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Abstract 

Volatility is a key variable for portfolio selection models, option pricing models and risk 

management techniques. Volatility can be estimated and forecasted by using either historical 

information or option prices. The present paper focuses on option-based volatility forecasts for three 

main reasons. First, for the forward looking nature of option-based forecasts (as opposed to the 

backward looking nature of historical information); second, for the average superiority, documented 

in the literature, of option-based estimates in forecasting future realized volatility; third, for the 

widespread use of option prices in the computation of the most important market volatility indexes 

(see e.g. the VIX index for the Chicago Board Options Exchange).  

The aim of this paper is to assess the information content of future realised volatility of 

different option-based volatility forecasts, through the use of fuzzy regression methods. The latter 

methods offer a suitable tool to handle both imprecision in measurements and fuzziness of the 

relationship among variables. Therefore, they are particularly useful for volatility forecasting, since 

the variable of interest (realised volatility) is unobservable and a proxy for it is used. Moreover, 

measurement errors in both realised volatility and volatility forecasts may affect the regression 

results. Fuzzy regression methods have not yet been used in volatility forecasting. Our case study is 

based on  intra-daily data on the DAX-index options market.  
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1. Introduction. 

Volatility measuring and forecasting with option prices is a very promising area of research, 

a relatively new field compared to historical measures of volatility, with important implications 

both at the micro level for portfolio selection models and risk management and at the macro level 

for policy makers. Volatility can be estimated either by using historical data (historical volatility) or 

by looking at market prices of options (implied volatility). In the first case the estimation is 

backward looking, while in the second the estimate is forward looking since the volatility implied 

by option prices represents the expectation of volatility between the evaluation date and the 

maturity of the option. The present paper focuses on option-based volatility forecasts for three main 

reasons. First, for the forward looking nature of option-based forecasts (as opposed to the backward 

looking nature of historical information); second, for the average superiority, documented in the 

literature, of option-based estimates in forecasting future realized volatility; third, for the 

widespread use of option prices in the computation of the most important market volatility indexes 

(see e.g. the VIX index for the Chicago Board Options Exchange). 

Among option-based volatility forecasts we have the Black-Scholes (B-S) implied volatility, 

which is a “model-dependent” forecast since it relies on the Black and Scholes model, and the so-

called “model-free” implied volatility, proposed by Britten-Jones and Neuberger [2], which does 

not rely on a particular option pricing model. B-S implied volatility is usually extracted from a 

single option, by inverting the Black and Scholes formula by means of a numerical method such as 

the bisection method. A drawback of using B-S implied volatility is clearly its dependence on the 

strike price of the option (the so-called smile effect), time to maturity of the option (term structure 

of volatility) and option type (call versus put). Model-free implied volatility is derived by using a 

cross-section of option prices differing in strike price and option type. Therefore, theoretically, 

model-free implied volatility should be more informative than the implied volatility backed out 

from a single option. However, for the computation of model-free implied volatility we need a 

continuum of strike prices ranging from zero to infinity. As this assumption is not verified in the 

reality of financial markets, the computation of model-free implied volatility is faced with both 

truncation and discretization errors.  

In the literature many contributions have tried to assess the predictive power of implied 

volatility (either using the Black-Scholes formula or the model-free implied volatility definition) 

with respect to realised volatility. Most of the studies concentrate on Black-Scholes implied 

volatility (for a review see Poon and Granger [22]), and assess on average the superiority of  Black-

Scholes implied volatility (extracted from at-the-money option prices, i.e. options which have a zero 
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payoff if exercised) on other historical volatility forecasts. Limited and mixed is instead the 

evidence about the forecasting power of model-free implied volatility. In particular some studies 

question the superiority of model-free implied volatility in predicting future realised volatility with 

respect to Black-Scholes implied volatility (see e.g. Andersen and Bondarenko [1] and Muzzioli 

[17]).  

 The aim of this paper is to assess the information content on future realised volatility of 

different option-based volatility forecasts through the use of fuzzy regression methods. The latter  

methods offer a suitable tool to handle both imprecision in measurements and fuzziness of the 

relationship among variables. Therefore, they are particularly useful for volatility forecasting, since 

the variable of interest (realised volatility) is unobservable and a proxy for it is used. Moreover, 

measurement errors in both realised volatility and volatility forecasts may affect the regression 

results. In fact, for realised volatility, the length of the time series, the frequency and the estimation 

methodology may lead to different estimates. For implied volatility the choice of the options to be 

used in the computation of Black-Scholes implied volatility as well as the truncation and 

discretization errors in model-free implied volatility may affect the estimation results. Therefore, 

the crisp estimate we use in ordinary least squares (OLS) regression for the volatility forecasts 

comes indeed from a vast range of data and can be considered as a sort of “average” around which 

the true value for the forecast may lie. Therefore, fuzzy regression methods can be particularly 

useful in order to represent the fuzzy relationship among the variables, even if the data set used are 

crisp. Up to now fuzzy regression methods have not been used in volatility forecasting.  In order to 

allow for a direct comparison with ordinary least squares regression, we use the same data set of 

Muzzioli [17], consisting of intra-daily data on the DAX-index options market. 

 

2. Ordinary linear regression and fuzzy linear regression. 

Ordinary linear regression is one of the most powerful tools in order to model linear dependence 

between a given variable and one or more other variables. It is used in order to explain changes in 

the dependent variable (y) based on changes in the independent variable(s) (xi):  

0 1 1 ...t t n nt ty a a x a x           (1) 

The dependent variable is assumed to be random, i.e. to have a probability distribution, while the 

variables xi are assumed to be non-stochastic and to take fixed values in repeated samples. In 

particular, the ordinary least squares method fits a line to the data by minimising the sum of squared 

residuals (the squared difference between actual values and fitted values from the regression line). 

The disturbance term captures the errors in the way y is measured and is also used to explain the  

absence of some determinants of y which may have been omitted or are non-measurable. 
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The ordinary linear regression model is based on strong hypotheses on the error term (the 

errors have zero mean, constant and finite variance, the errors are linearly independent of one 

another and there is no relationship between the errors and the corresponding variable x). Moreover, 

in order to make valid inference on the population parameters from the sample parameters it is also 

required that the error term is normally distributed. 

On the other hand, in fuzzy regression, the same errors are viewed as the fuzziness of the 

model structure, therefore no hypothesis concerning the errors is made and the errors are thus not 

part of the fuzzy regression model: 

0 1 1 ... n nY A A x A x         (2) 

where Y is a fuzzy output, x = (x1, x2, … , xn) is a non-fuzzy input vector and Ai, i=0,…, n, are the 

fuzzy coefficients. The goal of fuzzy regression is to determine a linear fuzzy model which includes 

all the given (x,y) pairs.  

Ordinary linear regression can be used to fit only crisp data. Fuzzy regression can be used to 

fit both crisp and fuzzy data, such as linguistic data for qualitative terms (“good”, “bad”, 

“excellent”), which can be better and easier represented by membership functions than crisp values. 

Moreover, fuzzy regression can be used when ordinary regression is not suitable: when only a 

limited number of observations is available and it is not possible to pursue enough experiments to 

derive a valid statistical relationship, when the data is imprecise, when there are difficulties in 

verifying the distributional assumptions, when the linear relationship between the variables is 

inappropriate and the relationship is subject to inaccuracy or vagueness, when human estimation, 

which cannot be modelled by crisp quantities, is important (see e.g. Kim, Moskowitz and Koksalan 

[15], Kahraman, Beşkese and Bozbura [13]). 

Among fuzzy regression models we distinguish between models where the relationship 

between the variables is fuzzy and models where the variables themselves are fuzzy. In the first 

case, we have crisp inputs, crisp outputs (CICO) and a fuzzy system structure, while in the second 

case, the system structure is fuzzy, the output is fuzzy and the input can be fuzzy or crisp (crisp 

input and fuzzy output (CIFO) and fuzzy input and fuzzy output (FIFO)). A second classification 

employs the two basic approaches used in fuzzy regression: the so-called fuzzy possibilistic 

regression which aims at minimizing the fuzziness in the model (Tanaka, Uejima and Asai [24], a 

linear programming approach), and the fuzzy least squares regression, which uses least squares of 

errors as a fitting criterion (Diamond [8]).  

In the following we concentrate mainly on the CICO case, which is of interest for the 

financial application and briefly review some methods of the two basic approaches. The fuzzy 

possibilistic approach has been first proposed by Tanaka, Uejima and Asai [24], and aims at 
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minimizing the fuzziness in the model. In equation (2) the fuzzy coefficients are determined in such 

a way that the estimated Y has minimum fuzzy width at a target degree of belief h. In other words, 

each y of the data set (y can be crisp or fuzzy) must lie within the estimated Y at the h-level set. The 

parameter h can be chosen by the decision maker (see also Moskowitz and Kim [16] for the 

assessment of h) and represents the degree of confidence (or degree of belief) desired: if the degree 

of confidence is set to zero, the fuzzy output will exactly embed all the observations at the 0-level 

set; if a higher degree of confidence (h>0) is set, upper and lower fuzzy bands are widened in order 

to embed all the observations at the h-level set. As a consequence, the 0-level set of the fuzzy output 

in the latter case will be wider than that in the first case.  

The Tanaka, Uejima and Asai method is one of the most used given its simplicity, although 

it has a number of drawbacks. In particular, the method is too sensitive to outliers, which influence 

the upper or the lower boundaries of the fuzzy regression model, adversely affecting the results. 

Several extensions of the Tanaka, Uejima and Asai method have been proposed in order to 

solve the problem of outliers. Among others, Peters [21] assumes that the bounds of the fuzzy 

regression  model are themselves fuzzy: the observations may belong to the upper and lower bound 

with a given degree of membership. Therefore some compensation between good and bad data 

becomes possible. Omrani, Aabdollahzadeh and Alinaghian [20] computes two separate linear 

programming models for the estimation of the upper and lower fuzzy bands. The upper fuzzy band 

is estimated based on the upper points and the central points and the lower fuzzy band is estimated 

based on the lower points and the central points. Given that central points are less sensitive to 

outliers, the resulting bands should be less sensitive to outliers. Other critics to the fuzzy 

possibilistic approach are that it does not allow all the observations to contribute to the estimation of 

the fuzzy model and as more data is collected the estimated fuzzy interval becomes wider. Several 

papers (e.g. Nasrabadi, Nasrabadi and Nasrabadi [18] have proposed multi-objective fuzzy 

regression to cope with these problems. 

In the fuzzy possibilistic approach the minimization of fuzziness is the fitting criterion and 

the problem is solved by linear programming. The second approach, fuzzy least squares regression, 

integrates the least squares criterion into fuzzy regression. The aim is to minimize the sum of 

squared errors and the various contributions differ basically on the metric used in order to specify 

the errors (see e.g. Diamond [8]). Instead of minimising the errors, Celmiņš [4] maximizes the 

compatibility between the data and the fitted model. Savic and Pedrycz [23] integrate ordinary least 

squares regression (for the central values) and the minimum fuzziness criterion by using a two-stage 

procedure. D’Urso and Gastaldi [9] propose a doubly linear adaptive fuzzy regression method in 

which both a core regression for the central values and a spread regression for the spreads of the 
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dependent variable are used. All the above-mentioned contributions have the drawback that as 

fuzziness decreases, the model does not collapse to the ordinary least squares regression (see Chang 

and Ayyub [6]). The first contribution in this sense is Chang [5], who derives a hybrid fuzzy least 

squares regression by using weighted fuzzy arithmetic. Ishibuchi and Nii [2011], by using 

asymmetric fuzzy numbers, proposed a hybrid method which computes the central values of the 

linear fuzzy model by means of ordinary least squares regression and the upper and lower bounds of 

the fuzzy model by minimizing the total width of the fuzzy output. Kao and Chyu [14] defuzzify the 

data in order to compute the center of the model with ordinary least squares, and use the estimated 

parameters in order to derive the fuzzy error term.  

Given that they minimize the difference between observed and estimated values, the least squares 

fuzzy regression methods usually result in a better fit to the data, but have a higher computational 

complexity compared to possibilistic regression methods. For a comprehensive literature review of 

fuzzy regression and applications see Kahraman, Beşkese and Bozbura [13] and Nather [19]. 

 
 

3. The possibilistic and the least squares fuzzy regression methods. 

In this section we briefly recall the basics of the possibilistic regression method of Tanaka, 

Uejima and Asai and the least squares fuzzy regression method of Savic and Pedrycz which are 

used in the financial application. The Tanaka, Uejima and Asai method for equation (2) assumes the 

fuzzy coefficients to have a symmetric triangular membership function: ( , )c w
i i iA a a , where c

ia  and 

w
ia  are the center and the spread respectively of the symmetric triangular fuzzy number Ai. The 

computation of the right-hand side is pursued by using fuzzy arithmetic. As the Ai are symmetric 

triangular fuzzy numbers, it follows that also 0 1 1( ) ... n nF x A A x A x     is a symmetric triangular 

fuzzy number. Starting from m non-fuzzy input-output pairs (xp, yp), where xp=(xp1, xp2, …, xpn), 

p=1,…,m, the aim of fuzzy possibilistic regression is to include all the given data pairs in the linear 

fuzzy model at level h, where [ ( )]hF x  is the alpha-cut of the fuzzy output ( )F x , therefore the 

condition which should be satisfied is [ ( )]p p hy F x . The fuzzy coefficients are determined in such 

a way that the estimated F(x) has minimum fuzzy width at a target degree of belief h.  

In order to determine the symmetric triangular fuzzy coefficients Ai, the following linear 

programming problem has to be solved. Minimize the total spread of the fuzzy output: 

 

 0 1 1
1

min ...
m

w w w
p n pn

p

z a a x a x


   
     (3)

 



 7

Subject to: 

0 0
1 1

(1 )
n n

c c w w
i pi i pi p

i i

a a x h a a x y
 

       
  , 1, ,  p m    

0 0
1 1

(1 )
n n

c c w w
i pi i pi p

i i

a a x h a a x y
 

       
  , 1, ,  p m   

0w
ia   

Note that in problem (3) the function to be minimized is the total spread of the fuzzy output, as 

proposed by Tanaka [25], instead of the total spread of the fuzzy coefficients as in the original 

Tanaka, Uejima and Asai method.  

The fuzzy least squares regression method of Savic and Pedrycz combines ordinary least 

squares regression and the minimum fuzziness principle, by pursuing a two-stage methodology. In 

the first stage only the center of the fuzzy model is fixed by using ordinary least squares regression. 

In the second stage the minimum fuzziness criterion is used in order to find the width of the fuzzy 

regression coefficients, by solving model (3), where the center of each fuzzy coefficient is imposed 

to be equal to the ordinary least squares coefficient computed in the first stage. 

 

4. The data set and the computation of the volatility measures. 

Muzzioli [17] investigated the information content of different option-based forecasts in the 

DAX-index options market, by using ordinary linear regression. In this paper, for comparative 

purposes, we use the data set of Muzzioli [17] which consists of intra-daily data on DAX-index 

options, and DAX-index, recorded from 1 January 2001 to 31 December 2005. As for the risk-free 

rate, the one-month Euribor rate is recorded in the same time period at a daily frequency.  

The option data set has been filtered in order to eliminate stale prices, illiquid trades and 

avoid no-arbitrage opportunities as detailed in Muzzioli [17]. Moreover, monthly non-overlapping 

samples are used in order to avoid the telescoping problem described in Christensen, Hansen and 

Prabhala [7]. 

Four volatility measures are computed: realised volatility (r), historical volatility (h), B-S 

implied volatility (BS) and model-free implied volatility (mf). Realised volatility is computed, in 

annual terms, as the squared root of the sum of five-minute frequency squared index returns over 

the life time of the option: 

2

1

1

ln *12
n

t
r

t t

S

S
 



  
   

   
  
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where n+1 is the number of index prices St , t=1,…,n+1, spaced by five minutes in the one-month 

period. As a proxy for historical volatility (h), in line with previous studies (see e.g. Canina and 

Figlewski [3]) we use lagged (one month before) realized volatility. B-S implied volatility (BS) is 

computed as a weighted average of the two implied volatilities that correspond to the two strikes 

that are closest to being at-the-money, with weights inversely proportional to the distance to the 

moneyness.  Model-free implied volatility (mf) is computed by the Britten-Jones and Neuberger [2] 

formula adapted to the particularities of the German financial market. For more details on the 

computation of model-free and Black-Scholes implied volatility we refer the interested reader to 

Muzzioli [17]. Here we briefly recall only the features of the data set which call for the use of fuzzy 

regression methods. Both implied volatility estimates may suffer from errors in measurement and 

are obtained as averages of different estimates. In particular, the data set is made of tick-by-tick data 

on option trades and to reduce the computational burden only the last hour of trades has been used. 

In order to compute implied volatilities it is very important to have synchronous prices between the 

option and the underlying index, and this has been obtained by using a one-minute window to do 

the matching. However, in one hour several realisations for implied volatility of options with the 

same strike price are possible, therefore, for each strike price the different implied volatilities are 

averaged in order to have a single estimate. This may affect the estimation of both implied volatility 

estimates. Moreover, for Black-Scholes implied volatility the choice of the options to be used may 

lead to different estimates; for model-free implied volatility, possible errors in measurement are 

given by the choice of the truncation and discretization parameters. In fact, the theoretical definition 

of model-free implied volatility requires a continuum of option prices with strike ranging from zero 

to infinity. As in the reality of financial markets only a limited and discrete number of strikes is 

used, interpolation and extrapolation mechanisms are needed in order to artificially create the 

required option prices and alleviate the truncation and discretization errors. For these reasons we 

deem fuzzy regression methods particularly useful in order to assess the information content of 

option-based volatility forecasts. 

 

5. The methodology 

As there are two approaches in pursuing fuzzy regression, we use both the possibilistic 

regression method of Tanaka, Uejima and Asai and the least squares regression method of Savic 

and Pedrycz which are two of the most used and most simple methods in the two categories. In this 

way we are able to compare the results across different methodologies. In this application we have 

m=58 observations of the three input-output pairs (xi,yi), i=1,…m, where x is the volatility forecast 
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(which corresponds to either historical volatility, or Black-Scholes volatility, or model-free 

volatility) and y is realised volatility. 

The information content of implied volatility is examined both in univariate and in 

encompassing regressions. The series are examined in logarithmic terms, since as shown in 

Muzzioli [17] they conform more to normality (as a robustness test, they are examined also in the 

levels in Section 8). In order to examine the forecasting ability of each volatility forecast, in 

univariate regressions realised volatility is regressed against each  of the three volatility forecasts: 

Black-Scholes implied volatility (BS), model-free implied volatility (mf), or historical volatility 

(h). The univariate regressions are the following: 

ln( ) ln( )r i               (5) 

where r = realised volatility and i= volatility forecast, i= BS, mf, h.  

In order to distinguish which forecast has the highest explanatory power and to address 

whether a single volatility forecast subsumes all the information contained in the others we rely on 

encompassing regressions where realised volatility is regressed against two or more volatility 

forecasts. First, we compare pairwise one option-based forecast with historical volatility in order to 

see if the information content of historical volatility is subsumed in the option-based forecast. 

Second we compare the two implied volatility forecasts, in order to see which one has the highest 

information content on future realised volatility. Lastly, we regress realised volatility against the 

three volatility forecasts in order to distinguish the relative importance of each forecast. 

The encompassing regressions used are the following: 

ln( ) ln( ) ln( )r i h                 (6) 

where r = realised volatility, i= implied volatility, i = BS, mf  and h = historical volatility, 

ln( ) ln( ) ln( )r BS mf                 (7) 

where r = realised volatility, BS= B-S implied volatility and mf = model-free implied volatility, 

ln( ) ln( ) ln( ) ln( )r BS mf h                  (8) 

where r = realised volatility, BS= B-S implied volatility and mf = model-free implied volatility 

and h = historical volatility. 

 

6. The results for univariate regressions. 

The results for the Tanaka, Uejima and Asai and the Savic and Pedrycz fuzzy regression 

methods for univariate regressions (5) are reported in Table 1 for the confidence level h=0, and in 

Table 2 for the confidence level h=0.5. Figure 1 illustrates the fuzzy regression results. For both 

methodologies, a higher degree of confidence h implies a wider band, since by imposing a higher h 
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we are requiring that all the crisp pairs should be included in the h-cut of the fuzzy output. 

Therefore h=0 yields the narrowest band. Moreover, we can observe that the center of the fuzzy 

output, for both methods remains unchanged if we change the degree of belief h, which follows 

from the assumption of symmetric spreads for the fuzzy output.  

The center of the Tanaka, Uejima and Asai method is different from the center of the Savic 

and Pedrycz method, which corresponds to the ordinary least squares regression equation. In 

particular for the Tanaka, Uejima and Asai method the slope coefficients are lower than the 

corresponding OLS coefficients: for historical volatility the difference is marginal, while for Black-

Scholes and model-free implied volatilities the coefficients are only half of the corresponding OLS 

coefficients. The observed difference is due to the different fitting criteria in the two methods. For 

the Tanaka, Uejima and Asai method the aim is to embed all the observations in the h-cut of the 

fuzzy output, by minimising the width of the fuzzy output, and the center is by construction 

imposed in the middle of the upper and lower boundaries. In the Savic and Pedrycz method, the 

center is fixed and the objective is to minimize the width of the fuzzy output, by using symmetrical 

spreads. Therefore the upper and lower bands are wider for the Savic and Pedrycz method, and this 

is apparent if we look at the last column of Tables 1 and 2, which reports the fit of the two methods. 

The fit measure corresponds to the minimum value attained by the objective function: therefore the 

lower the value, the better the fit. For the Tanaka, Uejima and Asai method the fit is better than for 

the Savic and Pedrycz method. As expected, the fit deteriorates if we increase the degree of belief, 

since we impose wider upper and lower bands.  

It is worth noting that for historical volatility, for both methods, the slope coefficient has no 

spread, while for Black-Scholes and model-free implied volatilities the spread of the slope 

coefficients are pretty high if compared to the central value. On the other hand, for historical 

volatility all the fuzziness is captured by the intercept coefficient, which has a very high spread, 

while for Black-Scholes and model-free implied volatilities the intercept coefficient has no spread 

and all the fuzziness is captured by the slope coefficient. For both implied volatilities the results are 

very similar, in the Tanaka, Uejima and Asai method the slope coefficient of model-free implied 

volatility is a little lower than the slope coefficient of Black-Scholes, the opposite holds for the 

Savic and Pedrycz method. Therefore we may conclude that for historical volatility we may be 

pretty sure about the value of the slope coefficient, while for Black-Scholes and model-free implied 

volatilities, the intercept coefficient presents no significant fuzziness. The slope coefficient of 

implied volatilities in the Savic and Pedrycz method are very close to one, even if they present a 

substantial spread, therefore we expect them to be unbiased predictors of realised volatility. On the 

other hand, in the Tanaka, Uejima and Asai method, they are substantially lower than one. 
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 The central values of the intercept coefficients in the regressions with implied volatilities as 

explanatory variables are all sizeable and negative and imply the presence of a substantial volatility 

risk premium (see e.g. Jiang and Tian [12]) i.e. option-based forecasts over predict realised 

volatility. This means that investors are averse to variations of volatility and are therefore willing to 

pay a high price for realised volatility (represented by the higher implied volatility) in order to be 

hedged against peaks in volatility which typically represent bad market conditions. As for the fit of 

the three forecasts, for the Tanaka, Uejima and Asai method the best one is Black-Scholes, followed 

by model-free implied volatility; the worst performance is obtained by historical volatility. For the 

Savic and Pedrycz method, historical volatility obtains the best performance, followed by Black-

Scholes implied volatility, and model-free implied volatility obtains the worst performance.  

 

7. The results for multivariate regressions. 

The results for the Tanaka, Uejima and Asai and the Savic and Pedrycz fuzzy regression 

methods for bivariate regressions (6-7) and multivariate regression (8) are reported in Table 3 for 

the confidence level h=0 and in Table 4 for the confidence level h=0.5. In all regressions, the center 

of the Tanaka, Uejima and Asai method is different from the center of the Savic and Pedrycz 

method, which corresponds to the ordinary least squares regression equation. As it is the case for 

univariate regressions, also for each multivariate regression the fit for the Savic and Pedrycz 

method is on average worse than that of the Tanaka, Uejima and Asai method, since upper and 

lower bands are wider for the Savic and Pedrycz method. Moreover, by looking at the results for 

h=0 and h=0.5, the  minimum value attained by the objective function increases, i.e. the fit 

deteriorates, if we increase the degree of belief, since we impose wider upper and lower bands, the 

central values remain unchanged, only the spreads of the coefficients increase. As for the fit of the 

bivariate regressions for the Tanaka, Uejima and Asai method the best one is the one with as 

explanatory variables the historical and model-free implied volatility, followed by historical and 

Black-Scholes implied volatility, while the worst performance is obtained by the one with as 

explanatory variables the two implied volatility estimates. On the other hand, for the Savic and 

Pedrycz method, the ranking is the opposite: the latter bivariate regression is the one which obtains 

the best fit, followed by the bivariate regression with historical volatility and Black-Scholes implied 

volatility as explanatory variables.  The regression with as explanatory variables the historical and 

model-free implied volatility obtains the worst performance. Moreover, if we compare the fit of the 

bivariate regressions with the one of univariate regressions, the fit improves for the bivariate 

regressions in the Tanaka, Uejima and Asai method. However, the fit does not always improve for 

the Savic and Pedrycz method, since the exogenous choice of the central values does not allow the 
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fit to improve if another explanatory variable is introduced, as it happens for ordinary least squares. 

For example, in multivariate regression (8) the fit is better than in bivariate regressions in the 

Tanaka, Uejima and Asai method, but it is worse than in one of the bivariate regressions in the 

Savic and Pedrycz method.  

The following comments apply to both the Tanaka, Uejima and Asai and the Savic and 

Pedrycz methods. First, the central values of the intercept coefficients in all regressions are negative 

and the spread is close to zero (except for the bivariate regression with Black-Scholes and model-

free implied volatilities as explanatory variables, which in fact mix the explanatory power of two 

implied volatility forecasts and cause the intercept coefficient to be fuzzier). Second, for all 

regressions, the central value of the slope coefficient of historical volatility is lower than in the 

univariate regression, while the spread is still equal to zero. Third, the slope coefficient of Black-

Scholes implied volatility in bivariate regression with model-free implied volatility and in 

multivariate regression (8) has spread equal to zero. The two latter facts mean that the slope 

coefficients of historical volatility and of Black-Scholes implied volatility do not contribute to the 

fuzziness of the output. Fourth, when we compare Black-Scholes (or model-free) implied volatility 

with historical volatility all the fuzziness is captured by the slope coefficient of Black-Scholes (or 

model-free) implied volatility. When we compare the two implied volatility estimates, all the 

fuzziness is captured by the slope coefficient of model-free implied volatility.  

Some important differences between the two methods (Tanaka, Uejima and Asai and Savic 

and Pedrycz) are apparent.  In the Savic and Pedrycz method the slope coefficient of historical 

volatility is very close to zero (we expect the efficiency of the two implied volatility forecasts, since 

they subsume all the information conveyed by historical volatility). In the Tanaka, Uejima and Asai 

method the slope coefficient of historical volatility is positive and higher than the slope coefficients 

of implied volatilities, therefore we roughly expect to reject the hypothesis of efficiency of the two 

implied volatility forecasts. Moreover in the Tanaka, Uejima and Asai method the central values of 

the slope coefficients of implied volatility are substantially lower than the corresponding estimates 

in the Savic and Pedrycz method, even if they have a lower spread. Another important difference is 

the sign of the slope coefficient of model-free implied volatility in the regression equations which 

embed also Black-Scholes implied volatility. In the Tanaka, Uejima and Asai method the slope 

coefficient is negative, while in the Savic and Pedrycz method it is positive. It seems that in the 

Tanaka, Uejima and Asai method, when we aggregate very similar information (given by the two 

implied volatility estimates), the method compensates for that by giving opposite signs to the slope 

coefficients, while in the Savic and Pedrycz method there is no compensation since the central 

values obey the least squares principle. 
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8. The results of univariate and multivariate regressions in the volatility levels. 

The results for the Tanaka, Uejima and Asai and the Savic and Pedrycz fuzzy regression 

methods for univariate regressions (5) are reported in Table 5 for the confidence level h=0 ( and in 

Table 7 for the confidence level h=0.5). Figure 2 illustrates the fuzzy regression results. For 

univariate regressions, overall, the results are very similar to the findings in Section 6, where the 

natural logarithm of the variables is used. One noticeable difference is in the spread of the 

coefficients: while for the logarithmic case the slope coefficient of historical volatility was the only 

one with spread equal to zero, in this case both in the Tanaka, Uejima and Asai and in the Savic and 

Pedrycz methods, the slope coefficients of the three forecasts display zero spread: all the fuzziness 

is captured by the intercept coefficients. Moreover, in the Savic and Pedrycz method, the central 

value of all the intercepts is close to zero and the central values of the slope coefficients are smaller 

than in the logarithmic case. The Savic and Pedrycz method provides the same ranking obtained for 

variables in logs. The Tanaka, Uejima and Asai method switches historical with model-free implied 

volatility at the second place, while Black-Scholes implied volatility remains the preferred one. 

In the Tanaka, Uejima and Asai method the slope coefficient of model-free implied 

volatility is smaller than the slope coefficient of Black-Scholes, which in turn is smaller than the 

slope coefficient of historical volatility. In the Savic and Pedrycz method the highest slope 

coefficient is attained by Black-Scholes implied volatility, while the lowest one by model-free 

implied volatility. The slope coefficient of implied volatilities in the Savic and Pedrycz method are 

very close to one, therefore we expect them to be unbiased predictors of realised volatility. On the 

other hand, in the Tanaka, Uejima and Asai model, they are substantially lower than one. 

The results for the Tanaka, Uejima and Asai and the Savic and Pedrycz fuzzy regression 

methods for bivariate and multivariate regressions (6-7) are reported in Table 6 for the confidence 

level h=0 ( and in Table 8 for the confidence level h=0.5). There are some noticeable differences 

with the analysis conducted in Section 7, with the variables in logarithmic terms. In bivariate and 

multivariate regressions the fit with respect to univariate regressions improves for both fuzzy 

regression methods. In all the regressions and in both methods all the slope coefficients display zero 

spread and all the fuzziness is captured by the intercept value. Therefore the regressions in the 

volatility levels seem to better capture a clear linear relationship between variables than the 

regressions in logarithmic terms. For the rest, the results substantially corroborate the results in 

Section 7. In the Savic and Pedrycz method it is evident that the explanatory power of historical 

volatility is very low (the slope coefficient is close to zero), while the variation in realised volatility 

is explained by both Black-Scholes and model-free implied volatility (the latter to a lesser extent). 
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In the Tanaka, Uejima and Asai method, all three volatility forecasts display substantial forecasting 

power, but when the two implied volatility estimates are used jointly, model-free implied volatility 

displays a negative relationship with subsequent realised volatility, as the slope coefficient is 

negative. 

 

9. Conclusions. 

In this paper we have assessed the information content of option-based forecasts of volatility by 

using fuzzy regression methods. We have implemented both the possibilistic regression method of 

Tanaka, Uejima and Asai and the least squares fuzzy regression method of Savic and Pedrycz.  

In univariate regressions, all three volatility forecasts present forecasting power on 

subsequent realised volatility. For historical volatility all the fuzziness is captured by the intercept 

coefficient, while for Black-Scholes and model-free implied volatilities all the fuzziness is captured 

by the slope coefficient. The slope coefficient of implied volatilities in the Savic and Pedrycz 

method are very close to one, even if they present a substantial spread, therefore we expect them to 

be unbiased predictors of realised volatility. On the other hand, in the Tanaka, Uejima and Asai 

method, they are substantially lower than one. As for the fit of the three forecasts, the two models 

provide a different ranking. For the Tanaka, Uejima and Asai method the best one is Black-Scholes, 

followed by model-free implied volatility, the worst performance is obtained by historical volatility. 

For the Savic and Pedrycz method, historical volatility obtains the best performance, followed by 

Black-Scholes implied volatility, and model-free implied volatility obtains the worst performance. 

The two methods agree in assessing the superiority of Black-Scholes implied volatility to model-

free implied volatility.   

In multivariate regressions, the information content of the different volatility forecasts is 

disentangled. When we compare Black-Scholes (or model-free) implied volatility with historical 

volatility all the fuzziness is captured by the slope coefficient of Black-Scholes (or model-free) 

implied volatility. When we compare the two implied volatility estimates, all the fuzziness is 

captured by the slope coefficient of model-free implied volatility. In the Savic and Pedrycz method 

the slope coefficient of historical volatility is very close to zero (we expect the efficiency of the two 

implied volatility forecasts, since they subsume all the information conveyed by historical 

volatility). In the Tanaka, Uejima and Asai method the slope coefficient of historical volatility is 

positive and higher than the slope coefficients of implied volatilities, therefore we roughly expect to 

reject the hypothesis of efficiency of the two implied volatility forecasts.  

The results of univariate and multivariate regressions in the volatility levels complete the 

analysis and further confirm the results. One noticeable difference is in the spread of the 
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coefficients: in this case the slope coefficients of the three forecasts display zero spread and all the 

fuzziness is captured by the intercept coefficients. Moreover, the fit improves with respect to the 

analysis in logarithmic terms, for both fuzzy regression methods. Therefore the regressions in the 

volatility levels seem to capture even better than the regressions in logarithmic terms a clear linear 

relationship between the variables. 

If compared to the OLS results obtained in Muzzioli [17], the application of fuzzy regression 

methods yields a “confidence” band in which all the possible regression lines are embedded. In the 

Savic and Pedrycz method the center of the model coincides with the OLS regression, while in the 

Tanaka, Uejima and Asai method the center is chosen as the midline between the upper and lower 

limits of the fuzzy output. The fuzziness of the model can be captured by the intercept, by the slope 

coefficient, or both. When the fuzziness of the model is captured mainly by the intercept, it means 

that the relationship between the dependent and the independent variable is clear and the vagueness 

regards the scale adjustment which has to be made in order to shift up or down the regression line. 

On the other hand, when the fuzziness of the model is captured mainly by the slope coefficient, it 

means that there is a clear constant adjustment that has to be made to the independent variable, 

while the relationship between the two variables is not sharp. When the fuzziness of the model is 

captured by both the intercept and the slope coefficients, we face the fuzziest relationship between 

independent and dependent variables.  

Differently from ordinary regression, the coefficients of the fuzzy regression model are 

represented by fuzzy numbers, and each real number in the support of the fuzzy number has a given 

degree of membership. Therefore the fuzzy coefficients provide a natural interpretation of the most 

possible value within the interval (the peak value) and of the interval of possible values around the 

most possible (we may think at the support of the fuzzy number as a sort of “confidence interval” 

around the most possible value). Another degree of freedom in fuzzy regression, which constitutes a 

difference with OLS regression, is given by the choice of the degree of belief that the decision 

maker desires, which can be set on the base of her experience and the reliance on the data (see ). In 

both fuzzy regression methods, a higher degree of belief (h) implies a higher spread, similarly to the 

case in statistics, where a higher confidence level yields a wider confidence interval. We remark 

that in both methods the central value is not affected by the choice of the h-level.  

Therefore we can conclude that the fuzzy regression methods used provide a more 

informative interpretation of the relationship among the variables, which can be tailored to the 

experience of the decision maker. Moreover fuzzy regression methods are able to disentangle the 

contribution of each regression coefficient to the overall fuzziness of the model. 



 16

Since the fuzzy regression methods used in this paper are non-statistical in nature, inference 

methods and tests on the parameters are hard to implement (see e.g. Kim, Moskowitz and Koksalan, 

[15]). Therefore, the present study should be complemented by using different fuzzy regression 

methodologies which provide inferential procedures for testing the parameters and assessing the 

unbiasedness and efficiency of the different volatility forecasts. Along this line, an interesting 

extension is the use of fuzzy random variables in order to model both randomness and the 

imprecision in volatility estimation (see e.g. Ferraro, Coppi, Gonzales Rodriguez and Colubi, 

[2010], who use LR fuzzy random variables in order to model random experiments and derive a 

linear regression model with an imprecise response). 
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(a) Historical / TU&A  (b) Black-Scholes / TU&A  (c) Model-free / TU&A 

 

 

(d) Historical / S&P  (e) Black-Scholes / S&P  (f) Model-free / S&P 

 

Figure 1. Univariate regression representation for the three volatility forecasts, variables in logs. 

The figures show the possibilistic fuzzy regression model of Tanaka, Uejima and Asai (TU&A) ((a) 

for historical volatility, (b) for Black-Scholes and (c) for model-free) and the least squares fuzzy 

regression model of Savic and Pedrycz (S&P) ((d) for historical volatility, (e) for Black-Scholes and 

(f) for model-free). Each figure reports the crisp data pairs (y), the central value of the fuzzy output 

and the upper and lower bounds of the fuzzy output for two different degrees of belief: h=0 and 

h=0.5.   

 

 



 19

 
 

 
 
 
(a) Historical TU&A  (b) Black-Scholes TU&A  (c) model-free TU&A 
 
 

 
 
(d) Historical S&P  (e) Black-Scholes S&P  (f) model-free S&P 
 
 
Figure 2. Univariate regression representation for the three volatility forecasts, variables in levels. 

The figure show the possibilistic fuzzy regression model of Tanaka, Uejima and Asai (TU&A) ((a) 

for historical volatility, (b) for Black-Scholes and (c) for model-free) and the least squares fuzzy 

regression model of Savic and Pedrycz (S&P) ((d) for historical volatility, (e) for Black-Scholes and 

(f) for model-free). Each figure reports the crisp data pairs (y), the central value of the fuzzy output 

and the upper and lower bounds of the fuzzy output for two different degrees of belief: h=0 and 

h=0.5.  
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h=0 Tanaka, Uejima and Asai   

 A0  A1   

 central spread central spread fit 

historical -0.07 0.68 0.82 0.00 39.47 

Black-

Scholes 
-0.67 0.14 0.43 0.36 38.22 

model-

free 
-0.76 0.23 0.40 0.33 38.39 

 Savic and Pedrycz   

 A0  A1   

 central spread central spread fit 

historical -0.24 0.89 0.85 0.00 51.70 

Black-

Scholes 
-0.13 0.00 1.01 0.66 55.11 

model-

free 
-0.20 0.00 1.02 0.72 55.65 

 

Table 1. The results for univariate regressions (variables in logs, h=0). 
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h=0.5 Tanaka, Uejima and Asai   

 A0  A1   

 central spread central spread fit 

historical -0.07 1.36 0.82 0.00 78.94 

Black-

Scholes 
-0.67 0.28 0.43 0.73 76.44 

model-

free 
-0.76 0.45 0.40 0.65 76.77 

 Savic and Pedrycz   

 A0  A1   

 central spread central spread fit 

historical -0.24 1.78 0.85 0.00 103.40 

Black-

Scholes 
-0.13 0.00 1.01 1.33 110.23 

model-

free 
-0.20 0.00 1.02 1.43 111.30 

 

Table 2. The results for univariate regressions (variables in logs, h=0.5). 
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Tanaka, Uejima and Asai        

h=0         

 A0  historical  
Black-

Scholes
 

model-

free 
 fit 

 central spread central spread central spread central spread  

 -0.13 0.00 0.56 0.00 0.20 0.43   35.81 

 -0.29 0.03 0.54 0.00   0.13 0.44 35.56 

 -0.38 0.21   1.70 0.00 -1.12 0.32 36.90 

 -0.10 0.00 0.55 0.00 0.84 0.00 -0.63 0.45 34.76 

Savic and Pedrycz         

h=0         

 A0  historical  
Black-

Scholes
 

model-

free 
 fit 

 central spread central spread central spread central spread  

 -0.13 0.00 -0.01 0.00 1.01 0.66   54.63 

 -0.21 0.00 -0.03 0.00   1.05 0.72 55.81 

 -0.10 0.00   0.83 0.00 0.20 0.69 53.36 

 -0.14 0.00 -0.03 0.00 0.83 0.00 0.21 0.69 53.85 

 

Table 3. The results for multivariate regressions (variables in logs, h=0). 
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Tanaka, Uejima and Asai        

h=0.5         

 A0  historical  
Black-

Scholes
 

model-

free 
 fit 

 central spread central spread central spread central spread  

 -0.13 0.00 0.56 0.00 0.20 0.86   71.62 

 -0.29 0.06 0.54 0.00   0.13 0.87 71.12 

 -0.38 0.42   1.70 0.00 -1.12 0.64 73.80 

 -0.10 0.00 0.55 0.00 0.84 0.00 -0.63 0.90 69.52 

Savic and Pedrycz        

h=0.5         

 A0  historical  
Black-

Scholes
 

model-

free 
 fit 

 central spread central spread central spread central spread  

 -0.13 0.00 -0.01 0.00 1.01 1.32   109.26 

 -0.21 0.00 -0.03 0.00   1.05 1.44 111.63 

 -0.10 0.00   0.83 0.00 0.20 1.37 106.71 

 -0.14 0.00 -0.03 0.00 0.83 0.00 0.21 1.39 107.69 

 

Table 4. The results for multivariate regressions (variables in logs, h=0.5). 
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h=0 Tanaka, Uejima and Asai   

 A0  A1   

 central spread central spread fit 

historical 0.22 0.20 0.50 0.00 11.51 

Black-

Scholes 
0.22 0.20 0.48 0.00 11.42 

model-

free 
0.23 0.20 0.42 0.00 11.55 

h=0 Savic and Pedrycz   

 A0  A1   

 central spread central spread fit 

historical 0.05 0.31 0.80 0.00 17.90 

Black-

Scholes 
0.01 0.33 0.84 0.00 18.87 

model-

free 
0.01 0.33 0.79 0.00 19.25 

 

Table 5. The results for univariate regressions (variables in levels, h=0). 
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Tanaka, Uejima and Asai        

h=0         

 A0  historical  
Black-

Scholes
 

model-

free 
 fit 

 central spread central spread central spread central spread  

 0.17 0.19 0.38 0.00 0.38 0.00   11.08 

 0.18 0.19 0.37 0.00   0.32 0.00 11.18 

 0.21 0.19   1.02 0.00 -0.44 0.00 11.31 

 0.16 0.19 0.39 0.00 0.67 0.00 -0.24 0.00 11.02 

Savic and Pedrycz        

h=0          

 A0  historical  
Black-

Scholes
 

model-

free 
 fit 

 central spread central spread central spread central spread  

 0.01 0.32 0.07 0.00 0.78 0.00   18.81 

 0.01 0.33 -0.04 0.00   0.83 0.00 19.30 

 0.01 0.33   0.55 0.00 0.28 0.00 19.03 

 0.01 0.33 -0.03 0.00 0.55 0.00 0.30 0.00 19.06 

 

Table 6. The results for multivariate regressions (variables in levels, h=0). 
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h=0.5 Tanaka, Uejima and Asai   

 A0  A1   

 central spread central spread fit 

historical 0.22 0.40 0.50 0.00 23.01 

Black-

Scholes 
0.22 0.39 0.48 0.00 22.83 

model-

free 
0.23 0.40 0.42 0.00 23.10 

 Savic and Pedrycz   

 A0  A1   

 central spread central spread fit 

historical 0.05 0.62 0.80 0.00 35.80 

Black-

Scholes 
0.01 0.33 0.84 0.00 18.87 

model-

free 
0.01 0.33 0.79 0.00 19.25 

 

Table 7. The results for univariate regressions (variables in levels, h=0.5). 
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Tanaka, Uejima and Asai        

h=0.5         

 A0  historical  
Black-

Scholes
 

model-

free 
 fit 

 central spread central spread central spread central spread  

sto bs 0.17 0.19 0.38 0.00 0.38 0.00   11.08 

sto mf 0.18 0.19 0.37 0.00   0.32 0.00 11.18 

bs mf 0.21 0.19   1.02 0.00 -0.44 0.00 11.31 

sto bs 

mf 
0.16 0.19 0.39 0.00 0.67 0.00 -0.24 0.00 11.02 

Savic and Pedrycz        

h=0.5         

 A0  historical  
Black-

Scholes
 

model-

free 
 fit 

 central spread central spread central spread central spread  

 0.01 0.32 0.07 0.00 0.78 0.00   18.81 

 0.01 0.33 -0.04 0.00   0.83 0.00 19.30 

 0.01 0.33   0.55 0.00 0.28 0.00 19.03 

 0.01 0.33 -0.03 0.00 0.55 0.00 0.30 0.00 19.06 

 

Table 8. The results for multivariate regressions (variables in levels, h=0.5). 
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