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I ntroduction

Fuzzy numbers can be introduced in order to mode imprecise Stuaions involving red
numbers, and one of the first problem one neets working with these is to decide what type of order
to use on the fuzzy number set. In fact this set does not have a naturd totd ranking. Different
methods for ranking fuzzy numbers has been described. Mogt of these are defined by a function
which maps each fuzzy number into an ordered set and transfer the order of one st to the other. We
condder that fuzzy numbers may be thought as intervads whose boundaries are blurred, and the
difficulty in ranking them arise from the problems created in ranking red intervas. As overlapping
Is the main difficulty, the problem is overcome when the supports of the fuzzy numbers are digoint.
In this case dl the methods give the same solution. By contradt, the decison is not evident when the
st intersect. In this case, different methods give different solutions for the same problem. This
problem happens even in the classification of red intervals when they are partidly overlgpped.

The problem we study in this paper is optimisng a nortlineer function of fuzzy variables
with vaues in the fuzzy number set. At the beginning, we had to sart with a definition of ranking
fuzzy numbers in order to being able to gpesk about maximum or minimum of a fuzzy vaued
function. In two papers ([6] e [7]), Canedrdli and Giove faced an andogous problem. These
authors decided to use a definition of “linked variables’ to gpproach the problem of ranking fuzzy
numbers. In this paper we use a particular red vaued ranking function , caled average value (AV),
generated by two different ranking functions evaluation functions) on red intervals. The choice has
been due to the fact that the AV is defined as dependent on severd parameters, alowing flexibility
in the find result. Both evauations functions on red intervals contain a parameter: in the first case
it is a red number, in the second it is a function, we cal degree of risk, which takes into account of
a risk-propenson or averson of the decison maker. The two AV we use are the mean vaues of the
evauation functions on the a—cuts of the fuzzy numbers obtained by a particular Stidtjes measure
generated by a function s(x)= X with r>0. We used r=2 because this choice gives more weight to
the high vaues of a. In the fourth dapter we produce a necessary and sufficient condition for the
exigence of a solution of the optimisng problem and the interesting result is tha it is possble to
treet the fuzzy optimisation problem without having any information about the minimum and the
maximum of the function. This result should give the opportunity to build an dgorithm to reach the
solution esser. An interesting future development of the dudy is the use of AV defined not with
additive measures, but with fuzzy measure, using the Choquet'sintegrd.
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1 Fuzzy numbers

A fuzzy st A is characterized by a generdized characteridic function m(.), cdled
membership function, defined on a Universe X, which assumes vaues in [0,1]. The Universe, in a
concrete case, has to be chosen according to the specific Stuation of the case In the following
X1l R.

A fuzzy st isafuzzy number if:
)"al [0, thea-cutof A, A2 ={x] X:m,(x)%a} isconvex.
i) M (.) isan upper semicontinuous function.
iii) Supp(A)= {xT X : m, (x)> 0} isabounded set of X
Theheight of A, that is, supm, (x) hasto be equal to one.
A X

A triangular fuzzy number TFN is a fuzzy number defined by a triplet (al,az,ag),such that
nix) =0 "x£a and "x3 a,;, nfa,)=1 and nfx) is a continuous and piece-linear function
“x [aya].

the red line, or the set of fuzzy numbers have not a unique
and triviad order. It is possble to define a lot of kinds of orders in both cases, but usualy they are
not total.

In the next paragraph we define two ranking functions on the red intervals space and on
fuzzy numbers.

2 Ranking functions on real intervals and fuzzy numbers.

Def. 2.1. Wecdl “evaluation function” ared function) :1 ® R defined on the family of sets

|={A=[a,a,]:a,a,1 Ra,*a},
which depends on the extremad vaues of the interva

i A=) ([a.a])=i (a.a,).
In generd, it is possble not to request any property on j (.), but it seems reasonable to consider
functions which are increasing in both variables and have some regularity property (iej T C®).

We will consder two types of evaduation functions which are based on a term, cdled degree of
risk (the risk-propenson or averson) of the decison maker, tha have the very interesting
methematical property to be sendtive to the uncertainty associated to the use of red intervals
instead of red numbers.

thefamily {j |}, Of lineer functions

I, (A=la,+@-1)a, I'l [01] (2.1)

where the degree of risk isa congtant vauel ,
thefamily § , } .  of non linear functions

j.(a,a)=a +r(@,a,)(a, - &) : (22

where the degree of risk is not congant, but a functionr | G and Gis the st of the C® functions
r(a;,a,):D® [04], D={(a,a,):a, >a >0}, suchthat :

a r(ay,a,) is (grictly) decreasing in thefirst variable

b) r(ay,a,) is(srictly) incressing in the second variable



¢ r(a,a,)® Oasa, ® a,
d j,(a,a,) isincesdngin a,.

In this case the degree of risk depends on (aiaz) and precisdly on the postion on the red axis
of theinterval and on its width.

We may remark that condiitions &) and b) force r(ay,a,) to be vaued in the open interval [0, .
Furthermore the condition & and the regularity of r (al,az) imply the grict increasing monaotonicity
of j ,(a,a,)ina,.

It is obvious that the evaluation function defined in (2.2) is a generdization of the one in (2.1).
Infact if we consider r (a;,a,) constant, we have

I (&,a,)=a+h(a, - a)=ha, +(1- h)a, =], (a;,a,) with | =h
Using the evduation function defined in (2.1) we may provide the following order relation:

Def.2.2. GivenA= [al,az] and B :[bl, b2] inl, and the evaluation function j , (.) , we state that
Bispreferred to A, in symbols

A<, Bifadonlyifj, (A)<j, (B).
andthat A isequivdentto B

A» Bifadonlyifj, (A)=j, (B)

IN
Obvioudy, this order relation on | generaies equivaence classes with infinite dements in

fact theintervel A= [ay,a,] isequivdent totheintervdls [a, +d,a, +g] with d =g- IQ.
Usng the evduation function defined in (2.2) we have adightly different order relation:

Def 2.3. Given A= [al,az]e B =[b1, b2] inl, and an evaluation function j , , we state that

A< B ifandonlyifj . (A) <j,(B),orj . (A)=j,(B) adr(a,a,)>r(b,b,).
and we say that

A» B ifadonlyif j , (A)=j , (B) and r(a,,a,) =r(h,b,)

This type of ranking function has been introduced for right fuzzy numbers” in [10].

The following theorem edablishes a very grong result concerning the equivaence classes
on the ordered space (I, <; )
Theorem 2.1. Let j,  be anot congant ranking function on I. Then the equivaence classes of
intervalsgenerated by j . are singletons [10].
It is easy to show that, if r (ay,a,) isconstant, the theorem is not valid, as the equivalence dlasses
of intervals generated by j |, (.) are the same described for j | ().

Now we extend the previous ranking functions to fuzzy numbers.

Let F be the st of fuzzy numbers on the universe R ; remember that Al F  can be defined
byitsa-cuts A*, A*=[a°,a,],al [0]] .
Def. 2.4. Given the evaluation function j (.) defined onthe a -cuts of A by

j (A)=las+@-1)a al [0

we define on the st of fuzzy number F thefollowing eval uation function

2 A right fuzzy number is afuzzy number for which the triplet is(a =a,,a;)
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1

F,(A) =278 | (A*)da (2.3)

Def. 2.5. Given the evaluation function j (.) defined on the a -cuts of A by
i (A)=a +r(a,a5)(@; - af) al [0
we define on the st of fuzzy number F thefollowing evaluation functions F, : F® R
F . (A) =208 , (A" )da (2.4)

These functions ae average vdues of the fuzzy number made by a paticular normalized
Stieltjes measure on [0,1] . Infact if we define average vaue of A the vaue

FL(A)= ) (A*)dS(@) (25)
where J is a generic evauation function on red intervals and S is an additive measure on [0,1], we
obtan (23) if J =), and (24) if J} =] ,, and S the Stidtjes measure generated by the function
s@)=a" with r=2. All the reaults are ill vdid " r >0 but we prefer r=2 because in thiscase S
gives more weight to the high values of al [0,1]. It essy to verify that particular choices of j , and
S le (25) coincide with other comparison indexes (Adamo [1], Tsumura [16] , Yager [19],
Campos-Gonzales [4],[5]). In particuar if ) =j, and A=(a,,a,,a,), (25) turns into the convex
combination between the optimigtic and pessmigtic choice introduced in [9).

Now, let A, B bein F and the evaluation functionF , (.) be defined as above.

Def.2.6. Westatethat B is F, - preferred to A, insymbols
A<, B ifadolyif F,(A)<F,(B) (2.6)

This is a crisp preorder on R and an order relaion on the quotient set generated by the equivaence
relaion

A». B ifadonyif F, (A)=F,(B)
Using the definition 2.2, the (2.6) is equivaent to
A<, Bifadonlyifj, [F,(A),F,(A) <i, [F,(B).F,(B)

3 Preliminaries

As we ae interested in maximization problem, it is naurd to introduce some concavity
hypotheses and recal some classical results about thistopic.

Property 3.0. If g isaone varigble differentiable function on the convex K, then

gisconcaveif andonly if g(x) £ g(y) + g'(y)(y- %), " x,yI K (3.1

Theorem 3.1.[12] LetK beaconvex setin R”,X1 Kand h:R" ® R bedifferentisbleinX .

If X isalocd maximum then
<Nh(X),x- X>£0 " xI K.



Theorem 3.2. [12] Let K be a convex st in R", h:R"® R be a concave function and X1 K.
Then the condition “there is a subgradient fh(X) such tha for dlxT K <{h(X),x- X>£0 “ itis
necessary and sufficient in order that X isaglobd maximumof h(x) inK.

Lemma 3.3. Let K be a convex subset of Rand g:[0]]" K ® R,u=g(t,x), gl C® , afunction
which isconcavein x ; then, if we define

G(X) = @ g(t,x)dt ,aso G(x) isconcave.

The proof follows immediately, noting that by Property 3.0., as g is concave in x ," t1 [0,1] it
results

oD E G(LY) LYY= "Xy
Therefore, by usng the monatonicity and the linearity of the integrd, we obtain

G(x)=@ 9t X dtEFat,y)dt+ (y- x) § %(t' y) dt=

oot y)dt+ (y- x) %(‘j g(t,y) dt =G(y)+G'(y)y- X

which gives the required concavity condition.

Congder now a parameterized optimization problem of the form
max f(t,q) ,ql R (32)

R
(or gmilaly for minimum) where f is a regular function. Assume that t(q) be a sngle-vaued
maximization choice of t and denote v(q) = f(t(g),q) the vaue attained by f a the solution t(q) to
problem (3.2.).

Theorem 3.4. (Envelope Theorem) ([15], pag 327) If f 1 C® | then t(q) and v(q) are differentiable
and it results
dv(@) _ If (¢(@).3) (33)
dq Tq

That is, the fact that t(q) is determined by maximizing the function f(.,q) has the implication that in
computing the fird order effects of changes in g on the maximum vaue, we can equdly wedl
assume that the maximizer will not adjust. The only effect of any consequence is the direct effect.

4 The optimisation problem.

Given a fuzzy number A | F and the function f(a,x): R* ® R, we condder the following
fuzzy extenson induced by f. Let A* be the a-cuts of A: then we define f :F xR® F
f(A X) =Y where Y can be defined through its a -cuts Y*? , asfollows

Yo (x) = f(A*,x)=[2 (0,2 (0] (4.1)

5



and 2 (x), Z2(X) aredefined,” al [01]

Z(x)= mn f(ax) ; Z(X¥)=max f(aXx. 4.2
a?£afaj al £aca)
In the following, we consider f1 C?®; moreover,” al [01] we cdl a(x) and a7 (x)
respectively the minimizing and maximizing functions, thet is

a; (x) = argmin f(af (), x)

& fafaj

a; (x) = argmax f(a; (x),x)

al £afaj
hence
f@ (),x) =z (ax) ad f (@} (x),% =2 @x
and we suppose from now that a; (x) and & (x) are Sngle-vaued and consequently continuous
[16].
The evaluation function ,defined in (2.3), is now the following function of the red variable x of R:

“xI R F, (Y(X)=2 éﬁj | (F(Aa,x))da (4.3)

Therefore, the optimisation problem we wish to solveiis.
1
ma P (700) = g (f(a* %)) da (4.4)
where K isaconvex subset of R

In the fallowing we will write F | (X) :%F, (V(x)).

Theorem 4.1 Let f(a,x):RZ® R, f1 C?,and f(A*,x):F xR® F, be the fuzzy extension of
f.If:
i) f isconvexin a and concavein X,

)" al [01] ,a> (x)1 Ja2,ad [
then X isthe maximum for f on K, with repect to the evdluation j , , if and only if

T .
(x- X)xg‘p. g 1111—;(a3()_(),>_() +(@-1) %(aﬁ (7),>—<)§ da £0 "xI K (45)

Proof. First of dl, we recdl that, as we supposed above, al(x)and a) (x) ae sngle-vaued:

moreover, since f T C@, the differentiability of a® (x) and a2 (x) followsfrom the regularity of f.

Let us begin proving the concavity with respect to x of the function j | (i‘v(Aﬁl ,X) ):j , (@,x) which

appearsin (4.4). Asj , (@,x)1 C?@ | thisisequivaent to show that

i@,

x?
Now, theintegral argument in (4.4), has the expression

i (F(AX)=), (@x=] 2 () +@-1)Z ()

(4.6)



where Z' and Z, aredefined asin (4.2).
Firstly we compute " al [01]
i, @x _
Ix

Observe that from the convexity of f with respect to a, and from the observetion that a] (x) is
dngle-valued and continuous, the maximizing function a’ (x) lies on the boundary of [a®,a)],

and" al [0,1] its vaue is condant with respect to X, it is equa ether to ai or to a; and
consequently we have

daj
e (4.7)
Moreover, being a® (x)T ]a?,a3[, we can apply the envelope theorem to 2 (x) = rpgaf(a X,
obtaining
" a _
— (@' (x),x)=0 (4.8).
fa
Thus we can conclude
VN PV (PPN |
_ﬂa(aL (X)!X) dX (X)+ﬂx(aL (X)1X)_ﬂx(aL (X)’X)
LU (PSP TR | _Tf .
B (9 = (8 00— (9 (8 (0.0 = - (8 (0,
Therefore
B CHCB FICRI PR AT 49
and consequently the concavity inequdity forj | can bewrltten asfollows
15, @x _ 11%,aXx I‘|12 da (¥) ‘Hf
A VA =(@- |)| (L() X)——— ™
2 () + 1 (4.10)
, ‘ﬂ dx ix?
T s daj (x) .
Now we can observe that by (4.7) theterm % @i (%, X)T isnull and moreover that the

ﬂZ

derivative —- (a;! (X), X) isnon negative, asf isconvexin a.

As a consequence of the envel ope theorem , we can compute the effects of changing x
ona; (x) by differentiating the firg-order condition: in fact we obtain



1 Af

—c—(a] (x), X —_O
™ $Ta (a; (x), )
whence
L @m0 “a W (@ (9.9 =0 (411)
‘ﬂa
ﬂ —(af (x),x) = 0, then from (4.11) we infer 1111 (@ (x),x) = 0 and the condition (4.10)
becom&s
a,
W82 - Tl oo+ DIl o g0
‘Hx
which follows immediatdy from the concavity of f inx.
2
ﬂ >-(al (x),X) >0, then we obtain from (4.11)
%1 (a7 (%), %)
fal _  Ixfa
™ 121 (E (%))
Ta®
and therefore
1617 f(a% (X),x)0° i

€ ) ;
ﬂzjl(f(a,x)):(l_l)-l-_ g a4 R

x> i T f (@ (x), %) X

;:' e ;

p
1 f . . , .
(a,x)£0, "a and the firg term in the firg quote is
2
X

a? (x), v+
(a (x) )_}/ e

Since the hypothess i) guarantees tha

ﬂZ

a0 negative, aswe arein the case

>(a? (x),X) >0, finaly we proved that

T, (f@axX) 4
x?
which gives usthe concavity of j |, (@, X).
Using the result of Lemma 3.3, we can dso argue the concavity of F, (X) . Moreover, snceF | (X)
Is concave, Lemma 3.2. ensures that the inequality
F '(X) (x-X)£0 "xT K (4.12)
isanecessary and sufficient condition that X bethe maximumfor F, (X) inK.
Fndly, if we remember the definition of F | (X) given in (4.3), and the equdity (4.9), we can write
(4.12) in an equivaent way asfollows



N, @x
Cﬁj( )

0 X X das

:g‘;a [l E—L(aﬁ (X),X) +(1- I)%(aﬁ(i),i)]«x- X) daf£0 "xI K

which givesthe thess.
5 An example

If we congder the following smple function

f(a,x)=a%x- x?, a=[13
for al [01] wehave
aj =a+l a3 =3-a
and then
y2 = f(@*,x) :[af,aglx- X2 :[(a +1)2,(3- a)zlx- X2 :l(a +1)%x,(3- a)’x|- x% =
= (a+1)2x- xz,(3- a)zx- x?
as | T [04], the problem becomes:

which has the unic solution:

Conclusions

In this paper we have introduced two different evauation functions for intervals and by the first of
them we have defined a ranking on fuzzy numbers by average vaue. The optimisation problem has
been treated only for the first case as the evauation of (4,6) usng the second case, seems a the
moment realy complicated. In any case we think that the proposed result let the possibility to treet
the fuzzy optimisaion problem without having any information about the minimum and the
maximum of the function f. This opportunity should give the posshility to build an agorithm to
reech the solution esser. We ae dready working on the second type of ranking to reach a
necessary and sufficient condition like that in theorem (4,1). Another interesting research in which
we ae involved is the same optimisation problem in the average vaue of the fuzzy number is
obtained using non-additive messures like a fuzzy messure, usng Choquet' s integrdl.
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