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Abstract

The aim of this paper is to describe a Stata routine for the nonparametric estimation
of mixed logit models using a Expectation-Maximisation algorithm. We also compare
the performance of our estimator with respect to more typical parametric mixed logit
models estimated by means of Simulated Maximum Likelihood.
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1. Introduction

In a recent paper Train (2008) has showed how EM algorithms can be used
for the nonparametric estimation of mixing distributions in discrete choice models.
In this paper we consider one of the three nonparametric methods he proposes and
show how it can be implemented in Stata 11. In particular, the method we present
allows estimating a discrete mixing distribution with points and shares as parameters.
This constitutes a typical latent class model with a large number of classes so as
to approximate the true underlying unobserved distribution. Clearly, latent class
models can be estimated by standard maximum likelihood but, however, gradient-
based optimisation methods as NR or DFP are often difficult, in particular if the
number of classes is high. Indeed, as well explained in Train (2008), the higher the
number of classes the more difficult the numerical inversion of the Hessian matrix,
with the possibility of singularity at some iteration. Nevertheless, an EM procedure
can help when the direct maximisation of the likelihood function becomes difficult
with traditional optimisation methods since it requires the (repeated) maximisation
of a function that is far easier to maximise. In this paper we will actually show the
advantage of the estimation via EM algorithm with respect to standard optimisation
methods. In particular, EM algorithms have been proved to be very stable and,
under conditions given by Boyles (1983) and Wu (1983), these recursions always
climb uphill until convergence to a local maximum.

This paper is structured as follows: section 2 presents a mixed logit model based
on discrete mixed distributions; section 3 shows how this model can be estimated via
EM algorithm; section 4 contains the related Stata codes and section 5 contains an
example based on accessible data.
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2. A mixed logit model with discrete mixing distributions

Assume there are N agents who face J alternatives on T choice occasions. Agents
choose the alternative that maximises their utility in each choice occasion. The ran-
dom utility of agent i from choosing alternative j in period t is defined as follows:

Uijt=βixijt + �ijt (1)

Where xijt is a vector of alternative-specific attributes and �ijt is a stochastic term,
which is assumed to be distributed IID extreme value. Importantly, each βi in vec-
tor βi is assumed to be random with unconditional density f(β |ϑ), ϑ being the
parameters that characterise its distribution.

Conditional on knowing βi the probability of the observed sequence of choices for
agent i is given by the traditional McFadden’s choice model (see McFadden (1973)):

Pri(βi) =
T�

t=1

�
exp(βixijt)�J

j=1 exp(βixijt))

�dijt

(2)

where dijt is a dummy that picks the chosen alternative in each choice occasion.
However, since βi is unknown, the conditional probability of the sequence of observed
choices has to evaluated for any possible value of βi. Hence, assuming that f(β |ϑ)
has a continuous distribution in the population, the unconditional probability of the
sequence of observed choices is:

Pri(ϑ) =

ˆ T�

t=1

�
exp(βxijt)�J

j=1 exp(βxijt))

�dijt

f(β|ϑ) (3)

Typically, the log likelihood function derived from this probability is estimated using
simulation methods (See Train (2003)). In Stata, this can be done by using the
command MIXLOGIT written by Hole (2007).

If the distribution of each βi in the population is discrete, the probability in
equation 3 becomes:

Pri(ϑ) =
C�

c=1

πc(αi)
T�

t=1

�
exp(βcxijt)�J

j=1 exp(βcxijt))

�dijt

(4)

Where πc = f(βc|α) represents the share of the population that has coefficients βc,
which, different from Train (2008), we define as a function of observed demographic
characteristics.

This is a typical latent class model but here we follow the classification proposed
by McFadden and Train (2000) and define this as a mixed logit model with discrete
mixing distributions so as to maintain the parallelism with the continuous mixed logit
model described in equation 3. This kind of models are normally estimated via ML
but, as we discussed in the introduction, estimating such models with a high number of
classes via ML is often difficult because standard gradient-based optimisation methods
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often fail to achieve convergence1. An EM algorithm could help in this case, as it
requires the (repeated) estimation of a far simpler likelihood function with respect to
the original one.

3. An EM algorithm for the estimation of mixed logit models with discrete
mixing distributions

EM algorithms were initially proposed in the literature to deal with missing data
problems, although they turned out to be a very good method to estimate latent class
models (where the missing data is the class shares). Nowadays, they are widely used
in many economic fields where the assumption that people can be grouped in classes
with different unobserved taste heterogeneity is reasonable.

The recursion is known as “E-M” because it consists of two steps, namely an
“Expectation” and a "Maximisation”. As well explained in Train (2008), the term
being maximised is the expectation of the missing-data log likelihood (i.e. the joint
density of the observed choice and the missing data), where the expectation is over
the distribution of the missing data conditional on the density of the data and the
previous parameters estimates. Consider the conditional logit panel data model with
discrete mixing distributions outlined in the previous section. The log likelihood to
be maximised can be defined as follows:

LL =
N�

i=1

ln
C�

c=1

πc(αc)
T�

t=1

�
exp(βcxijt)�J

j=1 exp(βcxijt))

�dijt

(5)

However, the same log likelihood can be also maximised by repeatedly updating the
following recursion:

ηs+1 = argmaxη
�

i

�
c Ci(ηs)ln · πc(αc)

�
t

�
exp(βcxijt)�J

j=1 exp(βcxijt))

�dijt

= argmaxη
�

i

�
c Ci(ηs)ln · (Li | classi = c)

(6)

Where η is as vector that contains the whole set of parameters to be estimated (i.e.
those that enter the probability of the observed choice plus those that may define the
class shares); Li is the missing-data likelihood function and C(ηs) is the posterior
probability that household i belongs to class c, conditional on the density of the data
and the previous value of the parameters. This conditional probability, C(ηs), is the
key future of the EM recursion and can be computed by means of the Bayes’ theorem:

Ci(η
s) =

Li|classi = c
�C

c=1 Li|classi = c
(7)

Now, given the basic fact that:

ln πc(αc)
exp(βcxijt)�J

j=1 exp(βcxijt))
= ln πc(αc) + ln

exp(βcxijt)�J
j=1 exp(βcxijt))

(8)

1
This is actually the case with the database used in this paper. Indeed, a ML model with four

latent classes fails to achieve convergence.
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the recursion in equation 6 can be split into the following steps:

1. Form the contribution to the likelihood (Li | classi = c) as defined in equation
6 for each class2,

2. Form the individual-specific posterior probabilities of class membership using
equation 7,

3. For each class, maximise the weighted log likelihood so as to get a new set of
βc, c = 1, ..., C:

βs+1
c = argmaxβ

�

i

C(ηs)ln
exp(βcxijt)�J

j=1 exp(βcxijt))
(9)

4. Following equation 8, maximise the other part of the log likelihood in equation
6 and get the updated shares πc(αc):

πc(α
s+1
c ) = argmaxα

N�

i=1

C�

c=1

Ci(η
s)ln πc(αc) (10)

• If the class shares depend on a vector of demographics zi, then the new
parameters that specify the contribution of demographics in the definition
of the class shares are computed as:

αs+1 = argmaxϑ

N�

i=1

C�

c=1

Ci(η
s)ln

exp(αczi)�
c exp(αczi)

, αC = 0 (11)

This is a grouped-data log likelihood, where we have used a logit specification
to ensure the estimated class shares to be in the right range. Moreover,
notice that the set of αc c,1,2...,C are estimated jointly so as to ensure
that the set of probabilities of class membership adds up to one3.

• Update the class shares πc(αc), c = 1, 2, ..., C as:

πc(α
s+1) =

exp(α̂s+1
c zi)�

c exp(α̂
s+1
c zi)

, c = 1, 2, ..., C ; αC = 0 (12)

• Recompute the posterior probability of class membership C(ηs+1) and
restart the recursion from point 3 until convergence.

• Importantly, if the class shares do not depend on demographics, the max-

2
For the first iteration, starting values have to be used for the densities that enter the model.

Importantly, these starting values must be different in every class otherwise the recursion estimates

the same set of parameters for all the latent classes.
3
It is also worth noting that one set of this parameters is set to zero for identification.
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imisation in point 4 can be avoided since its solution is simply given by:

πs+1
c =

�
i Ci(ηs+1)�

i

�
c Ci(ηs+1)

, c = 1, ..., C (13)

Where Ci(ηs+1) is computed using the updated values of βc, c=1,2,...,C
(from point 3) and the previous values of the class shares.

4. Stata routine for the estimation of mixed logit models with discrete
mixing distributions

In what follows we show how to implement the EM algorithm outlined in the
previous section in Stata 11. We present a routine that can be easily replicated in a
Stata do file so as to explain the procedure. However, we have also coded an ado file -
LCLOGIT - that generalises the procedure and we will show how to use this command
in the next section.

We begin by defining the variables that enter the model. In order to create a
flexible routine we work with global variables so that the code can be easily used with
other databases. The dependent variable is called “$depvar ”, the list of covariates
that enter the probability of the observed choice “$varlist”; the list of covariates
that enter the grouped-data log likelihood “$varlist2”; the variable that identifies the
panel dimension, i.e. the choice makers “$ind ” and the variable that defines the choice
situations for each choice maker “$group”. We also define the number of latent classes
“$nclasses” and the number of maximum iterations “$niter ”.

***define global variables and environment**

global depvar "ch"

global varlist "brand1 brand2 cap1 cap2 price1 price2 filter therm"

gen _con=1
global varlist2 "_con"
global id "id"

global idt "ind"

global nclasses "2"

global niter "150"

In order to provide Stata with the starting values, we randomly split the sample into
C different sub-samples (one for each class) and estimate a separate CLOGIT for each
sub-sample4. As for the starting values for the probability of class-membership we
simply define equal shares, that is 1

C :

4
If the same starting values are used for all the classes, the EM algorithm performs the same

computations for each class and return the same results at each iteration.
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***Get starting values***

sort $id $group

by $id: gen double p=runiform() if _n==_N

by $id: egen double pr=sum(p)

global prop 1/$nclasses

gen double ss=1 if pr<=$prop

forvalues s=2/$nclasses{

replace ss=‘s’ if pr>(‘s’-1)*$prop & pr<=‘s’*$prop

}

The next step is to estimate a separate CLOGIT for each sub-sample. After each
estimation, we use the PREDICT command to obtain the probability to choose every
alternative in each latent classes; call these vectors of probabilities as l_, l_2,...,l_C :

forvalues s=1/$nclasses{

qui clogit $depvar $varlist if ss==‘s’, group($group) technique(nr dfp)

predict double l_‘s’

}

Define equal shares as starting values for the probability of class membership:

forvalues s=1/$nclasses{

gen double prob‘s’=$prop

}

We now show the steps needed to calculate the posterior probability defined in equa-
tion 7, given the starting values we have computed.
Firstly, we multiply l_1, l_2,..,l_C by the dummy variable that identifies the ob-
served choice in each choice situation so as to pick only the probability of the observed
choice. Secondly, for each choice maker we multiply the probabilities of the observed
choices in each choice situation. Importantly, this latter point is performed through
the Stata program gprod, which can be downloaded from the Internet (type: "findit
gprod" in the Stata command and go to the dm71 package to install it):

forvalues s=1/$nclasses{

qui gen double kbb‘s’=l_‘s’*$depvar

qui recode kbb‘s’ 0=.

by $id: egen double kbbb‘s’=prod(kbb‘s’)

by $id: replace kbbb‘s’=. if _n!=_N

}

The third step is to construct the denominator of equation 7 by computing a weighed
sum of the previous variables (kbbb1, kbbb2, etc.) with weights given by the probability
of class membership (prob1, prob2,..., etc.):

gen double den=prob1*kbbb1

forvalues s=2/$nclasses{

replace den=den+prob‘s’*kbbb‘s’

}

Then we construct the ratio es defined in equation 7 as:
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forvalues s=1/$nclasses{

gen double h‘s’=(prob‘s’*kbbb‘s’)/den

qui recode h‘s’ .=0

}

Finally, we simply rearrange the previous variables (h1, h2, etc.) in order to create
individual-level variables. These are the conditional probabilities C(ηs) as explained
in the text:
forvalues s=1/$nclasses{

by $id: egen double H_‘s’=sum(h‘s’)

}

Before starting the loop that iterates the EM recursion until convergence, we need
to specify a Stata ml command to perform the estimation of the grouped-data model
defined in equation 11. In what follows we show the commands for a model with two
latent classes. Of course, the routine can be easily adapted to account for a higher
number of latent classes even though the command LCLOGIT does it automatically up
to 30 classes.

Importantly, it is worth noting that if the probability of class membership does
not depend on demographics, then the maximisation of the grouped-data model can
be avoided since its solution can be provided analytically following equation 13. This
is important, in particular if the number of latent classes is high as the maximisation
algorithm slows down the overall procedure.

For this reason, the routine identifies if the model contains demographics in the
probability of class membership. This is performed by computing the means of the
variables in $varlist2 and by checking if the (last) mean of these variables is different
from 1 (i.e. the mean of the constant term). Only in this case, the routine launches
the ml model. Finally, notice that, in this latter case one vector of parameters in
the ml model is set to zero for identification (so that a model with two latent classes
needs only one vectors of parameters as input in the maximisation routine):

qui su $varlist2
global mean=r(mean)
if $mean!=1{
sort $id $group alt
global nalt=3
**$nalt identifies the number of alternatives in each choice occasion
by $id: gen double id1=1 if _n<=$nalt
qui recode id1 .=0
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capture program drop logit_lf
program logit_lf
args lnf ab
tempvar denom
qui gen double ‘denom’=1+exp(‘ab’)
qui replace ‘lnf’=[H_1*ln(1/‘denom’)+H_2*ln(exp(‘ab’)/(‘denom’))] if $depvar==1 & id1==1
qui recode ‘lnf’ .=0
capture drop prob*
qui gen double prob1=1/‘denom’
qui gen double prob2=exp(‘ab’)/(‘denom’)
end
}

We now present the loop that repeats the steps above until convergence:

local i=1

while ‘i’<= $niter{

set more off

quietly{

Estimate again the C CLOGIT models (one for each class) using the conditional proba-
bilities - computed following equation 7 - as weights. Then, recompute the probability
of each alternative (the variables l_1, l_2,.., l_C) using the updated parameters:

capture drop l_*

forvalues s=1/$nclasses{
qui clogit $depvar $varlist [iw=H_‘s’], group($group) technique(nr dfp)

predict double l_‘s’

}

Now simply update the variables constructed before the loop in order to update the
conditional probabilities used as weights in the previous sets of maximisations:

capture drop kbbb*

forvalues s=1/$nclasses{

replace kbb‘s’=l_‘s’*$depvar

qui recode kbb‘s’ 0=.

by $id: egen double kbbb‘s’=prod(kbb‘s’)

by $id: replace kbbb‘s’=. if _n!=_N

}

Importantly, if the model contains demographics for the explanation of the probability
of class membership, the routine calls the ml model defined before the loop and
maximises the grouped-data log likelihood:

if $mean!=1{
ml model lf logit_lf ($varlist2, nocons)
ml max

Notice that the probability of class membership (“prob1”, “prob2”, etc.) are updated
internally when the ml model is called (i.e. in the previous two lines). Finally, update
the weights using the conditional probabilities:
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replace den=prob1*kbbb1

forvalues s=2/$nclasses{

replace den=den+prob‘s’*kbbb‘s’

}

forvalues s=1/$nclasses{

replace h‘s’=(prob‘s’*kbbb‘s’)/den

recode h‘s’ .=0

}

drop H_*

forvalues s=1/$nclasses{

by $id: egen double H_‘s’=sum(h‘s’)

}

}

However, if the model does not contains demographics that help explaining the prob-
ability of class membership, the routine provides the solution of the ml model an-
alytically according to equation 13 so that the maximisation step can be avoided,
increasing significantly the estimation performance:

if $mean==1{
replace den=prob1*kbbb1
forvalues s=2/$nclasses{
replace den=den+prob‘s’*kbbb‘s’
}
forvalues s=1/$nclasses{
replace h‘s’=(prob‘s’*kbbb‘s’)/den
recode h‘s’ .=0
capture drop nums‘s’
egen double nums‘s’=sum(h‘s’)
}
capture drop dens
gen double dens=nums1
forvalues s=2/$nclasses{
replace dens=dens+nums‘s’
}
forvalues s=1/$nclasses{
replace prob‘s’=nums‘s’/dens
}
drop H_*
forvalues s=1/$nclasses{
by $id: egen double H_‘s’=sum(h‘s’)
}
}

When the iteration ends, the routine displays the value of the maximised log likelihood
(which is the variable sumll defined below) and restarts the loop:
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capture drop sumll

egen sumll=sum(ln(den))

sum sumll

global z=r(mean)

local i=‘i’ +1

}

display as green "Iteration " ‘i’ ": log likelihood = " as yellow $z

}

Convergence is normally declared when the maximised log likelihood does not change
from one iteration to the next.
Since EM algorithms do not compute standard errors, they can be easily obtained by
bootstrap. However, when the model contains a large number of classes, summary
statistics for the coefficients over the C classes can be more relevant than the values
of the coefficients in each class. In this case, the bootstrap command in Stata can
be used to compute standard errors for - let’s say - the arithmetic average of each
coefficient over the C classes. In the next section, we introduce the LCLOGIT command,
which generalises the procedure outlined here.

5. The LCLOGIT command

LCLOGIT is an ado file that does not contain an internal ml evaluator. Indeed, as
we have seen in section 4, the recursion uses only the command CLOGIT, which really
speeds up the overall computation. Following Weeks and Lange (1989), convergence
is declared when the last 5 values of the maximised log likelihood are equal. This is
needed because, as discussed in Dempster et al. (1977), EM algorithms can move
slowly toward the maximum. When convergence is achieved, LCLOGIT stops the in-
ternal loop and shows the estimated coefficients in matrix C. The user can also list
matrix P, which contains the corresponding probabilities of class membership, while
the global number $z contains the value of the maximised log likelihood.

Importantly, at the end of the estimation LCLOGIT produces a series of relevant
variables: the predicted probabilities for each choice occasion (_pr, which correspond
to what is normally computed with the postestimation command predict); C vari-
ables that contain the weights used internally with the CLOGIT estimations (_H1,
_H2,...,_HC) and C variables that contain the estimated probability of class member-
ship (_prob1,_prob2,...,_probC)5

Finally, it is worth noting that the internal routine produces global numbers and
ancillary variables (all of them starting with an underscore). Hence, some of these
variables might appear in the data when the estimation process is stopped in the
middle of a computations. LCLOGIT can be downloaded from the Internet through
this link:
http://www.danielepacifico.com/LCLOGIT.zip6.

5
For this reason, the user may want to increase the virtual memory that Stata can use, in parti-

coular when the number of classes is high. This can be done with the command set mem.
6
The ado file has to be saved in a folder where Stata can find it. By typing sysdir in the command

line, one can find out which directories Stata looks in for ‘.ado’ files. If the user wants to estimate

a model with demographics in the the probabilities of class membership, then an ancillary do file

containing the ml program “lclogit_lf.do” has to be saved in the Stata working folder (which can be

found by typing pwd).
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The generic syntax for LCLOGIT is:

lclogit depvar [varlist] [if], group(varname) id(varname) nclasses(real) niter(real)

[options]

The required options are:

• id(varname); it specifies the identifier variable for the choice-makers.

• idt(varname); it specifies the identifier variable for the choice occasions.

• nclasses(real); it specifies the number of latent classes to be considered.

• niter(real); it specifies the number of maximum iterations.

Other not-required options are:

• seed(real) so that the user can change the starting values, the default is
1234567890.

• varlist2(namelist), which can be used to introduce demographics in the spec-
ification of the probabilities of class membership. Notice that the constant is
provided internally so that the user has to specify only individual-specific co-
variates7.

6. Application

For our application we use accessible data from Huber and Train (2000) on house-
hold’s choice of electricity supplier8. Importantly, this is the same database used by
Hole (2007) for an application of his Stata command MIXLOGIT.

A sample of 100 residential electricity customers were asked up to 12 choice exper-
iments. Since some people stopped before answering all 12 experiments, there are a
total of 1195 choice occasions in the sample. In each experiment, the person was asked
which of the four suppliers he/she would prefer among four hypothetical electricity
suppliers. In the experiments, the characteristics of each offer were stated:

• The price of the contract (in cents per kWh) whenever the supplier offers a
contract with a fixed rate (price)

• The length of contract that the supplier offered, expressed in years (contract)

• Whether the supplier is a local company (local)

• Whether the supplier is a “well-known” company (wknown)

• Whether the supplier offers a time-of-day rate instead of a fixed rate (tod)

• Whether the supplier offers a seasonal rate instead of a fixed rate (seasonal)

7
Importantly, the covariates must not change from one choice occasion to the other.

8
The complete database is available from Kenneth Train’s website in Matlab format for a sample

of 361 costumers (http://elsa.berkeley.edu/~train/). In this paper we use a sub-sample composed

by the first 100 costumers, which is also the sub-sample used in Hole (2007) for the estimation of

parametric mixed logit models by Simulated Maximum Likelihood in Stata.
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Notice that when the supplier does not offer a fixed rate, the variable price is equal
to zero. Each costumer is identified by the variable “pid”. For each costumer, the
variable that identifies a given choice occasion is “gid” and the dummy that identifies
the stated choice in each choice occasion is “y”. The data is already organised accord-
ing to the setup needed for the command CLOGIT. The first 12 rows - as they appear
in the Stata editor - are presented below:

use http://fmwww.bc.edu/repec/bocode/t/traindata.dta, clear

list in 1/12, sepby(gid)

y price contract local wknown tod seasonal gid pid

1. 0 7 5 0 1 0 0 1 1

2. 0 9 1 1 0 0 0 1 1

3. 0 0 0 0 0 0 1 1 1

4. 1 0 5 0 1 1 0 1 1

5. 0 7 0 0 1 0 0 2 1

6. 0 9 5 0 1 0 0 2 1

7. 1 0 1 1 0 1 0 2 1

8. 0 0 5 0 0 0 1 2 1

9. 0 9 5 0 0 0 0 3 1

10. 0 7 1 0 1 0 0 3 1

11. 0 0 0 0 1 1 0 3 1

12. 1 0 0 1 0 0 1 3 1

We begin by estimating a conditional logit model using the Stata command clogit:

clogit y price contract local wknown tod seasonal, group(gid)

Iteration 0: log likelihood = -1379.3159

(output omitted)

Iteration 4: log likelihood = -1356.3867

Conditional (fixed-effects) logistic regression Number of obs = 4780

LR chi2(6) = 600.47

Prob > chi2 = 0.0000

Log likelihood = -1356.3867 Pseudo R2 = 0.1812

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

price -.6354853 .0439523 -14.46 0.000 -.7216302 -.5493403

contract -.13964 .0161887 -8.63 0.000 -.1713693 -.1079107

local 1.430578 .0963826 14.84 0.000 1.241672 1.619485

wknown 1.054535 .086482 12.19 0.000 .8850338 1.224037

tod -5.698954 .3494016 -16.31 0.000 -6.383769 -5.01414

seasonal -5.899944 .35485 -16.63 0.000 -6.595437 -5.204451

From the results above, we can see that, on average, costumers prefer lower prices,
shorter contracts length, a local and well-known company and fixed rather than vari-
able rate plans. We now use the command MIXLOGIT from Hole (2007) to estimate a
parametric mixed logit model with independent normally distributed coefficients by
Simulated Maximum Likelihood with 300 Halton draws9:

9
MIXLOGIT can be installed in Stata by typing “finditd mixlogit” in the Stata command. See the

help file for the syntax.
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mixlogit y, group(gid) id(pid) rand(price contract local wknown tod seasonal) nrep(300)

Iteration 0: log likelihood = -1249.8219 (not concave)

(output omitted)

Iteration 7: log likelihood = -1101.6085

Mixed logit model Number of obs = 4780

LR chi2(6) = 509.56

Log likelihood = -1101.6085 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean

price -1.004329 .0721185 -13.93 0.000 -1.145679 -.8629798

contract -.2274985 .047386 -4.80 0.000 -.3203735 -.1346236

local 2.208746 .2439681 9.05 0.000 1.730578 2.686915

wknown 1.656329 .1707167 9.70 0.000 1.32173 1.990927

tod -9.364151 .5858618 -15.98 0.000 -10.51242 -8.215883

seasonal -9.496181 .5792009 -16.40 0.000 -10.63139 -8.360968

SD

price .2151655 .0311095 6.92 0.000 .154192 .2761389

contract .384136 .044778 8.58 0.000 .2963728 .4718992

local 1.788806 .2370063 7.55 0.000 1.324282 2.25333

wknown 1.185838 .1731652 6.85 0.000 .8464401 1.525235

tod 1.6553 .2094545 7.90 0.000 1.244777 2.065824

seasonal -1.119371 .2836182 -3.95 0.000 -1.675252 -.5634893

As it can be seen from the maximised log likelihood, we can safely reject the con-
ditional logit specification in favour of the parametric mixed logit model10. Moreover,
the magnitude of the coefficients is significantly different with respect to the model
without random coefficients, which gives an indication of the bias produced by the
IIA property of conditional logit models11.

We now show how to use LCLOGIT to estimate a nonparametric mixed logit model.
As we have explained in section 1, the main idea is to use a latent class framework
with a relatively high number of classes so as to approximate the true unobserved
distributions of the coefficients. Following Greene and Hensher (2003) and Train
(2008), the choice of the appropriate number of latent classes is done by means of some
information criteria. From the loop below we estimate latent class mixed logit models
up to 15 latent classes. We set a relatively high number of maximum iterations (200)
since, as we have explained, EM algorithms may move slowly toward the maximum,
in particular if the number of latent classes is high. Notice also that we save the
maximised log likelihood in the scalars sll1,sll2,...,sll15:

10
The two models are nested and a comparison with a log likelihood ratio test is therefore mean-

ingful.
11

See Bhat (2000)
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forvalues s=2/15{

lclogit y price contract local wknown tod seasonal, group(gid) id(pid) nclasses(‘s’) niter(200)

scalar sll‘s’=$z

}

forvalues s=2/15{

display sll‘s’

}

The routine lasts for about 30 minutes to estimate the whole set of 14 models on our
standard-issue PC12. In what follows we use the Consistent-AIC and the BIC criteria
in order to select the right number of latent classes. According to both these criteria,
a model with 8 latent classes is chosen13:

Classes Log likelihood parameters CAIC BIC

1 -1356.39 6 2737.24 2731.24

2 -1211.35 13 2475.71 2462.71

3 -1118.23 20 2318.02 2298.02

4 -1085.3 27 2280.7 2253.7

5 -1040.49 34 2219.61 2185.61

6 -1028.56 41 2224.29 2183.29

7 -1006.37 48 2208.45 2160.45

8 -990.24 55 2204.73 2149.73
9 -983.64 62 2220.08 2158.08

10 -979.23 69 2239.8 2170.8

11 -965.76 76 2241.4 2165.4

12 -952.68 83 2243.78 2160.78

13 -947.24 90 2261.44 2171.44

14 -945.59 97 2286.69 2189.69

15 -943.42 104 2310.89 2206.89

The list of parameters for a model with 8 classes can be displayed by typing:

matrix list C8

C8[8,6]

y: y: y: y: y: y:

price contract local wknown tod seasonal

y1 -.91040978 -.4381791 .37045253 .36884693 -8.256523 -6.4399279

y1 -.73728307 .21832437 2.4164109 2.8395595 -6.6905693 -7.2133156

y1 -.4883505 -.59163456 .78155976 .70969229 -4.1326455 -6.560601

y1 -2.1095744 -.6621888 .71708341 .24117339 -14.190615 -17.207319

y1 -.64251826 .09629113 2.1856728 1.2073454 -3.8365207 -4.0524238

y1 -1.2084713 -.19842282 6.5797129 5.1040843 -14.852122 -15.340282

y1 -1.532864 -.40906556 .62090963 .93044277 -16.007181 -14.818061

y1 -.08169616 -.15640971 4.9367671 3.4441044 -1.0876165 -1.0597307

As Train (2008) points out, when the number of classes rises, summary statistics
for the distirbution of each coefficient become more informative than the single co-
efficients. In this case, the bootstrap command allows computing standard errors

12
We used a PC with a 2.2GHz Intel core 2 duo and 4MB RAM.

13
It is worth notinge that the routine took about 3 minutes on our PC to estimate a model with

8 classes.
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for these statistics straightforwardly. Let’s consider the matrix of coefficients C8. A
possible manner to compute standard errors for various summary statistics is to clear
the data in Stata and paste this matrix of coefficients in the Stata editor. Then, for
example, the standard errors for the mean of the distribution of the coefficient of price
can be computed as follows:

bootstrap t=r(mean), rep(1000): sum price

The next matrix shows the mean and the standard deviation for the distribution of
each coefficient, along with the corresponding z-statistic computed using the boot-
strapped standard error:

Mean z St Dev z

price -0.964 -4.65 0.639 4.3

contract -0.268 -2.49 0.315 5.32

local 2.326 3.13 2.288 4.01

wknown 1.856 3.20 1.751 4.37

tod -8.632 -4.65 5.708 6.27

seasonal -9.086 -4.77 5.911 6.05

Interestingly, the means of the coefficients are surprisingly similar in magnitude to
those obtained with normal mixing distribution14. Moreover, we can see that there
is a great amount of unobserved preference heterogeneity, as the standard deviations
and their standard errors show. By using again the bootstrap command, we can also
compute the following correlation matrix with the subsequent standard errors:

price contract local wknown tod seasonal

price 1.000

contract
0.481*

(0.305)
1.000

local
0.314

(0.369)

0.453*

(0.238)
1.000

wknown
0.303

(0.357)

0.527*

(0.256)

0.96*

(0.072)
1.000

tod
0.896*

(0.069)

0.382

(0.301)

0.072

(0.467)

0.009

(0.435)
1.000

seasonal
0.929*

(0.058)

0.456*

(0.271)

0.080

(0.469)

0.036

(0.450)

0.96*

(0.034 )
1.000

Note: * means that the coefficient is significant at 95%.

From the correlation matrix we can see that there are significant meaningful corre-
lations. In particular, people who prefer very low prices prefer a lot more fixed rate
plans with respect to either a seasonal rate or a TOD rate; moreover, people who
strongly prefer a local company have also stronger preferences for well-known local
company; furthermore, costumers who have stronger preferences for shorter contracts
length have also lower preferences for local companies.

14
Actually, also some of the standard deviations reported in Hole (2007) are surprisingly similar to

those found here, in particular when the coefficients are allowed to be correlated. See Hole (2007)

for details.
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7. Conclusions

In this article we have shown how to estimate nonparametric mixed logit models
in Stata 11 following the approach proposed by Train (2008). In particular, the Stata
command - LCLOGIT - runs an EM algorithm that, thanks to its desiderable properties,
allows estimating latent class models with a high number of classes so that the true,
unobserved distribution of the coefficients can be well approximated.
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