by modulating the model’s capacity so as not to
overfit replay data, while Chap. 7 will introduce representation constraints
that can be likened to an explicit version of the self-supervised approach
taken by X-DER. Beyond the scope of this thesis, we see an increased
number of newly proposed RBMs leveraging similar ideas. Most notably,
both [133] and [23] propose CL models which dominantly learn through
self supervision, highlighting that this drastically reduces the amount
of forgetting. Their effectiveness can be justified through the theoretical
instruments proposed in this chapter, on the basis that self-supervised
features are more easily adapted to future knowledge.

6We facilitate the stitching by using a 2x-upscaled version of CIFAR-100 obtained through
the CAI super-resolution API [148].





Chapter 6

Modulating Replay Plasticity
with Lipschitz Regularisation

6.1 Motivation

The experimental results presented in previous chapters highlight the
effectiveness and reliability of RBMs for Class-IL CL. In Sec. 5.1.3, we
introduced the classification bias problem that affects many members of
this family of methods and specifically mentioned how it might be linked
to the repeated optimisation of data stored in a small memory buffer. This
aspect was also thoroughly studied in [169], which interprets it as a root
cause for overfitting in RBMs.

In this chapter, we expand our analysis of this point, highlighting
that the differentiated availability of data from the input stream (i.e.,
current-task data) and replay buffer (i.e., past data) produces radically
different decision boundaries. As we illustrate in Fig. 6.1, the model’s re-
strained access to only a small portion of past data increases its epistemic
uncertainty [75], leading the decision surfaces for past classes to slowly
erode everywhere, with the exception of those input regions close to the
neighbourhood of buffer data-points (which are repeatedly optimised).

We provide a quantitative evaluation of this phenomenon by following
the procedure outlined in [196]. Namely, we take an input example,
subject it to perturbations with increasing magnitudes, and track the
difference between the correct logit and the maximum incorrect one –
the decision boundary is encountered when these two values coincide1.
Fig. 6.2 visualises this quantity for ER-ACE – chosen here as a robust and
well-performing RBM – after each task of S-CIF10, w.r.t. examples first
learnt at T0 and either included in M (top row) or left out of it (bottom

1Additional details on the construction of this plot are provided in Sec. 6.5.1.
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DECISION 

BOUNDARIES

AFTER TASK 𝝉𝟎

Class 1 – Task 𝝉𝟎

Class 2 – Task 𝝉𝟎

LATER REPLAY (without regularization)

Task 𝝉𝟏 Task 𝝉𝟐 Task 𝝉𝟑

LIPSCHITZ-CONSTRAINED REPLAY 

REPLAY

BUFFER

Fig. 6.1: An illustration of the deteriorating decision boundaries of RBMs.
Left: the boundary between two classes learnt at task T0 from the input
stream is initially smooth. Right (first row): in subsequent tasks T1 → T3,
RBMs can access a decreasing number of examples from their replay
buffer: the model overfits and the original boundary erodes. By applying
our proposed Lipschitz-based learning constraint on replayed data (second
row), the model is prevented from excess variation in its responses, avoid-
ing jagged boundaries.

row). We observe a clearly differentiated behaviour: in the former case,
boundaries are smooth and robust; in the latter, the region of correct
predictions (green) shrinks significantly, indicating that they are easily
disrupted.

Driven by this insight, this chapter proposes a novel mechanism for
preserving the robustness of decision boundaries in RBMs. We pursue this
purpose by bounding the model’s Lipschitz constant, which quantifies how
the model’s response changes in proportion to a change in its input [8].
While this approach has been followed in the adversarial robustness
literature [34, 91, 50], its relevance for the case of CL has not yet been
investigated. We therefore propose an additional regularisation term
called Lipschitz-Driven Experience Replay (LiDER), which can be seamlessly
combined with any RBM to counteract boundary deterioration and – as a
result – improve its Class-IL performance.
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Fig. 6.2: Visualisation of the decision boundaries (dashed curves) for
increasing perturbations around data-points from the first task of S-CIF10.
As training progresses, points in the memory buffer (top) are subject to
much less severe boundary deterioration compared to points from the
same classes but not rehearsed (bottom).

6.2 Lipschitz Constant
In this section, we present a brief summary on the mathematics of
the Lipschitz constant for DNNs. Subsequently, we propose a simple
experiment assessing its relevance in the case of CL.

6.2.1 Lipschitz Constant Computation
A generic function f is said to be Lipschitz continuous if there exists a
value L ∈ R+ such that the following inequality holds:

∥f(x)− f(y)∥2 ≤ L ∥x− y∥2 , ∀x, y ∈ Rn. (6.1)

If such a value exists, the smallest L that satisfies the condition is referred
to as the Lipschitz constant ∥f∥L. Given a single point x ∈ Rn, we can
quantify the Lipschitz constant around x as follows:

∥f∥xL = sup
x ̸=y;y∈Rn

∥f(x)− f(y)∥2
∥x− y∥2

. (6.2)

In the remainder of this section, we will omit the repeated reference to
x for the sake of brevity; all following expressions are to be intended
as computed around this same input point. Unfortunately, computing
the Lipschitz constant of even the simplest multi-layer perceptron is an
NP-hard problem [172]. As a result, several works rely on its estimation
by means of easy-to-compute upper bounds.
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Approximating the Lipschitz Constant of a DNN

We follow the approach proposed in [194, 154] and consider our K-layered
feed-forward neural network hθ = (HK ◦ σK ◦HK−1 ◦ σK−1 ◦ . . . H1)2 as a
sequence of σ-activated linear functions3 Hk : x 7→WT

k x. By so doing, we
can compute the constants of each layer individually and then aggregate
them to bound the constant of the entire model. For a given Hk, we have:∥∥Hk

∥∥
L
= sup

x ̸=y;y∈Rn

∥∥WT
k x−WT

k y
∥∥
2

∥x− y∥2
ξ=y−x
= sup

ξ ̸=0;ξ∈Rn

∥∥WT
k ξ
∥∥
2

∥ξ∥2
= σmax(Wk),

where σmax(Wk) is the largest singular value of the weight matrix Wk

(also known as its spectral norm ∥Wk∥SN). To deal with the non-linear
composite functions (e.g., residual blocks) that may appear in our DNN,
we leverage the following inequality:∥∥g(z(x))− g

(
z(y)

)∥∥
2
≤ ∥g∥L ∥z(x)− z(y)∥2
≤ ∥g∥L ∥z∥L ∥x− y∥2 ⇒ ∥z ◦ g∥L ≤ ∥g∥L ∥z∥L ,

where g and z are two Lipschitz-continuous functions characterised by
the constants ∥g∥L and ∥z∥L. In the case of ReLU-activated networks, the
forward pass through σk, k = 1, 2, . . . ,K, can be re-arranged as a matrix
multiplication by a diagonal matrix whose elements are either zero or one.
Therefore, the corresponding Lipschitz constant

∥∥σk
∥∥
L
≤ 1. With these

elements, we can compute an upper bound for the Lipschitz constant of
the entire network as follows:

∥fθ∥L ≤
∥∥HK

∥∥
L
·
∥∥σK

∥∥
L
· . . . ·

∥∥H1
∥∥
L
≤

K∏
k=1

∥∥Hk
∥∥
L
=

K∏
k=1

∥Wk∥SN. (6.3)

Computing the Spectral Norm of Weight Matrices

The computation of ∥Wk∥SN can generally be accomplished through the
Singular Value Decomposition (SVD), which produces – among the others –
the largest singular value [115, 50]; however, for complex structures (e.g.,
convolutions or entire residual blocks) this becomes computationally pro-
hibitive. Hence, we resort to the approximation introduced in [154], which
estimates ∥Wk∥SN through the largest eigenvalue λk

1 of the Transmitting
Matrix TMk:

TMk ≜
[
(F k)T (F k−1)

]T [
(F k)T (F k−1)

]
, (6.4)

where F k ∈ RB×dk indicates the L2-normalised feature map produced
by the kth layer from a batch of B samples. Finally, we adopt a
backpropagation-friendly approach for computing the largest eigenvalue
of TMk via the power iteration method [119].

2With hθ indicating pre-softmax model responses of fθ(·), as defined in Sec. 3.3.2.
3Other common transformations that make up DNNs (e.g., convolutions, max-pool) can

be expressed in terms of matrix multiplications [50].
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Fig. 6.3: An exemplification of the link between buffer overfitting and
the Lipschitz constant in RBMs. For ER-ACE trained on S-CIF100, the
accuracy on adversarially perturbed examples increases with |M| (blue).
The inverse trend is shown between |M| and the Lipschitz constant of the
model (orange).

6.2.2 Lipschitz constant in Continual Learning

The Lipschitz constant L of a DNN has been established as a commonplace
measure of both smoothness and generalisation [185, 165, 76] and still
constitutes a key ingredient for current evaluations of model capacity [14,
51]. Its employment is widespread in adversarial robustness literature,
where current approaches pursue its minimisation while learning [92,
167, 91] or are devised so as to have a small constant by design [34, 61].
In other areas, the smoothing effect of L-based regularisation has been
favourably applied to both GAN training [115] and neural fields [98].

As these works all operate in the joint i.i.d. learning scenario, the
relation of Lipschitz regularisation to CL problems has not yet been studied.
We here introduce a simple experiment aimed at showing that L can be
used to quantify the decision boundary erosion phenomenon in RBMs.

We first train ER-ACE on S-CIF100 several times at different buffer
sizes |M|; then, for each trained model, we quantify its ability to withstand
a Carlini-Wagner adversarial attack [20] by measuring its resulting ac-
curacy on training-set examples. From the results in Fig. 6.3, we see this
accuracy growing with |M|, which aligns with the observations made in
the previous section. Indeed, a larger memory buffer makes it harder for
the model to overfit its content, which hinders the boundary deterioration
effect w.r.t. to the examples of the training set.

Furthermore, we use the approach presented above to estimate the
Lipschitz constant L of the model around the same data-points. We observe
a clear inversion of the previous trend: without explicit regularisation,
the Lipschitz constant of a model increases for smaller memory buffers.
In other words, subjecting the model to a low replay-data training regime
leads to a function space highly sensitive w.r.t. input perturbations.
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6.3 Lipschitz-Driven Experience Replay
We propose to apply Lipschitz-based regularisation to the continual learner
to mitigate overfitting on buffer data-points. To achieve this, we require
each layer k in the backbone to behave as a ck-Lipschitz continuous
function, for a given real positive target ck:

Lc-Lip ≜
∑
k

|λk
1 − ck|, (6.5)

where λk
1 is computed as the largest eigenvalue of TMk (in line with

Eq. 6.4) using only the activation maps of replayed exemplars.
The target constants ck, could in principle be regarded as hyper-

parameters of our learning objective (as done in [98]); however, this would
imply fixing an a-priori budget for each layer’s amount of flexibility, which
is complex especially a CL scenario where there is no access to the full
data distribution. Instead, we empirically observe (see Sec. 6.5.4) that it is
more beneficial to let the cks be optimised by means of gradient descent,
interpreting them as additional learnable parameters that represent the
appropriate level of sensitivity that should be enforced for each layer.
However, since this approach may produce trivial solutions by maximising
ck, we need to introduce a second learning objective aimed at keeping the
estimated upper bounds close to zero:

L0-Lip ≜
∑
k

|λk
1 |. (6.6)

Intuitively, when λk
1 → 0, the outputs of the corresponding kth layer have

low sensitivity to changes in its input. This can be seen as imposing a
limit on the capacity of the hypothesis class subsuming the model [51],
effectively requiring it to behave as if underparameterised. By so doing,
the model cannot afford to learn a jagged decision surface, thus limiting
the decision surface erosion phenomenon that we observed on rehearsal
classes in Sec. 6.1.

We now formulate the overall objective of Lipschitz-Driven Experience
Replay (LiDER) by combining the two introduced loss terms; formally:

LLiDER ≜ αLc-Lip + βL0-Lip. (6.7)

This objective can be easily combined with existing RBMs by adding it to
their respective LR in Eq. 2.2. This addition produces minimal computation
overhead and requires no alteration of the sampling technique used to
construct M.

Relation with other regularisation approaches

At first glance, the regularisation of our approach could be understood
as a mean to enforce flat minima for each of the tasks, as advocated by
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(b) ResNet’s loss surface 

in input space*
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Fig. 6.4: Image from Yu et al. [196]. (a) Loss Surface of ResNet in
Parameter Space. (b) Loss Surface of ResNet in the Input Space. The
latter loss surface demonstrates significant non-smooth variation even
though the former does not.

Mirzadeh et al. [113] and Yin et al. [192]. However, these approaches operate
in the parameter space and pursue flatness of the loss landscape w.r.t.
weights, i.e., they encourage the model to be robust when perturbations
are applied to its weights. Differently, LiDER aims at achieving robustness
w.r.t. changes in input space. Even though they may exploit the same
mathematical tools – the Hessian and Lipschitz continuity – the two
strategies build upon orthogonal axes (weights vs input).

In this respect, the relation between these is not clearly understood
and worth exploring [190, 164, 196, 71]. The authors of [190] report that
there exists no theoretical correlation between the Hessian w.r.t. weights
and the robustness of the model w.r.t. the input. Such a statement is
corroborated by Fig. 1 of [196], which we report in Fig. 6.4: although
a flat minimum is reached in parameter space, non-smooth variations
appear in input space. However, the authors of [190] empirically find
that models with higher Hessian spectrum w.r.t. weights are also more
prone to adversarial attacks. A similar thesis has been argued by the
authors of [196], while the third result reported in [71] seems to refute
it. In Sec. 6.5.1, we investigate the opposite link and reveal that RBMs
trained to be robust w.r.t. input changes tend to attain flatter minima in
parameter space.

6.4 Experiments

In this section, we evaluate our proposed LiDER in the Class-IL setting
by combining it with five high-performance RBMs: iCaRL, DER++, X-
DER RPC

future, GDumb and ER-ACE. As usual, FT and JT are reported as
a lower and upper bound. Results are provided as FAA and FAF on S-



86 Part II · Novel Rehearsal Methods for Continual Learning

FAA (FAF) S-CIF100

Pre-training – TinyImgNet

JT 73.29 (−) 75.20 (−)
FT 09.29 (86.62) 09.52 (92.31)

|M| 500 2000 500 2000

iCaRL 44.04 (21.70) 50.23 (17.92) 56.00 (19.27) 58.10 (16.89)
+ LiDER 47.02 (21.89) 51.21 (17.13) 57.24 (19.16) 60.97 (15.49)

DER++ 37.13 (49.80) 52.08 (31.10) 43.65 (48.72) 58.05 (29.65)
+ LiDER 39.25 (45.50) 53.27 (27.51) 45.37 (48.16) 60.88 (25.16)

X-DER RPC
future 44.62 (31.84) 54.44 (17.01) 57.45 (16.86) 62.46 (12.07)

+ LiDER 45.22 (28.38) 54.71 (11.33) 57.76 (15.98) 62.78 (11.26)
GDumb 09.28 (−) 19.69 (−) 23.09 (−) 36.05 (−)
+ LiDER 10.22 (−) 26.15 (−) 26.09 (−) 41.98 (−)

ER-ACE 36.48 (38.21) 48.41 (27.90) 48.19 (31.84) 57.34 (25.48)
+ LiDER 38.43 (36.00) 50.32 (28.30) 48.97 (28.58) 57.39 (25.37)

Tab. 6.1: For different RBMs, Class-IL FAA and FAF on S-CIF100 with and
without LiDER.

CIF100, S-miniImg and S-CUB2004 and entail both from-scratch training
and pre-trained initialisation of the backbone model; for this latter case,
we report the results on S-CIF100 with pre-training on a resized 32× 32
version of Tiny ImageNet and on S-CUB200 with pre-training on ImageNet.
This scenario is particularly interesting for two reasons: i) as shown
in [110], pre-training implicitly mitigates forgetting by widening the local
minima found in function space, thus making the model more robust to
input perturbations; ii) it has clear practical implications for real-world
scenarios where pre-training is typically applied.

6.4.1 Comparison with RBMs
We report the results of our evaluation in Tab. 6.1 and 6.2; LiDER im-
proves the performance of all base methods in all evaluated scenarios
in terms of FAA and almost always in terms of FAF5. Most notably, it
leads to a consistent performance increase in methods such as DER++
and iCaRL, which already feature compelling results, suggesting that
their higher generalisation capability can still benefit from increased
decision boundary smoothness. GDumb with small |M| dramatically fails
to prevent forgetting and benefits less from LiDER, while still obtaining an

4We diverge from Tab. 2.1 by adopting a batch size of 64 for S-CIF100 and of 16 for
S-CUB200.

5We remark that a slight decrease in FAF might be linked to improved FAA, as mentioned
in Sec. 2.4.
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FAA (FAF) S-miniImg S-CUB200

Pre-training – ImgNet

JT 53.55 (−) 78.54 (−)
FT 04.51 (77.38) 08.56 (82.38)

|M| 2000 5000 400 1000

iCaRL 22.58 (16.46) 22.78 (16.37) 56.52 (13.43) 60.09 (11.41)
+ LiDER 23.22 (11.21) 23.95 (11.18) 57.12 (14.31) 60.37 (10.89)

DER++ 23.44 (46.69) 30.43 (37.11) 49.30 (36.05) 61.42 (19.95)
+ LiDER 28.33 (36.29) 35.04 (25.02) 57.90 (27.55) 67.97 (14.44)

X-DER RPC
future 26.38 (38.33) 29.91 (28.29) 58.23 (16.58) 64.90 (09.03)

+ LiDER 29.15 (27.18) 32.56 (20.59) 60.00 (15.64) 65.98 (08.64)
GDumb 15.22 (−) 27.79 (−) 09.36 (−) 18.98 (−)
+ LiDER 15.24 (−) 29.49 (−) 09.67 (−) 19.51 (−)

ER-ACE 22.60 (23.74) 27.92 (19.72) 41.83 (26.42) 51.98 (18.79)
+ LiDER 24.13 (25.97) 30.00 (19.99) 50.89 (20.79) 60.92 (14.62)

Tab. 6.2: For different RBMs, Class-IL FAA and FAF on S-miniImg and
S-CUB200 with and without LiDER.

improvement. However, upon increasing its buffer size and/or providing
pre-trained initialisation, introducing LiDER determines a considerable
performance increase (on S-CIF100, a FAA gain of +0.98% for |M| = 500
grows to +6.46% for |M| = 2000 and to +2.99% if pre-train is added).

On average, LiDER produces a FAA gain of 2.32%, 2.08% and 4.36% on
S-CIF100, S-miniImg, and S-CUB200 respectively.

6.4.2 Comparison with Regularisation Approaches
To provide a thorough evaluation, we further compare our proposal with
three existing regularisation techniques: sSGD, oEWC and OLAP. The
former approach alters the training regime to bias the optimisation to-
wards flat minima in the loss landscape; the latter two constrain the most
important parameters for old tasks to remain close to their past values.
While these approaches can in principle be employed on their own to
prevent catastrophic forgetting (albeit with mixed results on Class-IL), we
here combine them with ER-ACE and DER++ to ascertain whether they
can benefit RBMs as additional training objectives, like LiDER.

As reported in Tab. 6.3, sSGD boosts ER-ACE and DER++ only on S-
CIF100; on the contrary, its performance degrades severely both on the
more complex S-miniImg and on S-CUB200, where it appears to fail
to effectively exploit the pre-trained network. By contrast, we find the
application of oEWC and OLAP to be rewarding, especially in the presence
of pre-training. In this respect, we recall that pre-training has a known
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FAA S-CIF100 S-miniImg S-CUB200

Pre-training – – ImgNet

|M| 500 2000 2000 5000 400 1000

ER-ACE 36.48 48.41 22.60 27.92 41.83 51.98
+ sSGD 39.59 49.70 22.43 24.12 22.67 29.88
+ oEWC 35.06 45.59 24.32 29.46 48.34 59.74
+ OLAP 36.58 47.66 23.19 28.77 42.64 52.86
+ LiDER 38.43 50.32 24.13 30.00 50.89 60.92

DER++ 37.13 52.08 23.44 30.43 49.30 61.42
+ sSGD 38.48 50.74 19.29 24.24 31.08 41.69
+ oEWC 35.22 51.53 24.53 31.91 51.86 62.54
+ OLAP 34.48 50.80 25.02 32.78 49.56 63.27
+ LiDER 39.25 53.27 28.33 35.04 57.90 67.97

Tab. 6.3: Class-IL FAA comparison between different regularisation
strategies applied on top of ER-ACE and DER++.

flattening effect on the loss landscape [110], which makes encouraging
the model to stay close to its prior particularly beneficial. All things
considered, LiDER proves almost always more effective than any of the
other tested approaches, validating our approach aimed at regularising
model responses.

6.5 Analysis
In this section, we present several analytical experiments aimed at char-
acterising the effects produced by LiDER on the model and at stressing
the limits and design choices of the proposed approach.

6.5.1 Effects on generalisation
Decision surface of LiDER

Fig. 6.2 depicts the model’s tolerance to input perturbations in the form of
a decision surface plot [196]. This visualisation is constructed by focusing
on a set of perturbations xp ≜ x+ i ·α+ j · β computed around a data-point
x, with α being a random divergence direction and β corresponding to the
direction induced by the first step of a non-targeted Fast Gradient Signed
Method attack [85]. The plot shows the respective values of the decision
function S(xp), where S(x) ≜ hθ(x)t−maxi ̸=t hθ(x)i, and highlights decision
boundary of the model (i.e., the locus of {xp;S(xp) = 0}), in correspondence
of which the model fails its prediction.
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Fig. 6.5: Effect of LiDER on the robustness of the decision boundary
produced by ER-ACE across subsequent tasks. Same setup as Fig. 6.2.
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Fig. 6.6: (Left) Robustness of models regularised with LiDER against
weight perturbations. (Right) Flatness around the minimum found during
optimisation, measured as sum of the eigenvalues of the Hessian matrix.

In Fig. 6.5, we adopt the same approach to compare the decision
boundaries around rehearsed T0 examples for ER-ACE with and without
LiDER. While both models start with a similarly robust decision landscape
in T0, later tasks reveal a clear shrinking behaviour in ER-ACE. On the
contrary, introducing L-based regularisation leads to minimal decision
boundary deterioration in later tasks.

Loss Landscape of LiDER

In the previous chapters, we investigated the generalisation capabilities
of CL models by evaluating the flatness of their attained minima. Here
we do the same with LiDER, reporting the results of the two evaluations
of Sec. 4.4.1 and 5.4.4 in Fig. 6.6. We see that DER++ and ER-ACE com-
bined with LiDER both improve their resilience to weight perturbations
and achieve lower Hessian eigenvalues. This is in line with the com-
mon interpretation of the Lipschitz constant of a DNN as a measure of
generalisation capabilities [185, 165].
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p DER++ +LiDER

.0% 37.13 39.25

.01% 36.13 38.08

.1% 31.35 35.53

.25% 28.74 30.78

Tab. 6.4: Class-IL FAA
with buffer poisoning for
DER++ with and without
LiDER.
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Fig. 6.7: ROC curves for the Buffer Guess-
ing Game, showing the likelihood of a given
sample belonging to M.

6.5.2 Effects on M in realistic scenarios
In this section, we investigate the implications of adopting a LiDER-
enhanced RBM in realistic evaluation settings. We propose two new
experiments that focus on the behaviour of the memory buffer, namely
on its ability to handle incorrect labels and on its privacy.

Robustness to buffer poisoning

As a first study, we acknowledge that a real-world CL application might
need to deal with incorrect annotation of the input data-points. While typ-
ically overlooked in standardised benchmarks, this aspect is particularly
critical when working with RBMs. As previously shown, samples included
in the buffer are most likely to be overfit, which would induce a severe
loss of performance in the case of an incorrect label.

We assess this effect through label poisoning: while training DER++
on S-CIF100 (|M| = 500), items sampled for inclusion inM are randomly
assigned a wrong label from the current task with probability p. Tab. 6.4
reports the resulting FAA, showing an expected performance degradation
as p increases. We observe that the application of LiDER allows for
achieving a higher accuracy even in the case of poisoning, confirming
our intuition that our proposal alleviates overfitting of elements stored in
the memory buffer.

Buffer Guessing game

To further illustrate the implication of RBMs overfitting in realistic CL
scenarios, we propose a simple experiment called buffer guessing game. As
we posit thatM plays a much larger role in shaping the decision boundary
w.r.t. the input stream, we take ER-ACE fully trained on a S-CIF100 and –
using the full training set X0 of T0 – we try to findM∩X0 (i.e., the subset
of data-points that are included in the model’s buffer).
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FAA S-CIF100 S-mImg S-CUB200

Pre-training – TinyImgNet – ImgNet

|M| 500 2000 500 2000 2000 5000 400 1000

ER-ACE 36.48 48.41 48.19 57.34 22.60 27.92 41.83 51.98
+ LiDER (curr. task) 37.54 50.37 48.94 57.07 23.35 29.25 48.44 59.60
+ LiDER (buffer) 38.43 50.32 48.97 57.39 24.13 30.00 50.89 60.92

DER++ 37.13 52.08 43.65 58.05 23.44 30.43 49.30 61.42
+ LiDER (curr. task) 34.78 49.76 44.48 59.39 24.84 31.05 56.96 66.63
+ LiDER (buffer) 39.25 53.27 45.37 60.88 28.33 35.04 57.90 67.97

Tab. 6.5: Class-IL FAA when regularising over examples from the current
task (stream) or buffer data-points (standard LiDER).

We do so by attaching to each x ∈ T0 a score sx computed in a neigh-
bourhood of x. sx quantifies the mean height of the decision surface, i.e.,
the difference between the predicted probability of the right class and the
one of the highest wrong class. As in [196], we model the neighbourhood
by leveraging random perturbations; moreover, we compute sx w.r.t. to
the Task-IL prediction function in order to avoid the influence of inter-
task biases on our results. Finally, we measure our ability to identify
in-buffer examples by calculating the ROC curve obtained from these
scores. Fig. 6.7 reports the results of this experiment at different buffer
sizes. We see that: i) ER-ACE makes it easier to reconstruct the content
of the buffer, as indicated by larger ROC-AUC scores w.r.t. ER-ACE+LiDER;
ii) in line with our expectations, this effect is increased when employing
smaller memory buffers, as this leads to the repeated optimisation of a
smaller pool of data.

6.5.3 Applying LiDER on current-task examples

While our initial study on buffer overfitting led us to apply LiDER exclus-
ively on buffer data-points, no technical reason prevents its application on
current-task data. In Tab. 6.5 we report the results obtained by switching
the regularisation target to the data from the input stream: we observe
that doing so produces worse FAA results.

This simple ablation aligns with our initial intuition, suggesting that
– thanks to the abundance of current-task data available – the model’s
epistemic uncertainty [75] on current classes is low and the learnt decision
boundaries are likely to be smooth. In this case, introducing an additional
Lipschitz regularisation term produces too much rigidity and restrains
the learning with no advantages.
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FAA S-CIF100

Pre-training – TinyImgNet

|M| 500 2000 500 2000

DER++ + LiDER Fixed Targets 36.42 51.52 43.16 59.53
DER++ + LiDER Eq. 6.7 39.25 53.27 45.37 60.68

ER-ACE + LiDER Fixed Targets 34.99 46.70 45.21 54.82
ER-ACE + LiDER Eq. 6.7 38.43 48.97 48.97 57.39

Tab. 6.6: Class-IL FAA when adopting fixed Lipschitz targets ck and learned
targets (standard LiDER).

6.5.4 Optimisation with a fixed target
As we mentioned when first introducing Eq. 6.5, the target Lipschitz values
ck could be fixed prior to training as done in [98], thus avoiding the need
for Eq. 6.6. In Tab. 6.6 we empirically show that doing so does not lead
to satisfactory results in a CL setting, with our proposal consistently
outperforming the fixed-target approach.

6.6 Conclusions
In this chapter, we illustrated the existence of a differentiated learning
regime affecting input-stream and rehearsal classes in RBMs. This dis-
parity inevitably leads to memory buffer overfitting, which is a known
Achilles’ heel for this class of CL methods [169]. To deal with this effect,
we introduced a plug-in regularisation term called LiDER, which bounds
the complexity of the in-training model at replay time. We highlighted
that our proposal gives a consistent performance boost when combined
with SOTA RBMs and highlighted its effect on the model by means of
additional analysis.

The basic intuition to introduce functional regularisation on the model’s
backbone will also be explored in the next chapter, leading to another plug-
in loss term for RBMs that enforces specific geometric characteristics
in their latent space. This chapter also introduced some experiments
leveraging a pre-trained continual learner, showing that they generally
result in higher metrics at the end of training. The significance and
implications of such practice will be the focus of Chap. 10.

Among the aspects explored in this chapter, the preliminary experi-
ment on the handling of unreliable labelling appears to be particularly
promising as a future research direction, with a series of very recent
works starting to explore the topic of CL with noisy labels [79, 12, 73]. In
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light of the improved resilience of LiDER to incorrect training targets,
there is reason to believe that the analysis of the Lipschitz constant of the
online learner might provide useful insights for facilitating the detection
of inconsistently labelled exemplars.





Chapter 7

Latent Space Modelling via
Geometric Constraints

7.1 Motivation
Both Chap. 5 and 6 delved into factors hindering the acquisition of know-
ledge from the replay buffer in RBMs: namely, the difference in gradient
magnitude between the input stream and M (Sec. 5.1.3) and the de-
terioration of the model’s decision surface due to overfitting (Sec. 6.1).
This chapter discusses and addresses a third issue of replay, focusing
specifically on changes occurring in its latent space as tasks progress.

We observe that the learner struggles to separate latent projections of
replay examples belonging to different classes, making the downstream
classifier prone to interference whenever the input distribution changes
and representations are perturbed. Motivated by the Riemannian nature of
the latent space of DNNs [10], we study this issue by leveraging the toolset
of spectral geometry, which favourably allows manipulating the structure
of network representations as a whole without imposing constraints on
individual coordinates.

To understand how latent space changes in response to the introduction
of a novel task on the input stream, we analyse the Latent Geometry
Graph (LGG) G after training on T1, . . . , TT−1. G is constructed by taking
all replay examples, forwarding them through the model to obtain the
corresponding set of pre-classifier features {g ≜ hpre-clf

θ (x);x ∈ M} and
finally building a k-NN graph on top of it [86]. A compact measure of latent
space sparsity w.r.t. classes representations is given by the Label-Signal
Variation σ [86] on the adjacency matrix A ∈ R|M|×|M| of G:

σ ≜
|M|∑
i=1

|M|∑
j=1

1yb
i=yb

j
ai,j , (7.1)
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Fig. 7.1: Illustrations of the alterations occurring in RBMs’ latent spaces.
(a) A quantitative evaluation measured as Label-Signal Variation (σ) within
the LGG for buffer data-points – lower is better; (b) t-SNE embedding of the
features computed by X-DER RPC

future for buffered examples in later tasks
(top). Interference between classes is visibly reduced if CaSpeR is applied
(bottom). All experiments are carried out on S-CIF100, (a) has |M| = 500,
(b) has |M| = 2000.

where 1· is the indicator function and ai,j denotes the (i, j)th element of
A, which is 1 if the ith element of M is in the k-NN set of the jth and 0
otherwise. We evaluate this metric for three SOTA RBMs and report the
results in Fig. 7.1a. We observe that they exhibit a steadily growing σ,
indicating that examples from distinct classes are increasingly entangled
in later tasks. This effect can also be observed qualitatively by considering
a t-SNE embedding of the points inM (shown in Fig. 7.1b for X-DER RPC

future),
which also reveals decreasing distances between examples from different
classes as training progresses.

In light of these observations, we introduce a novel loss term aimed at
ensuring a cohesive structure in the latent space of RBMs. Our proposed
approach, called Continual Spectral Regulariser (CaSpeR) (illustrated in
Fig. 7.2), leverages graph-spectral theory to promote the generation of
well-separated latent embeddings. As anticipated by the results in Fig. 7.1,
it can be effectively combined with existing RBMs to improve classification
accuracy and robustness against catastrophic forgetting.

7.2 Continual Spectral Regulariser
Our method builds upon the intuition that the latent spaces of DNNs

bear a structure informative of the data space they are trained on [155]. By
applying a geometric regularisation term, we seek to enforce a desirable
structure for latent representations, i.e., partitioning the vertices of G into
well-separated subgraphs with high internal connectivity.
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Fig. 7.2: An overview of the proposed CaSpeR regulariser. RBMs struggle
to separate the latent-space projections of replay data-points. Our proposal
targets the spectrum of the latent geometry graph to induce a partitioning
behaviour by maximising the eigengap for the number of seen classes.

After computing G over M as specified in the previous section, we
consider its adjacency matrix A, calculate its degree matrix D and then
compute its normalised Laplacian L as:

L = I −D−1/2AD−1/2 , (7.2)

where I is the identity matrix. Our regularisation term insists on the
eigenvalues λ of L, which we compute and sort by ascending order. Let
cM be the number of different classes within the buffer, we calculate the
Continual Spectral Regulariser (CaSpeR) regularising loss as:

LCaSpeR ≜ −λcM+1 +

cM∑
j=1

λj . (7.3)

The proposed loss term is weighted through the hyper-parameter ρ and
added to the base RBM loss of Eq. 2.2. Through Eq. 7.3, we increase the
eigengap λcM+1 − λcM while minimising the first cM eigenvalues. A body
of results from spectral graph theory, dating back at least to [29, 159, 156],
explain the gap occurring between neighbouring Laplacian eigenvalues
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Alg. 7.1: CaSpeR Loss Computation
1: Input: Memory buffer M of saved samples
2: xb ← BalancedSampling(M)

3: gb ← hpre-clf
θ (xb)

4: A← k-NN(gb)
5: D ← diag(

∑
i a1,i,

∑
i a2,i, ...,

∑
i ab,i)

6: L← I −D−1/2AD−1/2 ▷ Eq. 7.2
7: λ← Eigenvalues(L)
8: LCaSpeR ← −λcM+1 +

∑cM
j=1 λj ▷ Eq. 7.3

as a quantitative measure of graph partitioning. Our proposal draws on
these results but turns the forward problem of computing the optimal
partitioning of a given graph, into the inverse problem of seeking a graph
with the desired partitioning. Following the intuition that the number of
eigenvalues close to zero corresponds to the number of loosely connected
partitions within the graph [90], our loss indirectly encourages the points
in the buffer to be clustered without strict supervision. A step-by-step
summary of the outlined procedure can be found in Alg. 7.11.

Efficient Batch Operation

While seemingly straightforward, the operation of CaSpeR entails the
cumbersome task of constructing the entire LGG G at each forward step.
Indeed, accurately mapping the model’s ever-changing latent space re-
quires processing all available replay examples in M, which is typically
orders of magnitude larger than a batch of examples on the input stream.

To avoid a slow training procedure with high memory requirements,
we propose an efficient approximation of our initial objective. Instead of
operating on G directly, we sample a randomly chosen sub-graph Gp ⊂ G
spanning only p out of the cM classes represented in the memory buffer.
As Gp still includes a conspicuous number of nodes, we further sub-sample
and extract Gtp ⊂ Gp, a smaller graph with t exemplars for each class.

By repeating these random samplings in each forward step, we optimise
a Monte Carlo approximation of Eq. 7.3:

L∗
CaSpeR ≜ E

Gp⊂G

[
E

Gt
p⊂Gp

[
− λ

Gt
p

p+1 +

p∑
j=1

λ
Gt

p
j

]]
, (7.4)

where the λGt
p denote the eigenvalues of the Laplacian of Gtp. It must be

noted that we enforce the eigengap at p, as we know by construction that
each Gtp comprises samples from p communities within G.

1Since our proposal relies on the availability in M of a minimum number of samples
for each class, we adopt BRS as proposed in Sec. 3.1.
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FAA (FAAF) S-CIF100

Method Class-IL Task-IL

JT 63.11 (−) 88.81 (−)
FT 8.38 (100.00) 30.10 (62.84)

|M| 500 2000 500 2000

ER-ACE 34.99 (51.41) 46.63 (28.78) 73.86 (10.73) 80.69 (5.37)
+ CaSpeR 36.70 (46.61) 47.85 (27.73) 75.14 (4.91) 81.57 (4.93)

iCaRL 39.80 (32.73) 40.54 (32.61) 78.38 (5.38) 78.47 (4.91)
+ CaSpeR 40.57 (32.31) 41.83 (25.55) 79.31 (4.61) 79.43 (3.41)

DER++ 28.01 (57.56) 42.27 (34.94) 70.55 (11.12) 78.60 (5.96)
+ CaSpeR 32.16 (53.41) 46.34 (30.08) 73.25 (9.49) 80.78 (3.04)

X-DER RPC
future 35.89 (44.54) 46.37 (23.57) 77.28 (2.43) 82.55 (0.92)

+ CaSpeR 38.23 (43.90) 50.39 (17.65) 78.26 (5.47) 83.77 (0.27)
PODNet 28.16 (58.49) 32.12 (46.73) 67.37 (19.76) 69.63 (15.16)
+ CaSpeR 31.40 (48.50) 36.97 (39.00) 70.81 (15.26) 71.90 (11.32)

Tab. 7.1: FAA (FAAF) on S-CIF100 for RBMs with and w/o CaSpeR.

7.3 Experiments

We evaluate CaSpeR both in the Class-IL and Task-IL settings by applying
it on top of five SOTA RBMs: ER-ACE, iCaRL, DER++, X-DER RPC

future and
PODNet. Evaluation is carried out on S-CIF100 and S-miniImg2, with
results reported in Tab. 7.1 and 7.2 respectively in terms of FAA and FAAF.
At a first glance, we observe that CaSpeR leads to a steady improvement in
FAA across all evaluated methods and settings. However, some interesting
additional trends emerge upon closer examination.

Firstly, we notice that the improvement in accuracy does not grow with
the memory buffer size. This is in contrast with the typical behaviour of
replay regularisation terms [23, 28]. We believe such a tendency to be the
result of our distinctively geometric approach: as spectral properties of
graphs are understood to be robust w.r.t. to coarsening [68], CaSpeR does
not need a large pool of data to be effective.

Remarkably, the majority of the evaluated methods achieve compar-
able FAA gains for both CL settings on S-CIF100; this suggests that our
method allows the model to better learn and consolidate each task indi-
vidually (Task-IL) while providing balanced responses for both stream and
replay classes (Class-IL). This second tendency is further confirmed by
the conspicuous reduction in Class-IL FAAF, which indicates that CaSpeR

2W.r.t. Tab. 2.1, we train for 20 epochs with no lr scheduling and use batch size 64 for
S-CIF100; we train for 50 epochs with a 0.1 decay factor applied to lr at epochs 35 and 45
using batch size 64 for S-miniImg.
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FAA (FAAF) S-miniImg

Method Class-IL Task-IL

JT 52.76 (−) 87.39 (−)
FT 3.87 (100.00) 24.05 (67.37)

|M| 2000 5000 2000 5000

ER-ACE 22.03 (49.04) 27.26 (29.99) 69.05 (13.72) 72.78 (8.93)
+ CaSpeR 23.36 (47.90) 29.15 (28.36) 69.59 (13.05) 74.14 (8.12)

iCaRL 19.42 (36.89) 20.17 (33.23) 70.35 (3.92) 70.44 (2.68)
+ CaSpeR 20.46 (35.90) 21.45 (32.26) 71.19 (3.67) 71.93 (3.65)

DER++ 20.88 (74.48) 28.55 (61.03) 69.78 (13.37) 73.81 (8.59)
+ CaSpeR 22.61 (71.01) 29.72 (57.60) 70.97 (11.75) 75.18 (7.93)

X-DER RPC
future 24.80 (44.69) 30.98 (30.12) 74.32 (4.95) 77.70 (3.71)

+ CaSpeR 26.24 (41.72) 31.55 (28.71) 75.99 (3.88) 78.71 (2.32)
PODNet 16.82 (52.32) 20.81 (46.50) 60.60 (14.00) 66.15 (10.71)
+ CaSpeR 18.09 (50.33) 22.45 (46.08) 64.84 (10.01) 70.85 (7.99)

Tab. 7.2: FAA (FAAF) on S-miniImg for RBMs with and w/o CaSpeR.

successfully counteracts the learning bias presented in Sec. 5.1.3.
While still improving over the baselines, we see a reduced FAA im-

provement on S-miniImg. The mixed FAAF results in Class-IL might
suggest that our approach is not particularly beneficial when it comes to
comparing classes learnt at different tasks. We suspect that this might be
a by-product of our approximated batch operation, which only considers
a few classes at any given training step and therefore struggles when
dealing with the increased number of tasks in this dataset. Even so, the
Task-IL values for FAAF are favourably reduced, meaning that CaSpeR
lets the model learn individual tasks more accurately so that it aptly
recovers its predictive capability when cued with the correct task.

As a final note, PODNet appears to be an outlier; with lower FAA and
higher FAAF w.r.t. the other evaluated approaches, it exhibits a marked
tendency to overfit current training data. Nevertheless, CaSpeR is still
capable of impacting its training positively, delivering a stabilising effect
that is especially relevant when the memory buffer is large. This suggests
that the additional regularisation facilitates the model’s convergence,
which aligns with the observations we make in Sec. 9.5.3, where we will
exploit CaSpeR with limited supervision.

7.4 Analysis
In this section, we briefly present two additional experiments aimed at
showing the geometric properties conferred to the model by CaSpeR.
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k-NN Clsf w/o CaSpeR w/ CaSpeR
(Class-IL) 5-NN 11-NN 5-NN 11-NN
ER-ACE 43.73 44.41 46.75+3.02 47.29+2.88

iCaRL 34.86 37.78 36.00+1.14 38.33+0.55

DER++ 44.21 44.24 45.75+1.54 46.00+1.76

X-DER RPC
future 43.44 44.62 49.47+6.03 49.49+4.87

PODNet 21.11 22.60 27.88+6.77 28.94+6.34

Tab. 7.3: Class-IL FAA results (S-CIF100, |M| = 2000) of k-NN classifiers
trained on top of the latent representations of M data.

7.4.1 k-NN classification
As a first concern, we desire to verify whether CaSpeR succeeds in separ-
ating the latent embeddings for examples of different classes. The results
presented in Fig. 7.1 already verified this assumption by analysing the
Label-Signal Variation (σ) on G; here, we further evaluate this aspect
by training k-NN-classifiers [183] on top of the latent representations g
produced by the methods of Sec. 7.3 and evaluating their FAA.

In Tab. 7.3, we report the results for 5-NN and 11-NN classifiers which
use the latent-space projections of the final buffer M as a support set.
We observe that the steady beneficial effect shown by CaSpeR in our
previous experiments also extends to this distinctive classification ap-
proach. This constitutes a confirmation that our proposal is instrumental
in disentangling the representations of different classes.

7.4.2 Latent Space Consistency
To provide further insights into the dynamics of the latent space on the
evaluated models, we study the emergence of distortions in the LGG. Given
a RBM, we are interested in a comparison between G4 and G9, the LGGs
produced after training on T4 and T9 respectively, computed on the test
set of tasks T0, ..., T4.

The comparison between G4 and G9 can be better understood in terms
of the node-to-node bijection F : G4 → G9, which can be represented as a
functional map matrix C [125] with elements

ci,j ≜ ⟨ϕG4
i , ϕG9

j ◦ F⟩ , (7.5)

where ϕG4
i is the ith Laplacian eigenvector of G4 (similarly for G9) and ◦

denotes the standard function composition. In other words, the matrix
C encodes the similarity between the Laplacian eigenspaces of the two
graphs. In an ideal scenario where the latent space is subject to no
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Fig. 7.3: For several RBMs with and without CaSpeR, the functional map
magnitude matrices C |·| between the LGGs G4 and G9, computed on the
test set of T0, ..., T4 after training up to T4 and T9 respectively (S-CIF100 -
|M| = 2000). The closer C |·| to the diagonal, the less geometric distortion
between G4 and G9. We report the first 25 rows and columns of C |·|,
focusing on smooth (low-frequency) matches [125] and apply a C |·| > 0.15
threshold to increase clarity.

modification between T4 and T9 w.r.t. previously learnt classes, F is an
isomorphism and C is a diagonal matrix [125]. In a practical scenario, F
is only approximately isomorphic and, the better the approximation, the
more C becomes sparse and funnel-shaped.

In Fig. 7.3, we report C |·| ≜ abs(C) for ER-ACE, DER++, iCaRL and X-
DER RPC

future on S-CIF100, both with and without CaSpeR. It can be observed
that the methods that benefit the most from our proposal (ER-ACE, X-DER
RPC
future) display a tighter functional map matrix. This indicates that the
partitioning behaviour promoted by CaSpeR leads to reduced interference,
as the portion of the LGG that refers to previously learnt classes remains
geometrically consistent in later tasks. On the other hand, in line with
the considerations made in Sec. 7.3, the improvement is only marginal
for iCaRL; its different training regime, which is less discriminative in
nature, seemingly induces a limited amount of change on the structure
of the latent space.

To quantify the similarity of each C |·| matrix to the identity, we also
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report its off-diagonal energy, computed as follows [145]:

ODE ≜
1

||C||2F
∑
i

∑
j ̸=i

c2i,j , (7.6)

where || · ||F indicates the Frobenius norm. CaSpeR produces a clear de-
crease in ODE , signifying an increase in the diagonality of the functional
matrices.

7.5 Conclusions
This chapter introduced CaSpeR, a regularising constraint on RBMs’ latent
space aimed at encouraging a clustering behaviour onM. The proposed
approach exploits spectral geometry to allow for an easy manipulation of
the model’s latent space and produces a quantifiable disentanglement of
the latent projections of points belonging to distinct classes.

As CaSpeR does not rely on the availability of annotations for each ex-
ample, it can easily be applied to scenarios where only limited supervision
is available. The main approach proposed in Chap. 9 for dealing with a
reduced-annotation CL scenario encourages coherent class representations
in a similar spirit to CaSpeR (albeit without resorting to a geometrical
formulation of its learning objective). Furthermore, the same chapter
will introduce an additional experiment on CaSpeR, showcasing how its
objective provides better accuracy and easier convergence when data
annotations are scarce.

The exploitation of geometric constraints on continual learners appears
to be a high-potential research direction, of which this chapter only
represents an initial exploration. Our preliminary investigations suggest
that the latent-space entanglement effects mentioned here are particularly
severe in unsupervised continual learning scenarios [106, 46] due to the
weak training signal caused by the lack of annotations. These settings
should therefore provide a natural testbed for the application of spectral
and (more broadly) geometric regularisers aiming at endowing the model
with desirable properties.





Part III

Beyond Basic Continual
Learning Settings



Chapter 8

General Continual Learning

8.1 Motivation
When starting the study of CL, one easily comes to realise that the
majority of methods proposed in the classical CL literature are hardly
suited for real-world applications. In line with the many works that
recently proposed leaving the academic CL scenarios behind in favour of
more realistic experimental settings, this Chapter also proposes a more
challenging experimental benchmark.

Our proposal was inspired by the General Continual Learning (GCL)
guidelines featured in Sec. 7 of [35]. The authors of this work outlined a
series of desiderata of an ideal CL evaluation scheme, general enough to
allow for the modelling of input data-streams akin to the ones found in a
practical scenario, possibly characterised by sudden or gradual changes.
The original list of desiderata consists of the following 10 key points:

1. Constant Memory: have a bounded memory footprint;

2. No Task Boundaries: do not rely on boundaries between tasks;

3. Online Learning: do not perform offline training on large batches of
data;

4. Forward Transfer: facilitate the learning of new tasks by means of
previously acquired knowledge;

5. Backward Transfer: improve previous knowledge while learning new
tasks;

6. Problem Agnostic: do not limit the problem to one setting (e.g.,
classification);

7. Adaptive: allow learning from unlabelled data;

106
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CL methods vs
GCL requirements
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No task – – – ✓ ✓ ✓ – † – – – – – – ✓ ✓boundaries

Online
✓ – ✓ ✓ ✓ ✓ ✓ ✓ – – ✓ ✓ ✓ – ✓ ✓learning

No test – – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ ✓time oracle

Tab. 8.1: CL approaches and their compatibility with the major GCL
requirements [35]. † indicates compatibility provided that the model
adopts reservoir sampling instead of the original ring strategy.

8. No Test Time Oracle: do not require task identifiers at inference
time;

9. Task Revisiting: allow for the enhancement of acquired knowledge
by revisiting past tasks;

10. Graceful Forgetting: allow for selective forgetting of trivial informa-
tion to retain a balance between stability and plasticity.

Among these requirements, points 4, 5 and 10 provide methodological sug-
gestions that are generally measured post-hoc via the metrics presented
in Sec. 2.4; points 6, 7 and 9 concern recommendations for designing CL
experiments; finally, points 1, 2, 3 and 8 are the only ones that directly
pertain to the design of CL methods.

We investigate the compatibility of existing CL approaches with the
last group of requirements and, as reported in Table 8.1, remarkably find
that very few methods in literature meet all the criteria to operate in a
GCL scenario. Indeed, traditional distillation-based methods depend on the
task boundary to backup the teacher model (or store teacher responses,
which is not an online operation); architectural methods allow for some
degree of model growth, incurring in non-constant memory requirements;
regularisation methods perform cumbersome parameter-importance estim-
ation, possibly at a non-constant memory requirement. This only leaves
RBMs, barring out those that strictly require task identities while training
(GEM) or perform cumbersome operations at task boundaries (HAL).

Having established which approaches are suitable for GCL, we set
out to compare them experimentally on a novel benchmark inspired by
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Fig. 8.1: Example batches of the MNIST-360 stream.

the desiderata of [35]. For this reason, we introduce MNIST-360, a novel
MNIST-based benchmark featuring task revisiting and entailing both
gradual and sudden changes in the input distribution.

8.2 MNIST-360

MNIST-360 is a novel experimental protocol targeting the GCL setting. It
models a stream of data presenting batches of two consecutive MNIST [88]
digits at a time (i.e., {0, 1}, {1, 2}, {2, 3}, etc.), as depicted in Fig. 8.1.
After a fixed number of steps, we switch the lesser of the two digits
with the following one, introducing a distribution shift similar to those
encountered at task boundaries in Class-IL or Task-IL. Additionally, each
example shown on the stream is rotated by an increasing angle, which
produces a gentle but constant distribution shift at every input step.

As it is impossible to distinguish 6s and 9s upon rotation, we exclude
9s from MNIST-360; this means that the stream can show nine possible
pairs of classes. Each pair is shown more than once, allowing the model to
leverage positive transfer upon revisiting the same classification problem.
To address the implicit assumption of real-world CL that a specific input
data-point would only be observed once [105, 141, 26], we enforce the
following guarantees: i) each example is only shown once during the
overall training; ii) digits of the same class are never observed under the
same rotation.

In light of the described characteristics of MNIST-360, it should be
noted that the benchmark does not present distinguished tasks, but rather
a unified input stream without interruptions. Furthermore, the intertwin-
ing of sharp (change in class) and smooth (rotation) distribution shifts
makes their detection hard for algorithms that might try to identify them
from data.
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In the following, we present the technical details for the construction
of the training and test set of MNIST-360.

8.2.1 Training Set
For Training purposes, we build batches using exemplars that belong to
two consequent classes at a time, meaning that 9 pairs of classes are
possibly encountered: (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8),
and (8, 0). Each pair is shown in this order in R rounds (R = 3 in our
experiments) at changing rotations. This means that MNIST-360 consists
of 9R pseudo-tasks, whose boundaries are not signalled to the tested
method. We indicate them with Ψ

(d1,d2)
r where r ∈ {1, . . . , R} is the round

number and d1, d2 are digits forming one of the pairs listed above.
As every MNIST digit d appears in 2R pseudo-tasks, we randomly split

its example images evenly in 6 groups Gd
i where i ∈ {1, . . . , 2R}. The set

of exemplars shown in Ψ
(d1,d2)
r is given as Gd1

[r/2] ∪Gd2

[r/2]+1, where [r/2] is
an integer division.

At the beginning of Ψ
(d1,d2)
r , we initialise two counters Cd1

and Cd2
to

keep track of how many exemplars of d1 and d2 are shown respectively.
Given batch size B (B = 16 in our experiments), each batch is made up of
Nd1 samples from Gd1

[r/2] and Nd2 samples from Gd2

[r/2]+1, where:

Nd1
= min

(
|Gd1

[r/2]| − Cd1

|Gd1

[r/2]| − Cd1
+ |Gd2

[r/2]+1| − Cd2

·B, |Gd1

[r/2]| − Cd1

)
, (8.1)

Nd2
= min

(
B −Nd1

, |Gd2

[r/2]+1| − Cd2

)
. (8.2)

This allows us to produce balanced batches, in which the proportion of
exemplars of d1 and d2 is kept fixed. Pseudo-task Ψ

(d1,d2)
r ends when the

entirety of Gd1

[r/2] ∪ Gd2

[r/2]+1 has been shown, which does not necessarily
happen after a fixed number of batches.

Each digit d is also associated with a counter Cr
d that is never reset

during training and is increased every time an exemplar of d is shown to
the evaluated method. Before its showing, every exemplar is rotated by

2π

|d| C
r
d +Od (8.3)

where |d| is the number of total examples of digit d in the training set
and Od is a digit-specific angular offset, whose value for the ith digit is
given by Oi = (i− 1) π/2R (O0 = −π/2R, O1 = 0, O2 = π/2R, etc.). By so doing,
all digit’s exemplars are shown with an increasing rotation spanning a
2π angle throughout the entire procedure. Rotation changes within each
pseudo-task, resulting into a gradually changing distribution. Fig. 8.1 the
first batch of the initial 24 pseudo-tasks with B = 9.
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FA MNIST-360

JT 82.98
FT 19.09

|M| 200 500 1000

ER 49.27 65.04 75.18
MER 48.58 62.21 70.91
A-GEM-R 28.34 28.13 29.21
GSS 43.92 54.45 63.84
DER (ours) 55.22 69.11 75.97
DER++ (ours) 54.16 69.62 76.03

Tab. 8.2: Accuracy of compatible RBMs
on the test set of MNIST-360.
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Fig. 8.2: Results on MNIST-
360 also characterised w.r.t. the
memory footprint of the evalu-
ated approaches.

8.2.2 Test Set

As no task boundaries are provided, evaluation on MNIST-360 can only be
carried out after the training is complete. For test purposes, digits are
still shown with an increasing rotation as per Eq. 8.3, with |d| referring
to the test-set exemplar count and no offset applied (Od = 0).

The order with which digits are shown is irrelevant, hence no specific
batching strategy is needed and we simply show one digit at a time.

8.3 Experiments

In this section, we present an experimental comparison on MNIST-360
of the RBMs that are compatible with GCL (i.e., ER, MER, GSS, DER
and DER++), with the addition of a variant of A-GEM equipped with
a reservoir memory buffer (A-GEM-R). These methods are evaluated at
|M| ∈ {200, 500, 1000} through 10 independent experimental runs. We
employ the same backbone design used for experiments on MNIST-based
benchmarks in Tab. 2.1: a 2-layer MLP with hidden size 100. Results
are provided in terms of simple Final Accuracy (FA), since there are no
tasks among which to compute an average. Fig. 8.2 further characterises
these results in terms of memory occupancy; this shows that all evaluated
methods entail a negligible overhead w.r.t. the FT baseline, with the sole
exception of MER. Due to its meta-update scheme, this last approach needs
to retain three copies of the model’s parameters, which makes it largely
impractical for application on larger-scale benchmarks.
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8.4 Conclusions
This brief chapter presented a novel experimental setting, originally
designed to showcase DER’s ability to operate in a realistic setting, in
line with the guidelines expressed in [35]. While it could be argued that
other novel scenarios presented in Sec. 2.2.2 enjoy wider popularity, our
proposed benchmark is designed from the ground up to match the key
requirements of GCL and ensure that incompatible methods simply cannot
run the experiment.

While several works have proposed evaluations on our MNIST-360
after its first publication [9, 187, 17, 94, 176, 66], no additional benchmarks
designed specifically for GCL have been proposed. While the performance
achieved by these models has not yet saturated for low |M| w.r.t. to
JT, there is reason to believe that the CL community would particularly
benefit from the design of a similar GCL experiment entailing a more
complex base dataset than MNIST.





Chapter 9

Continual Learning under
Limited Supervision

9.1 Motivation
Both academic and novel CL scenarios presented in Chap. 2 make the
assumption that all incoming data is labelled. In some settings, this
condition does not represent an issue and can be easily met. This may be
the case when ground-truth annotations can be directly and automatically
collected (e.g., a robot that explores the environment and learns to avoid
collisions by receiving direct feedback from it [5]).

However, if the labelling stage involves human intervention (as it is
the case for a number of computer vision tasks including classification,
object detection [207], etc.), the assumption of full supervision clashes
with the pursuit of lifelong learning. Indeed, if the adaptability of the
learner to incoming tasks were bottlenecked by the speed of the human
annotator, the trivial solution of re-training from scratch would become
a viable alternative to continually updating the model. For this reason,
in this chapter we propose a scenario called Continual Semi-Supervised
Learning (CSSL), which accounts for annotations being made available to
the learner at a reduced rate. Specifically, we assume that only one out of
k examples is presented with its ground-truth label.

To address this setting, one could simply limit the adjustment of the
prediction model to the fraction of examples that can be labelled in real-
time; we empirically review the performance of SOTA CL models at varying
label-per-example rates and verify that doing so results in an expected
degradation in terms of performance. Luckily, this can be compensated
by leveraging techniques from semi-supervised learning [124, 166]: many
of the research efforts in this field can be beneficially combined with CL
models to allow learning even from unlabelled observations.

113
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Task 1 Task 2

Continual Learning (CL)

Task 1 Task 2

Continual Semi-Supervised Learning (CSSL)

Task 1 Task 2

Continual Learning (CL)

Task 1 Task 2

Continual Semi-Supervised Learning (CSSL)

Fig. 9.1: Overview of the CSSL setting. Input batches include both labelled
(green) and unlabelled (red) examples.

Taking one more step, we then also propose a CSSL method capable
of filling the gap induced by partial annotations. Contrastive Continual
Interpolation Consistency (CCIC), enforces the consistency of augmented
and interpolated examples and encourages coherent class representations.
We surprisingly find that CCIC is not necessarily upper-bounded by fully
supervised learners: 25% labels can be enough to outperform CL methods
using all ground truth.

9.2 Continual Semi-Supervised Learning
In CSSL, we propose a variation of the CL problem presented in Sec. 2.1
by distributing the samples coming from Tt into two sets: T s

t , containing
a limited number of pairs of labelled samples (xs, ys), and T u

t , containing
the remaining unsupervised samples xu. We define this split according to
a given proportion ps = |T s

t |/(|T s
t |+|T u

t |), which remains fixed across all tasks.
The objective of Eq. 2.2 must then be optimised without having access to
the ground-truth supervision signal for T u

t . Each input batch of data from
the stream consists of a mix of labelled pairs S ⊂ T s

t and unlabelled items
U ⊂ T u

t ; since input batches are randomly sampled from the available
data, we can equivalently formulate CSSL as providing a ground-truth
label for any given stream example with uniform probability 1/k (as shown
in Fig. 9.1 for k = 2).
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In line with the novel CL scenarios presented in Sec. 2.2.2, this chapter
also aims at providing a more realistic setup: instead of focusing on model
limitations, we acknowledge that requiring fully labelled data can hinder
the extension of CL algorithms to real-time and in-the-wild applications.

Some recent works that also focus on exploiting unlabelled data in CL
methods are Deep Model Consolidation [203], which first specialises a dedic-
ated model on each new encountered task, then produces a unified learner
by distilling knowledge from both the new specialist and the previous
incremental model, and Semi-Supervised Incremental Learning [87], which
alternates unsupervised feature learning on both input and auxiliary data
with supervised classification. We remark that both these settings are
significantly different from our proposed CSSL: we do not separate the
supervised and unsupervised training phases, but rather intertwine both
kinds of data in all drawn batches in varying proportions and require
that the model learns from both at the same time. Additionally, we do not
exploit auxiliary unsupervised external data to supplement the training
set; instead, we reduce the original supervised data to a fraction, thus
modelling supervision becoming available on the input stream at a much
slower rate.

9.3 CSSL approaches
We are interested in understanding i) how existing CL perform under par-
tial lack of supervision and ii) how Semi-Supervised Learning approaches
can be combined with them to exploit unsupervised data. Question i) is
investigated experimentally in Sec. 9.4 by evaluating methods that simply
drop unlabelled examples xu. Differently, question ii) opens up many
possible solutions that we address by proposing a simple CSSL baseline
first (PseudoER) and then a more complex approach (CCIC). Due to the
effectiveness of RBMs shown in previous chapters, we choose to build both
proposals on top of the lightweight ER.

9.3.1 Pseudo-Labelling Experience Replay
Inspired by the line of works relying on self-labelling [191, 89], we first
introduce PseudoER: a simple CSSL baseline allowing ER to profit from
the unlabelled examples. When dealing with lack of supervision, the
model itself can be used to produce targets (pseudo-labels) [191, 89]; given
an example xu without annotation, PseudoER produces a pseudo-label ỹu
by considering its own prediction on xu. Formally,

ỹu = argmax
c∈Yc

fθ(x
u)c, (9.1)

where Yc is the set of classes of the current task.
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Alg. 9.1: Contrastive Continual Interpolation Consistency
1: Input: Input batch X = Xs ∪ Ys ∪ Xu (superv. samples xs ∈ Xs,
2: labels ys ∈ Ys, unsup. items xu ∈ Xu), memory bufferM,
3: scalars λ, µ, τ , α, β, weights θ.
4: (XM ,YM )← sampleBatch(M)
5: S ← (augment(xs), ∀xs ∈ [Xs,XM ])
6: U ,P ← [ ], [ ]
7: for xu in Xu do
8: for k = 1 to K do
9: x̂u,k ← augment(xu)
10: U ← [U , x̂u,k]
11: end for
12: zu ←

∑
k
hθ(x̂u,k)

13: z̃u ← z
1/τ
u /

∑
j (zu)

1/τ
j

14: P ← [P, repeat(z̃u,K)]
15: end for
16: W ← shuffle([S,U ])
17: S ′,U ′ ← mixUp(S,W<|S|),mixUp(U ,W⩾|S|)
18: S∗,U∗ ← zip(S ′, [Ys,YM ]), zip(U ′,P)
19: LS ←

∑
x,y∈S∗ CE

(
fθ(x), y

)
20: LU ←

∑
u,q∈U∗ ∥q − fθ(u)∥22

21: HS ← {(x,hrdstPositive(x,S), hrdstNegative(x,S));∀x ∈ S}
22: LSM ←

∑
x,xN,xP∈HS

ReLU(α− ∥hθ(x)− hθ(xN)∥22 + ∥hθ(x)− hθ(xP)∥22)
23: HU ← {(x,hrdst(x,M<T⌋)), ∀x ∈ U}
24: LUM ←

∑
x,xN∈HS

ReLU(β − ∥hθ(x)− hθ(xN)∥22)
25: LCCIC ← LS + λLU + LSM + µLUM

Unfortunately, pseudo-labels tend to become unstable when only a
few annotations are available, possibly resulting in overfitting of the
limited supervised data available [123]. To mitigate this effect, we apply
a threshold η to disregard xus with low-confidence outputs. Specifically,
we estimate the confidence as the difference between the two highest
values pre-softmax model responses hθ(x

u)c
1. After this filtering step, a

pair (xu, ỹu) is considered on par with any supervised pair (xs, ys) and is
therefore inserted into M for later replay.

9.3.2 Contrastive Continual Interpolation Consistency
If PseudoER represents a simple approach for incorporating unlabelled
items into the model’s learning, we take one more step and propose
Contrastive Continual Interpolation Consistency (CCIC): a more comprehens-
ive CSSL approach that is presented in detail in Alg. 9.1. Our proposal

1With hθ indicating pre-softmax model responses of fθ(·), as defined in Sec. 3.3.2.
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Fig. 9.2: An illustration of the semantic constraints enforced by CCIC: for
each anchor (A), the network pushes away representations of different-task
and different-class examples (N) and attracts same-class embeddings (P).

combines of ER with MixMatch [16], a recently proposed semi-supervised
learning approach which does not depend on the model’s accuracy on
unlabelled examples, making it a more robust approach w.r.t. self-labelling.
On top of that, CCIC applies additional consistency objectives to ensure
coherent representations for examples belonging to the same class.

Continual MixMatch

Following MixMatch, xus from the input stream are subjected to differ-
ent augmentations and their predictions are averaged, sharpened and
finally used to promote consistent responses to considerable variations of
the data-points. This consistency regularisation step [166, 116] operates
by combining both labelled and unlabelled samples through the mixUp
procedure [201]2: this produces two final augmented and mixed sets of
examples S∗ and U∗ that are then used to compute two loss terms, LS
using ground-truth labels of the former set and LU using the soft-labels
generated through response-averaging. Please refer to Alg. 9.1 and [16]
for a step-by-step breakdown of this procedure.

Inter-Class Consistency

To further push the model to produce semantically coherent predictions, we
encourage it to keep the representations of labelled examples belonging

2Differently from MixMatch, we found it more effective to only apply mixUp on the input
images and not to the corresponding labels.
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to the same class possibly close. This is accomplished by introducing
a triplet margin loss [11], leveraging positive and negative anchors xP

and xN chosen as the hardest same-class and different-class exemplars
respectively, either within the labelled portion of the current batch S or
the memory buffer M. In formal terms:

LSM ≜ E
(x,xN ,xP )∼S∪M

[
max

(
α−Dθ(x, xN ) +Dθ(x, xP ), 0

)]
, (9.2)

with D indicating the Euclidean distance between the embeddings of the
provided samples (Dθ(x, x

′) ≜ ∥hθ(x)− hθ(x
′)∥22) and α a constant margin

beyond which no more efforts should be put into enlarging the distance
between positive and negative pairs.

Since the objective of Eq. 9.2 must be limited to the few labelled
examples at our disposal, we are interested in further refining training by
devising a similar contrastive term on unlabelled data. To do so, we recall
that we work in the Class-IL setting: tasks are disjoint (i.e., examples from
different tasks necessarily belong to different classes) and the boundaries
between tasks are provided. We can therefore keep track of the original
task of in-memory exemplars thus use stored examples from previous
tasks M<Tc

as negative anchors to current-task unlabelled exemplars U :

LUM ≜ E
x∼U

xN∼M<Tc

[
max

(
β −Dθ(x, xN ), 0

)]
, (9.3)

with β a separate constant margin analogous to α in Eq. 9.2. The combined
effect of LSM and LUM is illustrated in Fig. 9.2.

Overall objective

In summary, the objective of CCIC combines the regularisation of
MixMatch with the additional terms given by Eq. 9.2 and 9.3. The overall
optimisation target is formalised as follows:

L̂CL ≜ LS + λLU + LSM + µLUM, (9.4)

where λ and µ are hyper-parameters setting the importance of the unsu-
pervised examples.

Inference Scheme

To maximally exploit the introduced feature-space constraints of Eq. 9.2
and 9.3, we further propose an alteration of the basic inference scheme of
ER. Similarly to [138], we decouple classification from feature extraction
by employing the k-Nearest Neighbours classifier trained on top of the
memory buffer for as final predictor. This is in harmony with the rest of
the model and further mitigates the bias problem discussed in Sec. 5.1.3.
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FAA S-SVHN (JT: 86.2) S-CIF10 (JT: 92.1) S-CIF100 (JT: 67.7)

Labels % 0 .8% 5% 25% 100% 0 .8% 5% 25% 100% 0 .8% 5% 25% 100%

FT ¦ 9.9 9.9 17.5 17.8 ¦ 13.6 18.2 19.2 19.6 ¦ 1.8 5.0 7.8 8.6
LwF ¦ 9.9 9.9 14.8 16.9 ¦ 13.1 17.7 19.4 19.6 ¦ 1.6 4.5 8.0 8.4
oEWC ¦ 9.9 9.9 14.7 17.9 ¦ 13.7 17.6 19.1 19.6 ¦ 1.4 4.7 7.8 7.8
SI ¦ 9.9 10.2 17.1 18.2 ¦ 12.4 15.9 19.2 19.5 ¦ 1.3 3.4 7.5 8.1

|M| = 500

ER ¦ 32.5 56.0 59.6 66.5 ¦ 36.3 51.9 60.9 62.2 ¦ 8.2 13.7 17.1 21.3
iCaRL ¦ 8.9 10.0 19.9 23.1 ¦ 24.7 35.8 51.4 61.0 ¦ 3.6 11.3 27.6 37.8
DER ¦ 11.9 54.6 56.9 70.8 ¦ 29.1 35.3 50.0 67.1 ¦ 1.7 5.1 13.0 28.8
GDumb ¦ 34.6 41.8 59.2 59.9 ¦ 39.5 40.9 44.8 47.9 ¦ 8.6 9.9 10.1 10.9
PseudoER ¦ 23.2 48.9 63.5 - ¦ 37.8 44.9 56.3 - ¦ 5.1 14.3 18.4 -
CCIC ¦ 55.3 70.1 75.9 - ¦ 54.0 63.3 63.9 - ¦ 11.5 19.5 20.3 -

|M| = 5120

ER ¦ 44.4 69.9 77.6 80.5 ¦ 37.4 64.1 79.7 83.3 ¦ 9.6 22.8 37.9 49.0
iCaRL ¦ 9.3 11.5 19.5 23.9 ¦ 20.7 35.5 56.3 61.9 ¦ 4.3 12.2 30.9 41.1
DER ¦ 23.1 67.8 74.7 75.3 ¦ 32.9 47.6 73.9 84.5 ¦ 1.6 4.7 11.9 38.6
GDumb ¦ 46.5 74.4 74.6 78.3 ¦ 40.8 71.2 81.4 82.5 ¦ 9.6 23.3 33.2 42.9
PseudoER ¦ 45.8 74.6 77.8 - ¦ 62.2 72.9 80.4 - ¦ 8.2 25.1 40.0 -
CCIC ¦ 59.3 81.0 83.9 - ¦ 55.2 74.3 84.7 - ¦ 12.0 29.5 44.3 -

Tab. 9.1: Class-IL FAA of CL methods and our proposals in CSSL.

9.4 Experiments

In this section, we provide an evaluation encompassing several CL methods
and our CSSL proposals on CSSL benchmarks. The latter are constructed
by taking standard Class-IL benchmarks from Sec. 2.3 and randomly
keeping only a percentage of the ground-truth labels, while discarding
the rest. We employ S-SVHN, S-CIF10 and S-CIF1003 and vary the fraction
of labelled data shown to the model to test different degrees of supervision
(0.8%, 5%, 25% and 100%, i.e., 400, 2500, 25000, and 50000 samples on
S-CIF10/S-CIF100); results are expressed as FAA and averaged over 5
independent runs.

For each benchmark, we provide an upper bound given by JT without
discarding any ground-truth annotation and a lower bound given by FT.
To test existing CL methods on our settings, we consider LwF, oEWC, SI,
ER, iCaRL, DER, GDumb and simply discard the unlabelled examples in
each input batch.

3W.r.t. to the details presented in Sec. 2.3, we only train for 30 epochs on S-CIF100 and
use no learning rate decay; all models are optimised with SGD with the sole exception of
CCIC, which uses Adam.
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9.4.1 CL Models
The results presented in Tab. 9.1 confirm that CSSL constitutes a challen-
ging scenario, whose difficulty unsurprisingly increases when fewer labels
are provided to the learner. Regularisation methods – generally regarded
as weak on Class-IL even with full supervision [45, 6] – dramatically
underperform across all datasets. As these methods rarely outperform the
FT lower bound, they prove ineffective outside of Task-IL and Domain-IL
in the low-label regime.

RBMs overall show an expected decrease in performance as supervision
diminishes. This is especially severe for DER and iCaRL, as their accuracy
drops on average by more than 70% between 100% and 0.8% labels. As the
model underfits the task when less supervision is provided, it produces
less reliable targets that cannot be successfully used by these knowledge
distillation-based methods. In contrast, ER is able to replay information
successfully as it exploits hard targets; thus, it learns effectively even
after initially underfitting the task. Indeed, its accuracy with 5% labels
and |M| = 5120 is always higher than its fully supervised accuracy with
a smaller buffer, indicating that ER is able to overcome the lack of labels
when paired with an appropriate buffer.

We attribute the failure of iCaRL on S-SVHN to the low complexity of
the backbone network: a shallow backbone produces a latent space that
is less suitable for its nearest-mean-of-exemplars classifier. Conversely,
this method proves quite effective even with a reduced memory buffer on
S-CIF100. In this benchmark, the herding sampling of iCaRL ensures that
all classes are fairly represented.

Finally, GDumb does not suffer from lower supervision as long as its
buffer can be filled completely: its operation is not disrupted by unlabelled
examples on the stream, which is ignored entirely. While this approach
outperforms other methods when few labels are available, CCIC surpasses
it consistently. This suggests that the stream offers potential for further
learning and should not be dismissed.

9.4.2 CSSL Models
Our PseudoER baseline performs notably well on S-CIF10, maintaining
high accuracy as the amount of supervision decreases. However, while
S-CIF10 is a nontrivial benchmark, it only features two classes for each
task, which makes it easy for pseudo-labelling to produce reasonable
responses (a random guess results in 50% accuracy). Conversely, PseudoER
struggles to produce valid targets and exhibits a swift performance drop
on S-CIF100 as the availability of labelled data decreases. Similarly, we
find the application of pseudo-labelling beneficial for S-SVHN only as
the space reserved for the buffer increases, demonstrating the mixed
reliability of this approach in the online setting.
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FAA Labels %
(|M| = 5120) 5% 25%

Across-Task (Eq. 9.3) 29.5 44.3
Within-Task 29.3 44.0
Task-Agnostic 29.1 43.9

Tab. 9.2: Class-IL FAA of distinct
unsupervised mining techniques for
CCIC on S-CIF100.

Labels % 0 .8% 5% 25%

ER+EMA500 21.37 26.31 43.25
CCIC500 53.96 63.29 63.86

ER+EMA5120 25.85 40.77 64.75
CCIC5120 55.19 74.34 84.74

Tab. 9.3: Comparison of CCIC with
a CSSL approach enforcing tem-
poral consistency (Class-IL FAA on
S-CIF10)

On the contrary, the compelling performance of CCIC points to a
successful blending of supervised information and semi-supervised reg-
ularisation. While ER encounters an average performance drop of 47%,
going from 25% to 0.8% labels on S-CIF10, CCIC only loses 26% on av-
erage. Surprisingly, we observe that – for the majority of evaluated
benchmarks – 25% supervision is enough to approach the results of fully
supervised methods, even outperforming benchmarked CL models in some
circumstances (S-CIF10 with |M| = 5120, S-SVHN with |M| ∈ {500, 5120}).

This suggests that, when learning from a stream of data, striving
to provide full supervision is not as essential as it might be expected:
differently from the offline scenario, a larger number of labels might
not produce a proportionate profit due to catastrophic forgetting. In this
respect, our experiments suggest that pairing few labelled examples
with semi-supervised techniques represents a more efficient paradigm to
achieve satisfactory performance.

9.5 Analysis
In this section, we briefly review the design choices for CCIC and consider
alternative approaches for addressing the CSSL setting.

9.5.1 Unsupervised Mining in CCIC
In its unsupervised mining loss term LUM, CCIC takes examples of pre-
vious tasks in M as negatives (Across-Task Mining) and requires their
representations to be pushed away from current data. In Tab. 9.2, we
compare this design choice with two alternative strategies: i) Within-Task
Mining, where we let the model choose the negatives from the current
task only; and ii) Task-Agnostic Mining, where the model can freely
pick a negative example from either the memory or the current batch
without any task-specific prior. As can be observed, Task-Agnostic Min-
ing and Within-Task Mining lead to a small but consistent decrease in
performance, while LUM proves to be the most rewarding strategy.
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FAA w/o CaSpeR w/ CaSpeR
Labels % 0.8% 5% 0.8% 5%

ER-ACE 8.46 11.87 8.55+0.09 14.16+2.29

PseudoER-ACE 2.31 16.35 9.69+7.38 17.42+1.07

CCIC 11.53 19.52 12.22+0.72 20.32+0.82

Tab. 9.4: Class-IL FAA on S-CIF100 for several methods with and without
CaSpeR (|M| = 2000).

9.5.2 Model-Driven Consistency
As an alternative to combining a consistency regularisation objective
with ER, we propose an additional temporal consistency baseline which
requires the activations of the model to match a slower Exponential Moving
Average (EMA) checkpoint [166]. Results in Tab. 9.5 show, however, that
such approach performs significantly worse than CCIC and even yields
worse results w.r.t. ER. This suggests that exponential moving average
approaches do not necessarily scale to CL scenarios.

9.5.3 Spectral Regularisation and CSSL
In Sec. 7.3, we highlighted that CaSpeR – our geometrically-based regu-
lariser for RBMs – should be expected to operate well in a low-data regime
and facilitate the convergence of underperforming baselines. For this
reason, we here conduct an experiment testing its applicability to CSSL.

In a supervised CL setting, we apply CaSpeR to buffer data-points to
encourage the separation of all previously encountered classes in the
latent space. However, we remark that our approach does not have strict
supervision requirements, as it does not need labels to be attached to each
node of the LGG, but rather just the total number of classes cM that must
be clustered (ref. Eq. 7.3).

We can therefore adopt CaSpeR in a limited-supervision setting, lever-
aging its reduced need for supervision to introduce as an additional
learning objective computed on all input stream exemplars – both labelled
and unlabelled. Specifically, we compute the LGG for current batch exem-
plars and minimise its first k eigenvalues, with k equal to the number of
classes in a given task.

In Tab. 9.4, we report the results of an experiment on S-CIF100 in
the CSSL setting with only 0.8% or 5% annotated labels. We compare
ER-ACE, an improved version of PseudoER that also adopts Asymmetric
Cross-Entropy (PseudoER-ACE) and CCIC with and without CaSpeR on
input stream batches. We observe that introducing CaSpeR leads to
an overall improvement of all tested models and – most significantly –
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counteracts the failure case incurred by PseudoER-ACE applied on top of
0.8% annotated data. In this case, PseudoER-ACE backfires as the provided
supervision does not suffice for the learner to produce reliable responses,
which compromises the quality of the self-labelling procedure. In this
regard, CaSpeR effectively manages to limit the impact of the noisy labels
produced by pseudo-labelling and delivers a very significant performance
increase which reverts this failure case.

9.6 Conclusions
This chapter presented CSSL, a CL setting which questions the strong
assumption of the availability of full supervision and – in so doing –
facilitates the study of realistic deployment scenarios, in which a human
annotator might constitute a bottleneck for an incremental learner. CSSL
is easily obtained by dropping a portion of the labels in an ordinary
Class-IL benchmark; our experiments show that strong fully supervised
CL methods cannot always generalise well to this scenario (e.g., DER
and iCaRL) and that a simple self-labelling baseline might also encounter
failure cases due to the changing input data distribution.

Motivated by these considerations, we proposed CCIC, a first approach
designed specifically for CSSL which combines MixMatch and ER and
further introduces additional semantic-constraint loss terms. By proving
its effectiveness on the newly proposed setting, CCIC provides a stepping-
stone for researchers and practitioners interested in bridging the gap
between theoretical CL and applied systems.

Since our proposal, the investigation of semi-supervised CL proved to
be a niche but steadily researched topic [160, 112, 72]. A parallel emerging
research trend is represented by fully unsupervised CL scenarios [106, 46],
although it should be noted that the complete absence of supervision
dramatically complicates the challenge of training a continual learner;
our preliminary experiments in this field appear inconsistent: enlarging
|M| in RBMs does not increase their performance and SOTA methods
seem to entirely fail to produce any sensible organisation of the latent
space, raising the question if they are learning at all. In light of these
considerations, we feel that CSSL can better serve as a launchpad for
real-world implementations of CL problems w.r.t. fully unsupervised CL.





Chapter 10

Pre-Training in Continual
Learning Classification

10.1 Motivation
In Chap. 9, we challenged the problematic assumption made by typical
CL settings that all incoming data is labelled by exploring strategies
that allow for learning even when a fraction of the original supervision
is available. A widely adopted alternative solution for learning with
limited supervision is given by transferring and re-using knowledge
across different data domains as typically done in Transfer Learning [126].
In this respect, the simplest approach is given by pre-training the model
on a labelled source dataset and then finetuning it on the target task [195,
140, 55]. Alternatively, more sophisticated domain adaptation algorithms
have been proposed [31, 104, 103] mainly based on the concept of feature
alignment (i.e., reducing the discrepancy between the feature distributions
of the target and source domains). Unfortunately, these approaches assume
the availability of the source dataset while training, which clashes with
the typical constraints imposed in CL scenarios.

Mehta et al. [110] proposed a first analysis the entanglement between
CL and pre-training, highlighting that the latter leads the optimisation
towards wider minima of the loss landscape – a property strictly linked
to a reduced tendency in incurring forgetting, as discussed in previous
chapters. Here, we further the investigation and show a notable effect:
the pre-training task is itself catastrophically forgotten as the model veers
towards the newly introduced stream of data. This is not detrimental
if all target classes are available at once (i.e., JT): as their exemplars
can be accessed simultaneously, the learner can discover a joint feature
alignment that works well for all of them while leaving its pre-training
initialisation. Instead, as illustrated in Fig. 10.1, if classes are shown in
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Fig. 10.1: An illustration of the problematic interplay between pre-training
and CL: pre-training knowledge is itself subject to catastrophic forgetting
while the model is learning from the stream of data; as a consequence,
later tasks may not benefit from pre-training features.

a sequential manner, the transfer of pre-training features is only fully
available to classes introduced in early tasks; subsequently, pre-training
features are swiftly overwritten, barring later tasks from benefiting of
pre-training knowledge.

We showcase this phenomenon through a simple preliminary experi-
ment by training ER on S-CIF100 and measuring how much individual
ResNet-18 layers differ from their initialisation. A randomly initialised
backbone (Fig. 10.2, left) significantly alters its parameters at all lay-
ers while tasks progress, resulting in a very low Centred Kernel Align-
ment [82] similarity score already after the first CL task. Similarly, we
observe that a backbone pre-trained on Tiny ImageNet (Fig. 10.2, right)
also undergoes variations in its layers (even though limited, with the
exception of the last residual layer).

Such a result indicates that its pre-training parametrisation requires
relevant modifications to fit the current training data, leading to the
catastrophic forgetting of the source pre-training task: namely, the latter
is swiftly forgotten as the network focuses on the initial CL tasks. This
is validated by the decreasing accuracy for pre-training data of a k-NN
classifier trained on Layer-3 and -4 representations in Fig. 10.2 (right).

To sum up, while pre-training is certainly beneficial, the model in-
exorably drifts away from it one task after the other. If the first task
takes full advantage of it, the optimisation of later tasks instead starts
from an initialisation that increasingly differs from the one attained
by pre-training. This is detrimental, as classes introduced later might
be likewise advantaged by the reuse of different pieces of the initial
knowledge. To account for such a disparity and let all tasks profit equally
from pre-training, this chapter introduces an ad-hoc strategy for fully ex-
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Fig. 10.2: Forgetting of the initialisation, measured as the distance from
pre-training (1−CKA [82]) (lower is better) and k-NN accuracy (higher is
better). Features extracted by a pre-trained model remain closer to the
initialisation w.r.t. a randomly initialised model; the steady decrease in
k-NN accuracy as training progresses reveals that features become less
specific for past tasks.

ploiting the source knowledge in CL. Our proposal, called Transfer without
Forgetting (TwF), exploits per-layer knowledge distillation [59] from a
pre-trained sibling network, thus allowing for the continuous propagation
of pre-trained representations.

10.2 Transfer without Forgetting

10.2.1 Continuous Feature Transfer
As training progresses, the input stream introduces new classes that
might benefit from the adaptation of specific features of the pre-trained
model fθt . To enable feature transfer without incurring pre-training
forgetting, we maintain a separate copy of θt (the sibling model) and adopt
an intermediate-feature knowledge distillation objective [146, 2, 175, 57].
Considering a subset of L layers, we seek to minimise the distance
between the activations of the base network h

(l)
θ ≜ h

(l)
θ (x) and those from

its pre-trained sibling ĥ(l) ≜ h
(l)
θt (x):

E
x∼Tc

[
L∑

l=1

∥∥∥∥h(l)
θ −

[
ĥ(l)
]+
m

∥∥∥∥2
2

]
, (10.1)

where c is the current task and [·]+m indicates the application of a margin
ReLU activation [57]. The objective outlined in Eq. 10.1 leads the learner
to focus on mirroring the internal representations of the pre-trained
teacher and maximising transfer. However, this target alone can produce
excessive rigidity and prevent the model from fitting current-task data
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Fig. 10.3: Overview of TwF and detail of LFP: Given a batch of samples
from the current task or from M, we i) extract intermediate features
from both the student and fixed sibling backbones at multiple layers; ii)
compute the corresponding binarised attention maps M(·); iii) pull the
attention-masked representations of the two models closer.

altogether. Taking inspiration from [175], we thus adopt a weighted version
of Eq. 10.1. In particular, we leverage a dedicated learnable module to
compute a binary attention map M(·) over the feature maps of the sibling,
with the purpose of selecting which spatial regions have to be aligned.
The objective is consequently updated as follows:

E
x∼Tc

[
L∑

l=1

∥∥∥∥M(ĥ(l)
)
⊙
(
h
(l)
θ −

[
ĥ(l)
]+
m

)∥∥∥∥2
2

]
, (10.2)

where ⊙ indicates the Hadamard product between two equal-sized tensors.
The attention maps M(·) are computed through specific layers, whose ar-
chitectural design follows the insights provided in [128]. Specifically, they
forward the input activation maps into two parallel branches, producing
respectively a Channel Attention map MCh(·) and a Spatial Attention map
MSp(·). These two intermediate results are summed and then activated
through a binary Gumbel-Softmax sampling [63], which allows model-
ling discrete on-off decisions regarding which pieces of information to
propagate. In formal terms:

M(ĥ(l)) ≜ gumbel
(
MCh(ĥ

(l)) +MSp(ĥ
(l))
)
. (10.3)
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The Spatial Attention MSp(ĥ
(l)) regulates the propagation of spatially

localised information and consists of four convolutional layers [128]:

MSp(ĥ
(l)) ≜ C1×1 ◦C3×3 ◦C3×3 ◦C1×1

(
ĥ(l)
)
, (10.4)

where C denotes a sequence of convolutional, batch normalisation, and
ReLU activation layers. On the other hand, the Channel Attention MCh(ĥ

(l))
similarly regulates teaching-signal propagation across the channels of
ĥ(l), following the design suggestions proposed in [62]. Formally, we have:

MCh(ĥ
(l)) ≜ tanh

(
BN(WT

1 ĥ
(l)
GAP)

)
· σ
(
BN

(
WT

2 ĥ
(l)
GAP

))
+WT

3 ĥ
(l)
GAP, (10.5)

where W1, W2 and W3 are the weights of three parallel fully-connected
layers, BN indicates the application of batch normalisation and ĥ

(l)
GAP

denotes the application of Global Average Pooling (GAP) on top of ĥ(l).

Attention Map Disentanglement

Without a specific loss term disentangling the attention maps, we could
obtain degenerate behaviours, where some of the binary gates may end up
always being either on or off. While some recent works provide a target
expected activation ratio as a countermeasure [1, 151], we encourage the
auxiliary modules to assign different propagation gating masks to differ-
ent examples, the intuition being that each example should determine a
distinctive subset of activations to be forwarded from the sibling. For this
purpose, we include an auxiliary loss term [117] as follows:

LAUX ≜ −λ
L∑

l=1

E
x1,...,xn∼Tc

 n∑
j=1

log
eg

T
ijgij/T∑n

k=1
eg

T
ijgik/T

 ,

gij ≜ NORM

(
GAP

(
M
(
ĥ(l)(xj)

)))
,

(10.6)

where n indicates the batch size, NORM a normalisation layer, T a
temperature and finally λ is a scalar weighting the contribution of this loss
term to the overall objective. In practice, we ask each vector containing
channel-wise average activity to have a low dot product with vectors of
other examples.

10.2.2 Knowledge Replay
The training objective of Eq. 10.2 is devised to facilitate selective feature
transfer between the in-training model and the immutable sibling. To a
degree, this is sufficient to achieve basic robustness against catastrophic
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forgetting (as we show experimentally in Sec. 10.4.1): preserving pre-
training features already serves this purpose. Still, it is advisable to adopt
a targeted strategy to prevent the deterioration of knowledge gathered
in previous CL tasks. For this reason, we further introduce a reservoir-
populated memory buffer M and apply the replay strategy typical of
DER++ (Eq. 4.5).

Since we also wish to avoid catastrophic forgetting w.r.t. the feature
propagation formulated in Eq. 10.2, we also extend it to examples inM and
further limit cross-task interference by making all batch normalisation
and fully connected layers in Eq. 10.3, 10.4 and 10.5 conditioned [37] w.r.t.
the CL task. This implies adding toM – for each example x – both its task
label t and its corresponding set of binary attention maps m = (m1, ...,ml)
generated at the time of sampling. Eq. 10.2 is finally updated as:

LFP ≜ E
(x,t=c)∼Tc

(x;t)∼M

[
L∑

l=1

∥∥∥∥M(ĥ(l); t)⊙
(
h(l) −

[
ĥ(l)
]+
m

)∥∥∥∥2
2

]

+ E
(x,t,m)∼M
l=1,...,L

[
BCE

(
M(ĥ(l); t),m(l)

)]
,

(10.7)

where the second term is an additional replay contribution distilling past
attention maps, with BCE indicating the binary cross entropy criterion.

10.2.3 Overall objective
Our proposed Transfer without Forgetting (TwF) optimises the following
auxiliary CL objective as LR for Eq. 2.2, also summarised in Fig. 10.3:

LTwF ≜ LDER++ + LFP + LAUX. (10.8)
We remark that: i) while TwF requires keeping a copy of the pre-trained
model during training, this is not needed at inference time; ii) similarly,
task labels t are not needed during inference but only while training,
which makes TwF capable of operating under all academic CL settings
presented in Sec. 2.2.1; iii) the addition of t and m in M induces a
limited memory overhead: t can be obtained from the stored labels y
for typical classification tasks with a fixed number of classes per task,
while m is a set of Boolean maps that is robust to moderate re-scaling. As
maps m take discrete binary values, one could theoretically reduce their
occupancy by compressing them with lossless algorithms (e.g., Run-Length
Encoding [144] or LZ77 [208]).

10.3 Experiments
In this section, we compare TwF against SOTA CL approaches both in
the Class-IL and Task-IL settings starting from a pre-trained initialisa-
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FAA (FAF) S-CIF10 (pretr. CIFAR-100)

Method Class-IL Task-IL

JT 92.89 (−) 98.38 (−)
FT 19.76 (98.11) 84.05 (17.75)
oEWC 26.10 (88.85) 81.84 (19.50)
LwF 19.80 (97.96) 86.41 (14.35)

|M| 500 5120 500 5120

ER 67.24 (38.24) 86.27 (13.68) 96.27 (2.23) 97.89 (0.55)
CO2L 75.47 (21.80) 87.59 (9.61) 96.77 (1.23) 97.82 (0.53)
iCaRL 76.73 (14.70) 77.95 (12.90) 97.25 (0.74) 97.52 (0.15)
DER++ 78.42 (20.18) 87.88 (8.02) 94.25 (4.46) 96.42 (1.99)
ER-ACE 77.83 (10.63) 86.20 (5.58) 96.41 (2.11) 97.60 (0.66)
TwF 83.65 (11.59) 89.55 (6.85) 97.49 (0.86) 98.35 (0.17)

Tab. 10.1: FAA and FAF on S-CIF10 w. pre-training on CIFAR-100.

tion. We present experiments on S-CIF10, S-CIF1001 and S-CUB200; to
ensure a fair comparison, all competitors undergo an initial 200-epoch
pre-training phase prior to CL on CIFAR-100 [83], Tiny ImageNet [163]2
and ImageNet [39] respectively.

The evaluated competitors include two regularisation approaches (LwF
and oEWC) and five RBMs (the ER baseline and four SOTA approaches:
CO2L, iCaRL, DER++ and ER-ACE). As usual, results include the JT upper
bound and the FT baseline.

Across the board, non-rehearsal approaches fail to effectively use the
features learnt during pre-training. As those methods are not designed
to extract and reuse any useful features from the initialisation, the
latter is rapidly forgotten, barring any knowledge transfer in later tasks.
This is particularly true for oEWC, whose objective proves to be both too
strict to effectively learn the current task and insufficient to retain the
initialisation. Most notably, on S-CUB200 oEWC performs worse than the
FT baseline on both CL settings.

In contrast, those RBMs that feature some form of distillation (DER++
and iCaRL) prove competitive on all benchmarks. In particular, iCaRL
is especially effective on S-CIF100, where it attains the second highest
FAA even when equipped with a small memory, thanks to its herding
buffer construction strategy. However, this effect is less pronounced on
S-CIF10 and S-CUB200, where pre-training plays a primary role thanks
to the similarity of the two distributions for the former and the higher

1W.r.t. Tab. 2.3, we apply 0.1 as lr decay factor and 64 as batch size in S-CIF100.
2Due to the size mismatch between CIFAR-100 and Tiny ImageNet, we resize samples

from the latter to 32× 32 during pre-training.
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FAA (FAF) S-CIF100 (pretr. Tiny ImageNet)

Method Class-IL Task-IL

JT 75.20 (−) 93.40 (−)
FT 09.52 (92.31) 73.50 (20.53)
oEWC 10.95 (81.71) 65.56 (21.33)
LwF 10.83 (90.87) 86.19 (4.77)

|M| 500 2000 500 2000

ER 31.30 (65.40) 46.80 (46.95) 85.98 (6.14) 87.59 (4.85)
CO2L 33.40 (45.21) 50.95 (31.20) 68.51 (21.51) 82.96 (8.53)
iCaRL 56.00 (19.27) 58.10 (16.89) 89.99 (2.32) 90.75 (1.68)
DER++ 43.65 (48.72) 58.05 (29.65) 73.86 (20.08) 86.63 (6.86)
ER-ACE 53.38 (21.63) 57.73 (17.12) 87.21 (3.33) 88.46 (2.46)
TwF 56.83 (23.89) 64.46 (15.23) 89.82 (3.06) 91.11 (2.24)

Tab. 10.2: FAA and FAF on S-CIF100 w. pre-training on Tiny ImageNet.

difficulty of the latter. In these settings, we see iCaRL fall short of DER++,
which better manages to maintain and reuse the features available from
its initialisation. Moreover, we remark that iCaRL and DER++ show a
varying Class-IL performance across different tasks, whereas our method
is much less sensitive to the specific task at hand.

While effective on the easier S-CIF10 benchmark, CO2L does not reach
satisfactory results on either S-CIF100 or S-CUB200. We ascribe this
result to the high sensitivity of this model to the specifics of its training
process (e.g., to the applied transforms and the number of epochs required
to effectively train the feature extractor with a contrastive loss). While
all other competitors employ the same batch size in our experiments, we
made an exception for CO2L and allowed it to use a batch size of 256
to provide a large enough pool of negative samples. Nevertheless, this
method only achieves minor improvement w.r.t. non-rehearsal methods
for S-CUB200.

Finally, results across all proposed benchmarks indicate that TwF
consistently outperforms all competitors, with an average gain of 4.81%
for the Class-IL setting and 2.77% for the Task-IL setting, w.r.t. the second-
best performer across all datasets (DER++ and ER-ACE, respectively). This
effect is especially pronounced for smaller buffers on S-CIF10 and S-
CUB200, for which the pre-training provides a more valuable source of
knowledge, revealing the efficacy of our proposal to retain and adapt
features available from initialisation through distillation. Moreover, its
performance gain is consistent over all settings, indicating that the
proposed approach can be flexibly applied.
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FAA (FAF) S-CUB200 (pretr. ImageNet)

Method Class-IL Task-IL

JT 78.54 (−) 86.48 (−)
FT 8.56 (82.38) 36.84 (50.95)
oEWC 8.20 (71.46) 33.94 (40.36)
LwF 8.59 (82.14) 22.17 (67.08)

|M| 400 1000 400 1000

ER 45.82 (40.76) 59.88 (25.65) 75.26 (9.82) 80.19 (4.52)
CO2L 8.96 (32.04) 16.53 (20.99) 22.91 (26.42) 35.79 (16.61)
iCaRL 46.55 (12.48) 49.07 (11.24) 68.90 (3.14) 70.57 (3.03)
DER++ 56.38 (26.59) 67.35 (13.47) 77.16 (7.74) 82.00 (3.25)
ER-ACE 48.18 (25.79) 58.19 (16.56) 74.34 (9.78) 78.27 (6.09)
TwF 57.78 (18.32) 68.32 (6.74) 79.35 (5.77) 82.81 (2.14)

Tab. 10.3: FAA and FAF on S-CUB200 w. pre-training on ImageNet.

LDER++ LFP LAUX S-CIF10 S-CIF100 S-CUB200

|M| w/o/buf. 500 5120 w/o/buf. 500 2000 w/o/buf. 400 1000

✓ ✓ ✓ − 83.65 89.55 − 56.83 64.46 − 59.67 68.32
✓ – – − 75.79 87.54 − 44.01 57.84 − 56.53 67.29
✓ ✓ – − 83.29 89.53 − 55.50 63.53 − 59.06 67.83
– ✓ – 60.07 62.63 62.75 49.14 50.20 50.22 37.57 38.43 38.93
– ✓ ✓ 60.90 63.19 63.79 49.74 50.88 50.52 37.99 39.20 39.31

Tab. 10.4: Impact of each loss term and of using no replay memory on TwF.
Results given in the Class-IL scenario following the same experimental
settings as Tab.10.1-10.3.

10.4 Analysis
To further characterise the proposed TwF, we present here an additional
analysis of the contribution of each loss term, an investigation on altern-
ative approaches for achieving the preservation of pre-training features
and a final study on the applicability of TwF when pre-training data is
not closely related to CL data.

10.4.1 Breakdown of the Individual Terms of TwF
To better understand the importance of the distinct loss terms in Eq. 10.8
and their connection, we explore their individual contribution to the
final accuracy of TwF in Tab. 10.4. Based on these results, we make the
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Fig. 10.4: Class-IL (left) and Task-IL (centre) FAA performance comparison
of our proposal with different possible methods to retain knowledge from
pre-training. (Right) Influence of different allocation rates of pre-training
examples in M for DER++, |M| = 2000.

following observations: i) LDER++ is the most influential loss term and it is
indispensable to achieve results in line with the SOTA; ii) LFP applied on
top of LDER++ induces better handling of pre-training transfer, as testified
by the increased accuracy; iii) LAUX on top of LFP reduces activation
overlapping and brings a small but consistent improvement.

Further, in the columns labelled as w/o/buf., we consider what happens
if TwF is provided no replay example at all and only optimises LFP and
LAUX on current-task examples. Compared to oEWC in Tab. 10.1-10.3 – the
best non-replay method in our experiments – we clearly see preserving
pre-training features is in itself a much more effective approach, even
with rehearsal out of the picture.

10.4.2 Alternative Pre-Training Preservation Approaches
TwF is designed to both preserve pre-training knowledge and facilitate
its transfer. However, other approaches could be envisioned for the same
purpose. Hence, we compare here TwF with two alternative baselines for
pre-training preservation.

First, we complement a strong approach such as DER++ with an addi-
tional regularisation term based on EWC:

LEwC = λ(θ − θt)T diag(F )(θ − θt), (10.9)

where diag(F ) indicates the diagonal of the empirical Fisher Information
Matrix, estimated on the pre-training data at the optimum θt. When
equipped with this additional loss term, DER++ is anchored to its initialisa-
tion and prevented from changing its pre-training weights significantly,
while its replay-based loss term prevents forgetting of knowledge ac-
quired in previous tasks. As shown by Fig. 10.4 (left, centre), the EwC loss
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FAA (FAF) Class-IL Task-IL

|M| 500 2000 500 2000

iCaRL 39.59 (21.81) 42.02 (18.78) 78.89 (4.04) 80.65 (2.24)
DER++ 36.46 (53.47) 52.29 (24.04) 75.05 (16.22) 83.36 (8.04)
TwF 43.56 (40.02) 56.15 (21.51) 80.89 (10.12) 87.30 (3.12)

Tab. 10.5: Diverse pre-training: FAA on S-CIF100 pre-tr.d on SVHN.

allows DER++ to improve its accuracy on S-CIF100 with Tiny ImageNet
pre-training (especially in the Task-IL setting). However, this improvement
is not actively promoting feature reuse and thus falls short of TwF. We
finally remark that TwF and DER++ w/ EwC have a comparable memory
footprint (both retain the initialisation checkpoint).

Differently, we can assume that pre-training data is available and treat
it as an auxiliary data stream. To evaluate this strategy with a bounded
memory footprint, we test DER++ on S-CIF100 with different percentages
of M dedicated to pre-training images from Tiny ImageNet. The results
shown in Fig. 10.4 (right) confirm our claim: DER++ coupled with pre-
training rehearsal improves over DER++ with only pre-training. This
finding proves that, if pre-training is available, it is beneficial to guard
it against catastrophic forgetting. However, by replaying pre-training
data, we require the model to maintain its predictive capabilities on the
classes of the source task, i.e., we enforce both backward and forward
transfer. TwF, instead, allows the model to disregard the classes of the
source dataset, as long as the transfer of its internal representations
favours the learning of new tasks (i.e., it only enforces forward transfer).

10.4.3 Role of Pre-Training Datasets

As a final study, we seek to further test the ability of TwF to adapt
features from the pre-training. Specifically, we study a scenario where
the source and target data distributions are highly dissimilar: namely, we
first pre-train a ResNet18 backbone on SVHN [120] and then follow with
S-CIF100. We compare our model with iCaRL and DER++; the results in
Tab. 10.5 suggest that our method outranks the competitors not only when
pre-trained on a similar dataset – as in Tab. 10.2 – but also when the tasks
are very dissimilar. We argue that this result further shows the ability of
TwF to identify which pre-training features can be profitably transferred.
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10.5 Conclusions
This chapter investigated the interplay between pre-training and CL,
highlighting that catastrophic forgetting affects the former as training
progresses and hence prevents later tasks from transferring pre-training
features. We proposed TwF, a novel CL approach to facilitate the continu-
ous distillation of pre-training features to the online learner and showed
that its application results in a clear performance gain over standard CL
methods initialised from a pre-trained backbone.

Recently, we see an increasing number of CL works adopting pre-
training baselines [181, 64, 179, 178, 162]. This is due to the increasing
adoption of large attention-based architectures (typically ViTs [41]), whose
operation necessitates large-scale pre-training. The extension of the
findings of this chapter to such architectures is an open research direction:
our preliminary results indicate that ViTs may be subject to a radically
different forgetting that could be possibly linked to the model’s lack of
inductive biases when compared with CNNs.
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This thesis focused on classification Continual Learning (CL) problems,
focusing in particular on Rehearsal-Based CL Methods (RBMs), which con-
stitute the preferred solution thanks to their ease of use and effectiveness.

After an introductory technical discussion covering the basics of CL,
the existing experimental scenarios, benchmarks and approaches (Chap. 2),
we presented several proposals for new RBMs: an improved version of
the Experience Replay baseline (Chap. 3), a distillation-replay solution
allowing for the preservation of secondary information within the model
(Dark Experience Replay, Chap. 4) and its extension obtained by a careful
management of learning dynamics (eXtended Dark Experience Replay,
Chap. 5), a plug-in loss term designed to prevent memory buffer overfitting
in RBMs (Lipschitz-Driven Experience Replay, Chap. 6) and a second one
aimed at enforcing geometric constraints on the online learner’s latent
space (Continual Spectral Regulariser, Chap. 7). All proposed approaches
are evaluated by experimental means with a comparison with state-of-
the-art CL approaches, as well as through additional empirical analyses
aiming at characterising their effects on the in-training model.

Subsequently, we presented several proposals for novel experimental
settings going beyond the standard benchmarks in literature. This in-
cludes the proposal of more realistic and challenging scenarios either by
designing an ad-hoc experiment characterised by both swift and gradual
distribution shifts (General Continual Learning, Chap. 8) or by removing
the assumption of full supervision and requiring the online learner to im-
prove starting from unlabelled examples (Continual Semi-Supervised
Learning, Chap. 9). Differently, Chap. 10 investigates the interplay
between CL and the common practice of pre-training, revealing that
the former interferes with the latter and subsequently proposing a novel
solution addressing this issue (Transfer without Forgetting).

The presented research has been developed by the candidate throughout
the course of his three-year Ph.D. studies; most of the hereby discussed top-
ics have been the object of additional developments in the CL community,
as indicated by the individual concluding sections of each chapter. During
this period, CL enjoyed a dramatic rise in popularity, growing from a niche
topic to a mainstay trend in major Machine Learning conferences and
journals. In addition to the development of increasingly more accurate
methods, we witness a renewed interest in the experimentation with novel
large-scale attention-based architectures. In this respect, the results in
this thesis remain open for further validation on these new models, as
does our understanding of catastrophic forgetting.
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