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Introduction 
 

Fuzzy numbers can be introduced in order to model imprecise situations involving real 
numbers, and one of the first problem one meets working with these is to decide what type of order 
to use on the fuzzy number set. In fact this set does not have a natural total ranking. Different 
methods for ranking fuzzy numbers has been described. Most of these are defined by a function 
which maps each fuzzy number into an ordered set and transfer the order of one set to the other. We 
consider that fuzzy numbers may be thought as intervals whose boundaries are blurred, and the 
difficulty in ranking them arise from the problems created in ranking real intervals. As overlapping 
is the main difficulty, the problem is overcome when the supports of the fuzzy numbers are disjoint. 
In this case all the methods give the same solution. By contrast, the decision is not evident when the 
set intersect. In this case, different methods give different solutions for the same problem. This 
problem happens even in the classification of real intervals when they are partially overlapped.  

The problem we study in this paper is optimising a non-linear function of fuzzy variables 
with values in the fuzzy number set. At the beginning, we had  to start with a definition of ranking 
fuzzy numbers in order to being able to speak about maximum or minimum of a fuzzy valued 
function. In two papers ([6] e [7]), Canestrelli and Giove faced an analogous problem. These 
authors decided to use a definition of “linked variables” to approach the problem of ranking fuzzy 
numbers. In this paper we use a particular real valued ranking function , called average value (AV), 
generated by two different ranking functions (evaluation functions) on real intervals. The choice has 
been due to the fact that the AV is defined as dependent on several parameters, allowing flexibility 
in the final result. Both evaluations functions on real intervals contain a parameter: in the first case 
it is a real number, in the second it is a function, we call degree of risk, which takes into account of 
a risk-propension or aversion of the decision maker. The two AV we use are the mean values of the 
evaluation functions on the α–cuts of the fuzzy numbers obtained by a particular Stieltjes measure 
generated by a function s(x)= xr with r>0. We used r=2 because this choice gives more weight to 
the high values of α . In the fourth chapter we produce a necessary and sufficient condition for the 
existence of a solution of the optimising problem and the interesting result is that it is possible to 
treat the fuzzy optimisation problem without having any information about the minimum and the 
maximum of the function. This result should give the opportunity to build an algorithm to reach the 
solution easier. An interesting future development of the study is the use of AV defined not with 
additive measures, but with fuzzy measure, using the Choquet’s integral. 
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1 Fuzzy numbers 
 

A fuzzy set A is characterized by a generalized characteristic function (.)Aµ , called 
membership function, defined on a Universe X, which assumes values in [0,1]. The Universe, in a 
concrete case, has to be chosen according to the specific situation of the case. In the following 

RX ⊆ . 
A fuzzy set is a fuzzy number if: 
i) [ ]1,0∈∀α , the α-cut of A,  { }αµα ≥∈= )(: xXxA A   is convex. 
ii) (.)Aµ  is an upper semicontinuous function. 
iii) supp(A)= { }0)(: >∈ xXx Aµ  is a bounded set of X 
The height of A, that is, )(sup xA

Xx
µ

∈
 has to be equal to one. 

A triangular fuzzy number TFN is a fuzzy number defined by a triplet ( )321 ,, aaa ,such that 

0)( =xµ  1ax ≤∀  and 3ax ≥∀ , 1)( 2 =aµ  and )(xµ  is a continuous and piece-linear function 

∈∀x [ ]31 ,aa . 
 the real line, or the set of fuzzy numbers have not a unique 

and trivial order. It is possible to define a lot of kinds of orders in both cases, but usually they are 
not total. 

In the next paragraph  we define two ranking functions on the real intervals space and on  
fuzzy numbers. 
 
2 Ranking functions on real intervals and fuzzy numbers. 
 
Def. 2.1. We call “evaluation function” a real function ϕ : RI →  defined on the family of sets  

I= [ ]{ }122121 ,,:, aaRaaaaA ≥∈= , 
which depends on the extremal values of the interval  

=)(Aϕ [ ]( ) ( )2121 ,, aaaa ϕϕ = . 
In general, it is possible not to request any property on (.)ϕ , but it seems reasonable to consider 

functions which are increasing in both variables and have some regularity property (i.e. )1(C∈ϕ ).  
We will consider two types of evaluation functions which are based on a term, called degree of 

risk (the risk-propension or aversion) of the decision maker, that have the very interesting 
mathematical property to be sensitive to the uncertainty associated to the use of real intervals 
instead of real numbers. 
• the family { } [ ]1,0∈λλϕ of linear functions  
 

]1,0[,)1()( 12 ∈−+= λλλϕλ aaA   (2.1) 
 

where the degree of risk is a constant value λ , 
• the family { }

Γ∈ρρϕ  of non linear functions 

))(,(),( 1221121 aaaaaaa −+= ρϕρ   . (2.2) 
 
 where the degree of risk is not constant, but a functionρ ∈ Γ  and Γ is the set of the )1(C  functions 

( )21,aaρ : [ ]1,0→D , { }0:),( 1221 >>= aaaaD , such that : 
a) ( )21,aaρ  is  (strictly) decreasing in the first variable  
b) ( )21,aaρ  is (strictly) increasing in the second variable  



 3

c) ( ) 0, 21 →aaρ  as 21 aa →  
d) ),( 21 aaρϕ  is increasing in 1a . 

In this case the degree of risk depends on ( )21 ,aa  and precisely on the position on the real axis 
of the interval and on its width. 

We may remark that conditions a) and b) force ( )21,aaρ  to be valued in the open interval ] [1,0 . 
Furthermore the condition a) and the regularity of ( )21,aaρ  imply the strict increasing monotonicity 
of ),( 21 aaρϕ  in 2a . 

It is obvious that the evaluation function defined in (2.2) is a generalization of the one in (2.1). 
In fact if we consider ( )21,aaρ  constant, we have 

)(),( 12121 aaaaa −+= ηϕρ = 12 )1( aa ηη −+ = ),( 21 aaλϕ  with ηλ =  

Using the evaluation function defined in (2.1) we may provide the following order relation: 
 
Def.2.2. Given [ ]21,aaA =  and [ ]21,bbB =  in I, and the evaluation function (.)λϕ , we state that  
B is preferred to A, in symbols  

BA
λϕp  if and only if )()( BA λλ ϕϕ < . 

and that A  is equivalent to B  
BA

λϕ≈  if and only if )()( BA λλ ϕϕ =  
Obviously, this order relation on I generates equivalence classes with infinite elements; in 

fact the interval [ ]21,aaA =  is equivalent to the intervals  [ ]γδ ++ 21 ,aa  with 
λ
γγδ −= . 

Using the evaluation function defined in (2.2) we have a slightly different order relation: 
 
Def 2.3. Given [ ]21,aaA = e [ ]21,bbB =  in I, and an evaluation function ρϕ , we state that 

BA
ρϕp  if and only if )()( BA ρρ ϕϕ < , or )()( BA ρρ ϕϕ =  and ),( 21 aaρ ),( 21 bbρ> . 

and we say that 
BA

ρϕ≈  if and only if )()( BA ρρ ϕϕ =  and ),( 21 aaρ ),( 21 bbρ=  

This type of ranking function has been introduced for right fuzzy numbers2 in [10]. 
The following theorem establishes a very strong result concerning the equivalence classes 

on the ordered space ( )
ρϕp,I   

Theorem 2.1. Let  ρϕ  be a not constant ranking function on I. Then the equivalence classes of 

intervals generated by ρϕ  are singletons [10]. 

It is easy to show that, if ( )21,aaρ  is constant, the theorem is not valid, as the equivalence classes 
of intervals generated by ρϕ (.) are  the same  described for (.)λϕ . 

Now we extend the previous ranking functions to fuzzy numbers. 
Let F  be the set of fuzzy numbers on the universe R ; remember that A~ ∈ F  can be defined 

by its α -cuts αA , αA = ],[ 21
αα aa , [ ]1,0∈α  . 

Def. 2.4. Given the evaluation function (.)ϕ  defined on the α -cuts of A~  by 
ααα

λ λλϕ 12 )1()( aaA −+=  [ ]1,0∈α  
we define on the set of fuzzy number F the following evaluation function  

                                                 
2 A right fuzzy number is a fuzzy number for which the triplet is ( 21 aa = , 3a ) 
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∫=Φ
1

0

)(2)
~

( ααϕ α
λλ dAA   (2.3) 

Def. 2.5. Given the evaluation function (.)ϕ  defined on the α -cuts of A~  by 

))(,()( 12211
αααααα

ρ ρϕ aaaaaA −+=  [ ]1,0∈α  

we define on the set of fuzzy number F the following evaluation functions  ρΦ RF →:  

∫=Φ
1

0
)(2)

~
( ααϕ α

ρρ dAA   (2.4) 

These functions are average values of the fuzzy number made by a particular normalized 
Stieltjes measure on [ ]1,0 . In fact if we define average value of A the value 

=Φ )
~

(AS
ϕ )()(

1

0
αϕ α dSA∫   (2.5) 

where ϕ  is a generic evaluation function on real intervals and S is an additive measure on [ ]1,0 , we 
obtain (2.3) if ϕ= λϕ  and (2.4) if ϕ= ρϕ , and S the Stieltjes measure generated by the function 

rs αα =)(  with r=2. All the results are still valid 0>∀r  but we prefer r=2 because in this case S 
gives more weight to the high values of [ ]1,0∈α . It easy to verify that  particular choices of λϕ  and 
S  let  (2.5) coincide with other comparison indexes (Adamo [1], Tsumura [16] , Yager [19], 
Campos-Gonzales [4],[5]). In particular if ϕ= λϕ  and A~ = ( )231 ,, aaa ,  (2.5) turns into the convex 
combination between the optimistic and pessimistic choice introduced in [9]. 

Now, let A~ , B~  be in F  and the evaluation function (.)λΦ be defined as above. 

Def.2.6. We state that B~  is Atopreferred
~−Φ λ , in symbols 

 
BA ~~

λΦp    if and only if   )
~

()
~

( BA λλ Φ<Φ   (2.6) 

 
This is a crisp preorder on R and an order relation on the quotient set generated by the equivalence 
relation 

BA
~~

λΦ≈      if and only if     )
~

()
~

( BA λλ Φ=Φ  
 

Using the definition 2.2, the (2.6) is equivalent to  
 

BA ~~
λΦp  if and only if [ ])~

(),
~

( 10 AA ΦΦλϕ  < λϕ [ ])
~

(),
~

( 10 BB ΦΦ  

 
3 Preliminaries 
 

As we are interested in maximization problem, it is natural to introduce some concavity 
hypotheses and recall some classical results about this topic. 
 
Property 3.0. If g is a one variable differentiable function on the convex K, then 
 

g is concave if and only if Kyxxyygygxg ∈∀−+≤ ,  ),)((')()(   (3.1) 
 
Theorem 3.1. [12] Let K be a convex set in nR , Kx ∈ and RRh n →:  be differentiable in x . 
If x  is a local maximum then  

Kxxxxh ∈∀>≤−∇< 0),( . 
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Theorem 3.2. [12] Let K be a convex set in nR , RRh n →:  be a concave function and Kx ∈ . 
Then the condition “there is a subgradient )(xh∂  such that for all Kx ∈  0),( >≤−∂< xxxh  “ it is 
necessary and sufficient in order that x  is a global maximum of  h(x) in K. 
 
Lemma 3.3. Let K be a convex subset of R and )2(,),(,]1,0[: CgxtguRKg ∈=→×  , a function 
which is concave in x ; then, if we define  

=)(xG ∫
1

0

),( dtxtgt , also )(xG  is concave. 

The proof follows immediately, noting that by Property 3.0., as g is concave in x , [ ]1,0∈∀t  it 
results 

yxxyyt
y
g

ytgxtg ,))(,(),(),( ∀−
∂
∂+≤ . 

Therefore, by using the monotonicity and the linearity of the integral, we obtain 
 

)(xG = ∫ ∫∫ =
∂
∂

−+≤
1

0

1

0

1

0

),()(),(),( dtyt
y
g

txydtytgtdtxtgt  

∫ ∫ =
∂
∂

−+
1

0

1

0

),()(),( dtytgt
y

xydtytgt ))((')( xyyGyG −+  

which gives the required concavity condition. 
 
Consider now a parameterized optimization problem of the form 

Rqqtf
Rt

∈
∈

,),(max      (3.2.) 

(or similarly for minimum) where f is a regular function. Assume that t(q) be a single-valued 
maximization choice of t  and denote v(q) = f(t(q),q) the value attained by f at the solution t(q) to 
problem (3.2.). 
 
Theorem 3.4. (Envelope Theorem) ([15], pag 327) If )1(Cf ∈ , then t(q) and v(q) are differentiable 
and it results 

q
qqtf

dq
qdv

∂
∂= )),(()(

     (3.3) 

 
That is, the fact that t(q) is determined by maximizing the function f(.,q) has the implication that in 
computing the first order effects of changes in q on the maximum value, we can equally well 
assume that the maximizer will not adjust. The only effect of any consequence is the direct effect. 
 
4 The optimisation problem. 
 

Given a fuzzy number A~  ∈F and the function RRxaf →2:),( , we consider the following 

fuzzy extension induced by f. Let αA  be the α -cuts of A~ : then we define :
~
f F xR→ F , 

YxAf ~),~(
~ = where Y~  can be defined through its α -cuts αY , as follows 

 
=)(xY α ( )xAf ,

~ α = )](),([ 21 xzxz αα    (4.1) 
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and )(1 xzα , )(2 xzα  are defined, [ ]1,0∈∀α  ,   
 

),(max)(   ;),(min)(
2121

21 xafxzxafxz
aaaaaa αααα

αα

≤≤≤≤
== .    (4.2) 

 
In the following, we consider )2(Cf ∈ ; moreover, [ ]1,0∈∀α  we call )(xaL

α  and )(xaU
α  

respectively the minimizing and maximizing functions, that is 
 

)),((minarg)(
21

xxafxa L
aaa

L
αα

αα ≤≤
=  

)),((maxarg)(
21

xxafxa U
aaa

U
αα

αα ≤≤
=  

hence 
),()),(( 1 xazxxaf L

αα =  and ),()),(( 2 xazxxaf U
αα =  

and we suppose from now that )(xaL
α  and )(xaU

α  are single-valued and consequently continuous 
[16]. 
The evaluation function ,defined in (2.3), is now the following function of the real variable x of R : 

 Rx ∈∀  ))(
~

( xYλΦ =2 ( ) αϕα α
λ dxAf∫

1

0

),(
~

  (4.3) 

  
Therefore, the optimisation problem we wish to solve is: 

Kx∈
max  ))(

~
( xYλΦ  = ( )∫∈

1

0

),(
~

2max αϕα α
λ dxAf

Kx
  (4.4) 

where K is a convex subset of R. 

In the following we will write ))(
~

(
2
1

)( xYx λλ Φ=Φ . 

 
Theorem 4.1. Let RRxaf →2:),( , ∈f )2(C , and :),(

~
xAf α F xR→ F, be the fuzzy extension of 

f. If: 
i) f  is convex in a  and concave in x , 
ii) [ ]1,0∈∀α  , ∈)(xaL

α  αα
21 ,] aa [ 

then x  is the maximum for f on K, with respect to the evaluation λϕ , if and only if  

)5.4(0)),(()1()),(()(
1

0

Kxdxxa
x
f

xxa
x
f

xx LU ∈∀≤





∂
∂−+

∂
∂⋅− ∫ αλλα αα

 

Proof. First of all, we recall that, as we supposed above, )(xaL
α and )(xaU

α  are single-valued: 

moreover, since )2(Cf ∈ , the differentiability of )(xaL
α and )(xaU

α  follows from the regularity of f. 

Let us begin proving the concavity with respect to x of the function ( )),(
~

xAf α
λϕ = ),( xαϕλ  which 

appears in (4.4). As )2(),( Cx ∈αϕλ  , this is equivalent to show that 

0
),(

2

2

≤
∂

∂
x

xαϕλ     (4.6) 

Now, the integral argument in (4.4), has the expression  
)()1()(),()),(

~
( 12 xzxzxxAf αα

λ
α

λ λλαϕϕ −+==  
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where α
1z  and α

2z  are defined as in (4.2). 
Firstly we compute [ ]1,0∈∀α  

)()1()(
),( 12 x

dx
dz

x
dx

dz
x

x αα
λ λλ

αϕ
−+=

∂
∂

 

where )),(()()),(()(1 xxa
x
f

x
dx

da
xxa

a
f

x
dx
dz

L

L

L
α

α
α

α

∂
∂+

∂
∂=  and similarly for )(2 x

dx

dzα

. 

Observe that from the convexity of f with respect to a, and from the observation that )(xaU
α  is 

single-valued and continuous, the maximizing function )(xaU
α  lies on the boundary of ],[ 21

αα aa , 

and [ ]1,0∈∀α  its value is constant with respect to x, it is equal either to α
1a  or to α

2a and 
consequently we have 

0=
dx

daU
α

   (4.7). 

Moreover, being ∈)(xaL
α  [,] 21

αα aa , we can apply the envelope theorem to ),(min)(
21

1 xafxz
aaa αα

α

≤≤
= , 

obtaining  

0)),(( =
∂
∂

xxa
a
f

L
α   (4.8). 

Thus we can conclude 

)),(()),(()()),(()(1 xxa
x
f

xxa
x
f

x
dx

da
xxa

a
f

x
dx
dz

LL

L

L
αα

α
α

α

∂
∂=

∂
∂+

∂
∂=  

)),(()),(()()),(()(2 xxa
x
f

xxa
x
f

x
dx

da
xxa

a
f

x
dx
dz

UU

U

U
αα

α
α

α

∂
∂=

∂
∂+

∂
∂=  

Therefore 

)),(()1()),((
),(

xxa
x
f

xxa
x
f

x
x

LU
ααλ λλ

αϕ
∂
∂−+

∂
∂=

∂
∂

   (4.9) 

and consequently the concavity inequality for λϕ can be written as follows 
 

                         

)),((
)(

)),(()1(
),),(

2

22

2

2

+








∂
∂+

∂∂
∂−=

∂
∂

∂
∂=

∂
∂

xxa
x

f
dx

xda
xxa

ax
f

x
x

xx

x
L

L
L

α
α

αλλ λ
αϕαϕ

 

0)),((
)(

)),(( 2

22

≤








∂
∂

+
∂∂

∂
+ xxa

x
f

dx
xda

xxa
ax
f

U
U

U
α

α
αλ   (4.10) 

Now we can observe that by (4.7) the term 
dx

xda
xxa

ax
f U

U

)(
)),((

2 α
α

∂∂
∂

 is null and moreover that the 

derivative )),((
2

2

xxa
a

f
L
α

∂
∂

is non negative, as f is convex in a.  

As a consequence of the envelope theorem , we can compute the effects of changing x 
on )(xaL

α  by differentiating the first-order condition: in fact we obtain 
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0)),(( =






∂
∂

∂
∂

xxa
a
f

x L
α  

 
whence 

0)),((
)(

)),((
2

2

2

=
∂∂

∂+
∂

∂
∂
∂

xxa
xa
f

x
xa

xxa
a

f
L

L
L

α
α

α   (4.11) 

 

If 0)),((
2

2

=
∂
∂

xxa
a

f
L
α , then from (4.11) we infer 0)),((

2

=
∂∂

∂
xxa

xa
f

L
α  and the condition (4.10) 

becomes 
 

                         

0)),(()1()),((
),(

2

2

2

2

2

2

≤
∂
∂−+

∂
∂=

∂
∂

xxa
x

f
xxa

x
f

x

x
LU
ααλ λλ

αϕ
 

which follows immediately from the concavity of f in x. 

If )),((
2

2

xxa
a

f
L
α

∂
∂

> 0, then we obtain from (4.11) 

2

2

2

)),((

)),((

a
xxaf

ax
xxaf

x

a

L

L

L

∂
∂

∂∂
∂

−=
∂

∂
α

α

α

   

and therefore  
 









∂
∂+

























∂
∂+

∂
∂









∂∂

∂

−−=
∂

∂
)),(()),((

)),((

)),((

)1(
)),((

2

2

2

2

2

2

22

2

2

xxa
x

f
xxa

x
f

a
xxaf

ax
xxaf

x
xaf

UL
L

L

αα
α

α

λ λλϕ
 

Since the hypothesis i) guarantees that axa
x

f ∀≤
∂
∂

  ,0),(   
2

2

 and the first term in the first quote is 

also negative, as we are in the case )),((
2

2

xxa
a

f
L
α

∂
∂

> 0, finally we proved that 

0
)),((

2

2

≤
∂

∂
x

xafλϕ
 

which gives us the concavity of ),( xαϕλ . 

Using the result of Lemma 3.3, we can also argue the concavity of )(xλΦ . Moreover, since )(xλΦ  
is concave, Lemma 3.2. ensures that the inequality  

Kxxxx ∈∀≤−Φ 0)()('λ    (4.12) 

is a necessary and sufficient condition that x  be the maximum for )(xλΦ  in K. 

Finally, if we remember the definition of )(xλΦ given in (4.3), and the equality (4.9), we can write 
(4.12) in an equivalent way as follows:  
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=−⋅
∂

∂
∫ α

αϕ
α λ dxx

x
x

)(
),(1

0

 

Kxdxxxxa
x
f

xxa
x
f

LU ∈∀≤−⋅
∂
∂

−+
∂
∂

= ∫ 0)(])),(()1()),(([
1

0

αλλα αα

 

 
which gives the thesis. 
 
5 An example 
 
If we consider the following simple function 
 

22~),( xxaxaf −= , [ ]3,1=a   
for [ ]1,0∈α  we have 

αα αα −=+= 3  ,1 31 aa  
and then 

[ ] [ ] [ ]
[ ]2222

2222222
21

)3(,)1(       

)3(,)1()3(,)1(,),(

xxxx

xxxxxxxaaxafy

−−−+=

=−−+=−−+=−==

αα

αααααααα

 

as [ ]1,0∈λ , the problem becomes: 
 

[ ]{ } 0)3()1)(1(42),(2
1

0

22
1

0

=−++−+−=
∂
Φ∂

∫∫ ααλαλααα dxdx
x

 

[ ]

0 
3
5

12
11

2
42

92
23

2
4

)1(222),(2
1

0

3
421

0

24
1

0
2

1

0

=+=

=







−++








++−+−=

∂
Φ∂∫

λ

λααα

x                      

á
áá

ë
ááá

xxdx
x  

which has the unic solution: 

11
20λ−=x      

Conclusions 
 
In this paper we have introduced two different evaluation functions for intervals and by the first of 
them we have defined a ranking on fuzzy numbers by average value. The optimisation problem has 
been treated only for the first case as the evaluation of (4,6) using the second case, seems at the 
moment really complicated. In any case we think that the proposed result let the possibility to treat 
the fuzzy optimisation problem without having any information about the minimum and the 
maximum of the function f. This opportunity should give the possibility to build an algorithm to 
reach the solution easier. We are already working on the second type of ranking to reach a 
necessary and sufficient condition like that in theorem (4,1). Another interesting research in which 
we are involved is the same optimisation problem in the average value of the fuzzy number is 
obtained using non-additive measures like a fuzzy measure, using Choquet’s integral. 
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