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Abstract

The application of certain Bayesian techniques, such as the Bayes factor

and model averaging, requires the specification of prior distributions on the

parameters of alternative models. We propose a method for constructing

compatible priors on the parameters of models nested in a given DAG (Di-

rected Acyclic Graph) model, using a conditioning approach. We define a

class of allowable parameterisations consistent with the well-ordering and

the modular structure of the DAG and derive a procedure, invariant within

this class, which we name reference conditioning, generalising earlier work

based on Jeffreys conditioning. The theory is then applied to Gaussian DAG

models.
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1 Introduction and summary

Model comparison is an important topic in statistical theory and practice. In

particular, Bayesian model comparison, which essentially relies on the Bayes fac-

tor, has been an active area of research lately, see Kass and Raftery (1995) for

a comprehensive review. The sensitivity of the Bayes factor to the choice of

prior distribution is sometimes perceived as a difficulty, and this has stimulated

research with the hope of making it a more “objective” tool for scientific inves-

tigation, see Berger and Pericchi (2000). Prior specification however involves a

more subtle aspect. Indeed the Bayes factor for comparing two models requires

the assignment of two prior distributions (one for each model-parameter). Specif-

ically, assume that there are two modelsM andM0, say, for the same observable

X, parameterised respectively by θ and θ0. Write π(·) and π0(·) for the corre-

sponding prior densities, and assume, for simplicity, that M0 is a submodel of

M. Given π, it is very often sensible to specify π0 to be, in a sense to be made

precise, as close as possible to π. In this way the resulting Bayes factor should be

least influenced by dissimilarities between the two priors due to differences in the

elicitation processes, and could thus more faithfully represent the strength of the

support that the data lend to each model. Despite being clearly important, this

issue has not been adequately dealt with in the literature so far, at least from a

foundational perspective. A notable exception is a recent paper by Dawid and

Lauritzen (2000), which elucidates the problem through simple and instructive

examples, and suggests two strategies to choose, in their terminology, a compati-

ble prior π0, which they name “projection” and “conditioning”. In their opinion,

the former seems more suitable in the case of co-existing models, wherein several

models are believed to be simultaneously true, leading to a model-selection ap-

proach. The latter, instead, appears more appropriate with competing models,

corresponding to a situation wherein only one of the specified models is deemed

to be true, leading to a model-averaging strategy. The objective of this paper is

to elaborate on the “conditioning approach” for the construction of compatible

priors.
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Specifically we consider statistical models based on Directed Acyclic Graphs,

or DAG models for short. These models are very useful in many applied do-

mains, and represent the architecture of probabilistic expert systems and belief

networks, see for example Cowell et al. (1999). DAG models may be regarded as

simply depicting conditional independence relations among the random variables

involved, say X = (X1, . . . , Xv) or as ‘causal’ models. In a loose sense the latter

interpretation arises, for example, when there exists qualitative prior information

that specifies constraints on the ordering of the random variables, as in the con-

text of univariate recursive data generating processes described, among others, in

Wermuth and Cox (2000) and Lauritzen and Richardson (2001). In such models,

the joint distribution of the observables is not the primitive notion, but rather the

end result of the specification of a collection of local conditional distributions. If

X1 denotes the most recent response, while Xv the last, purely explanatory vari-

able, then a generating process starts with the marginal distribution of Xv and

progressively generates observations on a response variable Xi, i = 1, . . . , v − 1,

conditionally on a subset of the potential ancestors Xi+1, . . . , Xv, which are called

the parents of Xi. A more stringent interpretation of causal DAG models is expli-

cated in Pearl (1995), and more recently in Lauritzen (2001). In this context one

distinguishes between conditioning by observation or conditioning by intervention

and the causal DAG provides the relevant intervention formulae.

We claim that the causal interpretation of DAG models, which we shall adhere

to in this paper, has crucial consequences in terms of allowable model reparame-

terisations. In the sequel we shall carefully articulate this point, since it represents

the cornerstone of our strategy for the construction of compatible priors across

parameters of DAG models.

The main idea of the paper is briefly outlined below. The conditioning ap-

proach of Dawid and Lauritzen (2000) rests upon the idea of choosing suitable

baseline (reference, in their terminology) measures ν and ν0 for models M and

M0. Given a prior law Π with density π, the prior law Π0 with density π0 is then

derived by imposing that the Radon-Nykodim derivatives of Π and Π0, relative
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to ν and ν0 respectively, be proportional. A crucial requirement of the above

program is that the baseline measures be, in some sense, intrinsic to the models

and independent of specific ways of parameterising them. Dawid and Lauritzen

(2000) suggest to take the appropriate Jeffreys measure as the baseline measure

under each model, and accordingly their method is named Jeffreys conditioning.

Clearly the Jeffreys measure is model-specific and invariant to reparameterisa-

tions. Notice the unconventional use of Jeffreys measure in this context, namely

not as a possibly uninformative prior, but rather as a half-way house towards ob-

taining a compatible prior. While we concur that a baseline measure should be

intrinsic to the model, we emphasise that invariance to any reparameterisation is

not appropriate for (causal) DAG models, precisely because such models incorpo-

rate an ordering of the variables and a modular structure which would otherwise

be lost. Instead we argue in favour of a more restrictive notion of invariance,

namely that dictated by the class of allowable DAG parameterisations we alluded

to above. A baseline measure consistent with the above requirement corresponds

to the group reference prior of Berger and Bernardo (1992), and accordingly we

name our method reference conditioning. We emphasise that our use of reference

priors is unconventional, being unrelated to issues of non-informativity of prior

specification. On the other hand the suggestion to employ reference priors stems

from (restricted) invariance considerations, an idea already present in Jeffreys

(1961, § 3.10). The reference prior measure is at the heart of our procedure for

constructing compatible priors on parameters across nested DAG models. Our

method is general and automatic and requires a single specification of the prior

corresponding to the largest entertained model. Through the notion of ‘parame-

terisation implicitly leading to reference conditioning’ the implementation of our

method becomes even more straightforward as exemplified in the Gaussian case.

The structure of the paper is as follows. Section 2 describes the conditioning

procedure to find compatible priors. Section 3 is devoted to the crucial issue of

reparameterisation for DAG models, motivating the definition of the class of al-

lowable reparameterisation. The main result is a characterization of such a class.
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An illustration to the Gaussian case is then presented in detail. Section 4 intro-

duces the concept of reference conditioning which is then elaborated for Gaussian

DAG models in Section 5. Building on previous work by Roverato (2000) and

Consonni and Veronese (2001), see also Consonni, Veronese and Gutiérrez-Peña

(2000), the reference measure for Gaussian DAG models is found, relative to an

allowable parameterisation, which is especially convenient to work with. Sub-

sequently the reference conditioning approach to find compatible priors for the

parameters of DAG models is detailed. Fainally, Section 6 offers some concluding

remarks with a special view to future directions.

2 Compatible priors by means of conditioning

Consider the modelM parameterised by θ and let π be a prior density represent-

ing uncertainty about θ conditional on M. If M0 is a submodel obtained from

M by imposing a constraint on θ, say θ = θ0, then one way to derive a prior

distribution for θ0 is by conditioning the distribution for θ on the event {θ = θ0}.

Thus, the resulting distribution for θ0 has density π0(θ0) ∝ π(θ0).

This conditioning procedure may appear a natural way to construct “com-

patible” distributions; however, it is not invariant with respect to the specific

parameterisation chosen to describe the model. As a consequence, if the same

prior information provided by π is expressed with respect to a different param-

eterisation, say ψ = ψ(θ), then the distribution obtained by conditioning on

{ψ = ψ(θ0)} may provide prior information different from that conveyed by π0.

Dawid and Lauritzen (2000) gave an example of this phenomenon, known as the

Borel-Kolmogorov paradox, with respect to a bivariate normal model. Before

presenting such an example, we need some notation.

Let V = {1, . . . , v}; for A ⊆ V , let XA denote the random vector having

components Xi with i ∈ A. Suppose now that XV has a multivariate normal

distribution with expectation equal to zero and covariance matrix Σ = {σij}.

Instances of alternative parameterisations of this model are: the concentration

matrix Σ−1 = {σij}; the matrix P -to be interpreted as an upper-case Greek
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“rho”- with variances σii in the main diagonal and correlations ρij = σij/
√
σiiσjj

in the off-diagonal entries; the matrix R with elements σii in the main diagonal

and partial correlations ρij·V \{i,j} = −σij/
√
σiiσjj in the off-diagonal entries.

Recall that σii = 1/σii·V \{i}, where σii·V \{i} is the variance of the conditional

distribution of Xi given the remaining variables XV \{i} (see Whittaker, 1990

p.143).

Example 1 (Dawid and Lauritzen, 2000) LetM be a bivariate normal model

with zero mean and letM0 be the submodel with X1⊥⊥X2. This constraint can be

expressed in several alternative ways, depending on the parameterisation adopted

for the model. Dawid and Lauritzen (2000) considered the following cases (the

corresponding parameterisation is in square brackets):

(i) σ12 = 0 [Σ]

(ii) σ12 = 0 [Σ−1]

(iii) ρ12 = 0 [R]

(iv) β12 = 0 [(σ11, β12, σ22)]

where β12 = σ12/σ22. Let Σ have an inverse Wishart distribution, Σ ∼ IW (δ,A)

where δ is a positive constant and A = {aij} is a positive definite matrix. Here

we use the notation of Dawid (1981) so that Σ−1 ∼W (δ+1, A−1). In the param-

eterisation i), the parameter of the submodel is (σ11, σ22) and, by conditioning

the distribution of Σ on {σ12 = 0} one obtains

(i) σ11 ∼ a11/χ
2
δ+2, σ22 ∼ a22/χ

2
δ+2, independently

where χ2
g denotes a chi-square random variable with g degrees of freedom. How-

ever, different answers result from the application of the same procedure with

respect to the alternative parameterisations ii)-iv):

(ii) σ11 ∼ a11/χ
2
δ, σ22 ∼ a22/χ

2
δ, independently;

(iii) σ11 ∼ a11/χ
2
δ+1, σ22 ∼ a22/χ

2
δ+1, independently;

(iv) σ11 ∼ a11/χ
2
δ+2, σ22 ∼ a22/χ

2
δ, independently.
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Example 1 may be usefully reinterpreted in terms of graphical models. A

graphical model, see Lauritzen (1996) and Cowell et. al(1999) is a family of dis-

tributions for the vector XV satisfying a set of conditional independence relations

encoded by a graph. A graph is a pair (V,E) where V denotes the vertex set

and the edge set E is a subset of the V × V ordered pairs of distinct vertices.

We distinguish between undirected, i−−j, and directed edges j → i. A graph is

complete if all vertices are joined by a directed or an undirected edge.

A graph G = (V,E) with only undirected edges is itself called undirected and

is used to represent symmetric conditional associations between variables. The

distribution of XV is said to satisfy the pairwise Markov property with respect to

G if every missing edge (i, j) 6∈ E corresponds to the conditional independence of

Xi and Xj given the remaining variables; shortly Xi⊥⊥Xj |XV \{i,j} (see Cowell et

al., 1999 p.67). In the Gaussian case the absolute value of the partial correlation

coefficient ρij·V \{i,j} provides the strength of the association represented by the

edge (i, j) of G.

A directed acyclic graph, DAG, is a graph with only directed edges and no

cycles. If j → i, then j is said to be a parent of i and the set of all parents of i

is denoted as pa(i). The set {i} ∪ pa(i) is called the family of i and denoted by

fa(i). To emphasize that a graph is a DAG in the following we write D = (V,E).

It is always possible to identify a well-ordering (α1, α2, . . . , αv) of the vertices V

of a DAG such that, if two nodes are joined by an arrow, the edge points from

the vertex with lower position to the vertex with higher position in the ordering.

A DAG may not have a unique well-ordering (see Cowell et. al, 1999 p. 47). The

undirected version of a DAG D = (V,E) is the undirected graph D∼ = (V,E∼)

obtained by substituting arrows with undirected edges. Note that D∼ = (V,E∼)

along with any well-ordering of the vertices V fully identifies D = (V,E).

A DAG D = (V,E) is used to represent a recursive response structure between

the variables in XV such that, for i = 1, . . . , v, Xαi is a response to variables

Xα1 , . . . , Xαi−1 but explanatory to variables Xαi+1 , . . . , Xαv . The distribution of

XV is said to satisfy the directed Markov property with respect to D = (V,E) if,
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for i = 1, . . . , v, it holds that Xαi⊥⊥X{α1,...,αi−1}|X pa(αi) (see Cowell et al., 1999 p.

74). As a consequence, in the Gaussian case every missing edge in D corresponds

to a regression coefficient equal to zero.

A chain graph admits both undirected and directed edges, but no partially

directed cycles. The corresponding chain graph model is a generalisation of the

directed and undirected graphical model.

Two graphs are said to be Markov equivalent if they encode the same set of

conditional independence assertions (Frydenberg, 1990; Andersson et al. 1997).

Markov equivalence is an equivalence relation and we denote by [D] the set of

all DAGs Markov equivalent to D. Frydenberg (1990) provided necessary and

sufficient conditions for the Markov equivalence of chain graphs. Of special inter-

est is the relation existing between perfect DAGs and decomposable undirected

graphs; for the definition of perfect DAG and decomposable graph see Lauritzen

(1996, pp.7-8). Any perfect DAG D is Markov equivalent to its undirected ver-

sion D∼; moreover D∼ is decomposable (see Lauritzen, 1996, p.52). Conversely,

if G = (V,E) is a decomposable undirected graph, then there exists a perfect

DAG D Markov equivalent to G with D∼ = G (see Lauritzen, 1996, p.18).

In Example 1 modelMmay be described by any of the following three Markov

equivalent complete graphs: the undirected graph 1 •−−−−•2, the DAG with well-

ordering (2, 1), 1• ←− •2, and the DAG with well-ordering (1, 2), 1• −→ •2. The

submodelM0 corresponds to the graph 1 • •2.

2.1 Jeffreys conditioning

In order to obtain a conditioning procedure with the property of invariance with

respect to reparameterisations of the model, Dawid and Lauritzen (2000) intro-

duced the following generalization of the usual conditioning procedure.

Consider two baseline measures, ν and ν0, on M and M0 respectively. For

a distribution Π in M, the compatible distribution Π0 in M0 is such that the

density function of Π with respect to ν, dΠ/dν, and that of Π0 with respect to

ν0, dΠ0/dν0, are proportional. This method generalizes the usual conditioning
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because if ν is a probability measure and ν0 is obtained from ν by conditioning

on {θ = θ0}, then it gives the same answer as conditioning Π on {θ = θ0}.

Invariance with respect to reparameterisations is obtained by choosing mea-

sures ν and ν0 that are intrinsic to the models and independent of specific ways of

parameterising them. One possible choice is the Jeffreys measure and the result-

ing procedure was named by Dawid and Lauritzen (2000) Jeffreys conditioning.

The density of the Jeffreys measure with respect to Lebesgue measure is given

by j(θ) = |H(θ)|1/2, where |H(θ)| is the determinant of the Fisher information

matrix for θ.

If π is the density function of Π with respect to Lebesgue measure, then

the distribution for θ0 resulting from the application of Jeffreys conditioning has

density function with respect to Lebesgue measure

π0(θ0) ∝ π(θ0)
j0(θ0)
j(θ0)

. (1)

It is worth pointing out that if there exists a parameterisation, say ψ = ψ(θ),

such that the ratio of the Jeffreys measures for ψ under M and M0 is constant

for all ψ = ψ(θ0), then Jeffreys conditioning gives the same answer as usual

conditioning, with respect to such a parameterisation. In this case we say that

ψ is a parameterisation implicitly leading to Jeffreys conditioning for M and

M0. For instance, Dawid and Lauritzen (2000) showed that, for the problem in

Example 1, R is a parameterisation implicitly leading to Jeffreys conditioning;

such a result is generalised in Section 5.1.

3 DAG models and reparameterisations

Consider a DAG D = (V,E) with V = {1, . . . , v} and assume, without loss of

generality, that (v, v−1, . . . , 1) is a well-ordering of V . For each i ∈ V we specify

a familyMD
i of local conditional densities

p(xi|xpa(i), ηi), ηi ∈ Hi, (2)

with the local parameters ηi variation independent. Multiplying the conditional

densities (2) one obtains the familyMD :=MD
1 × · · · ×MD

v of distributions for
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XV = (X1, . . . , Xv) with joint density

p(x|η) =
v∏

i=1

p(xi|xpa(i), ηi), (3)

where η := (η1, . . . , ηv), with η ∈ H := H1 × · · · ×Hv.

While (3) specifies a distribution which is directed Markov with respect to any

D∗ ∈ [D], we take the view, as discussed in the Introduction, that the vertices of D

are arranged in a causal order, see also Cowell et al. (1999, p. 259), and assume

the absence of unmeasured confounders that alter the causal interpretation of

arrows; see Lauritzen and Richardson (2001) for a detailed discussion of this

point. In other words, we are assuming that the ordering of the variables can be

used reliably to make inference on the graphical structure. An important special

case of this situation is when (3) is the result of a structural assignment system,

as described in Lauritzen and Richardson (2001, eqn. 4). It is worth pointing

out that in this case the distribution of XV is causally Markov with respect to D

(Lauritzen, 2001, Theorem 2.20) and so the orientation of the arrows is crucial

for the interpretation of the model.

In the causal interpretation of DAG models, the local conditional families

MD
i s represent the primitive modules of the overall model MD and the param-

eter η acquires its meaning from its constituents ηis. Specifically, the partition

of η into v blocks, each being associated to a local family, is an integral part

of the parametric structure which must be preserved across reparameterisations.

The previous remark implies that a DAG model cannot be arbitrarily reparame-

terised; indeed, only those transformations of η capable of preserving its modular

structure will be deemed acceptable. To clarify the above point and eventually

reach a definition of allowable reparameterisation we proceed in steps. Consider

first a (smooth) one-to-one transformation of η, θ say, such that θ = (θ1, . . . , θv)

and θi is a bijection of ηi, for each i. Clearly this transformation is allowable,

since it preserves the modular structure of the DAG. Specifically, each component

θi is uniquely associated to the i-th conditional family, or, equivalently, to ηi. On

the other hand, a more general situation could be envisaged, namely one in which

θi is no longer a bijection of ηi, and yet θi can still be uniquely linked to ηi. This
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leads us to the notion of unambiguous association.

Definition 1 Consider the family MD with density (3). Let θ = θ(η) be a

bijection of η = (η1, . . . , ηv) and let θi be a subvector of θ with dim(ηi)=dim(θi).

We say that θi is Unambiguously Associated (UA) to MD
i if either

θi = θi(ηi)

or, for an integer r = 1, . . . , v − 1 and distinct indexes j1, . . . , jr,

θi = θi(ηi, ηj1 , . . . , ηjr),

and there exist distinct subvectors θj1 , . . . , θjr of θ with θjk
UA to MD

jk
, k =

1, . . . , r.

The above is a recursive but effective definition.

Remark In Definition 1 the function θi = θi(ηi) is assumed to be one-to-

one; furthermore, for fixed (ηj1 , . . . , ηjr), θi = θi(ηi, ηj1 , . . . , ηjr) is a one-to-one

function of ηi.

Definition 2 θ is an allowable parameterisation of MD with density in (3) if it

admits a grouping θ1, . . . , θv such that θi is UA to MD
i , for all i = 1, . . . , v.

As an immediate consequence of Definition 2 we have the following.

Proposition 1 θ is an allowable parameterisation of MD with density in (3) if

and only if there exist a grouping θ = (θ1, . . . , θv), with dim(θi) = dim(ηi), and

an ordering (j1, . . . , jv) of the indexes (1, . . . , v) such that

θj1 = θj1(ηj1)

θj2 = θj2(ηj2 , ηj1)
...

...

θjk
= θjk

(ηjk
, . . . , ηj1) (4)

...
...

θjv = θjv(ηjv , . . . , ηj1).
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Remark To illustrate the meaning of Proposition 1, suppose v = 2 and assume

that for any block grouping (θ1, θ2) of θ, with dim(θ1) = dim(η1), θ1 and θ2

are each (nontrivial) function both of η1 and η2 Then θ is not an allowable

transformation of η because it destroys the intrinsic asymmetry of the underlying

DAG model parameterised by η.

Example 2 Consider two local conditional Gaussian families corresponding to

the DAG D 1• ←− •2.

X1|X2 = x2, η1 ∼ N(β12x2, σ11·2),

X2|η2 ∼ N(0, σ22),

where η1 = (β12, σ11·2), η2 = σ22. As in Example 1, the joint distribution of

(X1, X2) is bivariate normal with zero mean.

i) Consider the transformation η 7→ φ where φ = (φ11, φ12, φ22) with

φ11(η1) =
1

√
σ11·2

, φ12(η1) = − β12√
σ11·2

and φ22(η2) =
1
√
σ22

.

Clearly η 7→ φ is an allowable transformation, since φ1 = (φ11, φ12) is a bijection

of η1 and φ2 = φ22 is a bijection of η2.

ii) Consider the transformation from η to the local conditional parameters in the

reverse DAG D∗ 1• −→ •2, namely η∗ = (β21, σ22·1, σ11). It can be verified that

σ22·1 =
σ11·2σ22

β2
12σ22 + σ11·2

, β21 =
β12σ22

β2
12σ22 + σ11·2

and σ11 = β2
12σ22 + σ11·2.

Hence, this transformation is not allowable. For example, letting θ1(η) = (β21, σ22·1)

and θ2 = σ11, one immediately realises that θ1 and θ2 are each simultaneously a

function of both η1 and η2. Clearly no other grouping would overcome this dif-

ficulty. However this is not surprising, since the reverse DAG precisely destroys

the modular structure, which includes the direction of the arrow, of the original

DAG model. Notice that D∗ is Markov equivalent to D. Thus the transformation

between the local conditional parameters of two Markov equivalent DAGs is in

general not allowable.

iii) Consider the transformation η 7→ Σ. Because of symmetry, only the upper
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diagonal elements, say, including the diagonal itself, need be considered. Accord-

ingly, let θ1(η) = (σ11, σ12) and θ2(η) = σ22 denote, respectively, the first and

second row of Σ excluding the below-diagonal elements. This transformation is

allowable. Indeed θ2 is trivially a function of η2; as a consequence θ1, which is a

function of (η1, η2), is UA to η1, and thus the transformation η 7→ Σ is allowable.

iv) It is straightforward that we still have an allowable transformation if in the

previous point Σ is replaced by P so that θ(η) = (σ11, ρ12, σ22).

v) Consider now the transformation η 7→ Σ−1 and let θ1(η) = (σ11, σ12) and

θ2(η) = σ22. By recalling that β12 = −σ12/σ11 = σ12/σ22 (see Cox and Wer-

muth, 1996, p.69) we can write

θ1(η1) = (1/σ11·2,−β12/σ11·2) and θ2(η) =
β2

12σ22 + σ11·2
σ11·2σ22

. (5)

Consequently, θ1(η1) and θ2(η) are UA to η1 and η2 respectively and the trans-

formation η 7→ Σ−1 is allowable.

vi) In parallel with case iv) above, we now consider the transformation η 7→ R =

{σ11, ρ12, σ
22}. Applying equations (5) to ρ12 = −σ12/

√
σ11σ22, it can be easily

checked that no grouping of the elements of R can satisfy (4), so that the trans-

formation is not allowable because of Proposition 1.

Example 2 is interesting because it clarifies the nature of an allowable param-

eterisation. Case i) and ii) are instances of “asymmetric” reparameterisations,

in the sense that they depend on some well-ordering of the vertices, - i) being

allowable, because it is faithful to the original structure, and ii) not allowable for

the opposite reason. Cases iii) to vi) are instances of “symmetric” parameterisa-

tions. Σ is itself allowable, possibly contrary to our intuition. Upon reflection,

however, this appears to be sensible, because ηi is a function of σij , j ∈ fa(i) only.

Thus, rearranging the elements of Σ in a way consistent with a well-ordering of

the vertices of D allows Σ to incorporate the required structural information to

become allowable. Note that, because this is a “symmetric” parameterisation of

the model, it is allowable to bothMD andMD∗ . This structure is not destroyed
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when σ12 is replaced by ρ12. Of special interest are cases v) and vi). Σ−1 and

R play a key role in parameterising undirected Gaussian graphical models: the

former is the canonical parameter of the model and the latter provides a direct

measure of the interactions between variables. However Σ−1 is allowable to both

MD andMD∗ but R is neither allowable forMD nor forMD∗ . Interestingly R is

the parameterisation implicitly leading to Jeffreys conditioning for this problem.

4 Reference conditioning

According to the theory developed in the previous section, a procedure for the

construction of compatible priors for DAG models should be invariant with re-

spect to the class of allowable parameterisations for the model. This can be

obtained by applying Dawid and Lauritzen’s (2000) conditioning method with

respect to two measures, ν and ν0, each being intrinsic to the model and invari-

ant within the class of allowable parameterisations. Jeffreys measure can clearly

be used, however it may lead to inconsistent results as illustrated in the following

example.

Example 3 LetMD :=MD
1 ×MD

2 be as in Example 2 so that η = (η1, η2) with

η1 = (σ11·2, β12) and η2 = σ22. The submodelMD0 :=MD0
1 ×M

D0
2 with X1⊥⊥X2

differs from MD only with respect to the first conditional density, that is MD
2 ≡

MD0
2 . Assume, for simplicity, η1⊥⊥η2 underMD. In the causal interpretation of

the model, the association represented by the arrow 1 ←− 2 is truly asymmetric

in the sense that no feedback relationship is present. It follows that prior beliefs

on η2 conditional on MD must be the same as prior beliefs on η2 conditional

on MD
2 as well as on MD0

2 . Accordingly, the prior distribution for η2 should

be the same under MD and MD0 (this property is named prior modularity by

Heckerman et al., 1995) and the Bayes factor to compare MD
2 and MD0

2 should

be identically one. In Example 1 the prior distribution for η under MD is such

that η1⊥⊥η2 with η2 ∼ a22/χ
2
δ (see Dawid and Lauritzen, 2000); nevertheless the

application of Jeffreys conditioning toMD andMD0 modifies the distribution of
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η2 to a22/χ
2
δ+1, see point iii) of the same example. In this case the Bayes factor

to compare MD
2 and MD0

2 would be in favour of one of the two models, thereby

reflecting prior discrepancies merely due to the elicitation procedure rather than

actual prior belief.

The unsatisfactory results deriving from the application of Jeffreys condition-

ing in DAG models can be regarded as a consequence of the fact that the prior

information on variable well-ordering, which in turn gives rise to the grouping

of η into (η1, . . . , ηv), does not enter in the definition of the procedure. This

suggests to revert to a conditioning approach whose baseline measure takes into

explicit consideration the above parameter grouping, and this naturally leads to

the notion of ordered group reference prior.

Reference priors were introduced by Bernardo (1979) and generalised to mul-

tiparameter problems by Berger and Bernardo (1992), see also Bernardo and

Smith (1994) for the definition of reference priors and a description of the pro-

cedure to derive them. Here we wish to emphasise that a reference prior for a

parameter θ is derived with respect to an ordered grouping of the elements of

θ ∈ Θ. The algorithm for constructing reference priors typically requires to spec-

ify a nested sequence of compact subsets of Θ whose union is Θ itself. Such an

algorithm is greatly simplified if the posterior distribution of θ is asymptotically

normal, the so-called “regular” case. Furthermore if the group-components of θ

are variation-independent (suggesting to choose cartesian products of subspaces

for the nested sequence above) and the Fisher information matrix is block di-

agonal, as in the case of the modular components of the η parameterisation for

DAG models, then the ordering of the grouping is irrelevant. Accordingly we

shall employ the term group reference measure for η and denote its density with

respect to Lebesgue measure by r(η). Datta and Ghosh (1996) showed that such

a measure is invariant with respect to the class of reparameterisations in (4);

that is the group reference measure for η is invariant within the class of allowable

parameterisations forMD.
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Along with Jeffreys conditioning, we can now define a new approach, named

reference conditioning, by imposing that ν and ν0 be group reference measures.

LetMD be a DAG model with D = (V,E) and parameter η and letMD0 be a

submodel with D0 = (V,E0), E0 ⊂ E, and parameter η0. If π is the density with

respect to Lebesgue measure of the prior distribution Π under MD for η, then

the distribution for η0 resulting from the application of reference conditioning

has density function with respect to Lebesgue measure

π0(η0) ∝ π(η0)
r0(η0)
r(η0)

. (6)

Remark Reference conditioning may be defined with respect to any allowable

parameterisation θ ofMD. However, if the blocks of θ are not variation indepen-

dent the reference measure has to be derived with respect to the ordered grouping

(θj1 , . . . θjv) of Proposition 1. For instance, if in Example 2 the parameterisation

Σ is used, then the reference measure has to be computed with respect to the

ordered groups θ1 = σ22 and θ2 = (σ11, σ12) forMD, but with respect to ordered

groups θ1 = σ11 and θ2 = (σ22, σ12) forMD∗ .

Suppose there exists an allowable parameterisation θ = θ(η) such that the

ratio of the reference measures for θ underMD andMD0 is constant for all θ =

θ(η0); then reference conditioning gives the same answer as usual conditioning.

In this case we say that θ is a parameterisation implicitly leading to reference

conditioning forMD andMD0 .

We close this section by noticing that if no well-ordering of the vertices is

specified, as for example in undirected graphical models, then the model parame-

ter can be considered as a single block. Accordingly the group reference measure

turns out to be the Jeffreys measure: thus Jeffreys conditioning becomes a special

case of reference conditioning.

5 Gaussian DAG models

We now specialise the general theory described above with respect to the impor-

tant class of Gaussian DAG models. A Gaussian DAG model is specified through
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(3), wherein each local conditional -or regression- family is Gaussian. The i-th

family, i = 1, . . . , v, is typically parameterised by

ηi = (βi, σii· pa(i)), (7)

with βi = (βij , j ∈ pa(i)) representing the regression coefficients. Clearly the

local parameters ηis are variation independent. The rest of this paper is entirely

devoted to this case, so that in the following MD
i will denote the i-th local re-

gression family, parameterised by (7), andMD the overall Gaussian DAG model.

We remark that any allowable parameterisation θi = (θij ; j ∈ fa(i)), i = 1, . . . , v,

such that θi parameterises MD
i and the θis are variation independent, would be

equivalent for the development of the theory in this paper. One such parameter-

isation, which plays a key role here, is given by φ = (φ1, . . . , φv) with

φii =
1

√
σii· pa(i)

and φij = − βij
√
σii· pa(i)

, j ∈ pa(i), (8)

with the understanding that (v, v − 1, . . . , 1) is a well-ordering of the variables

so that pa(i) ⊆ {i + 1, . . . , v}. If Φ denotes the upper triangular matrix with

entries φij and zero elsewhere, then ΦT Φ = Σ−1, which represents the Cholesky

decomposition of Σ−1 (see Wermuth, 1980; Wermuth and Cox, 2000 and Rover-

ato, 2000, 2001). For an interpretation of the elements φij notice that βij and

βrj represent the unit-change effect of Xj on variables Xi and Xr respectively.

The standardised versions φij and φrj allow a direct comparison of these effects

since they are expressed on the same scale.

With reference to the bivariate case, Example 2 has already provided instances

of allowable, and not allowable, parameterisations. These results are extended

and generalised below.

Consider the class [D] of DAGs Markov equivalent to D. In this case MD is

distribution equivalent to MD∗ , for all D∗ ∈ [D]. Furthermore, for all D∗ ∈ [D],

Σ, Σ−1, P and R are all bijective transformations of the parameterisation η∗ of

MD∗ .

Remark When D is not complete, Σ has free entries σij with j ∈ fa(i), while

all the remaining entries are functions of these. The same is true for Σ−1, P
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and R.

Proposition 2 Let MD be a Gaussian DAG model with DAG D = (V,E). Σ,

Σ−1, and P belong to the class of allowable parameterisations of everyMD∗ such

that D∗ ∈ [D].

Proof. See the Appendix. 2

On the other hand, Example 2 makes clear that in general the matrix R does not

belong to the class of allowable parameterisations of any MD∗ with D∗ ∈ [D],

and that for all D∗ ∈ [D]\{D}, the standard parameterisation η∗ is not allowable

for MD. As a consequence, starting from two Markov equivalent DAG models

with the same parameter prior distribution, the reference conditioning approach

may lead to different compatible priors for the parameter of a common submodel.

5.1 Reference conditioning

For Gaussian DAG models the method of reference conditioning is easily imple-

mentable using the allowable parameterisation φ described in (8).

For a complete DAG model the Fisher information as well as ordered group

reference prior for φ can be easily deduced from that of Consonni and Veronese

(2001). These results can be extended to an arbitrary DAG model as follows.

Theorem 3 LetMD be a Gaussian DAG model with DAG D = (V,E). Relative

to the parameterisation φ described in (8):

i) the Fisher information is block-diagonal with the i-th block given by

Hii(φ) = Ψi

 2 0

0 I

 ΨiT ,

where Ψi is the unique upper triangular matrix with positive diagonal such

that Σ fa(i), fa(i) = Ψi(Ψi)T and I is the identity matrix with dimension equal

to the cardinality of the set pa(i).
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ii) The group reference measure for the parameterisation φ has density with

respect to Lebesgue measure

r(φ) =
v∏

i=1

1
φii
.

Proof. See the Appendix. 2

As an immediate consequence of Theorem 3 we obtain.

Corollary 4 Let MD be a Gaussian DAG model with D = (V,E) and MD0 a

submodel with D0 = (V,E0) and E0 ⊂ E. Then φ is a parameterisation implicitly

leading to reference conditioning for MD and MD0.

Proof. We have to prove that r0(φ0)/r(φ0) is constant for all φ0, and this is

obviously true because

r0(φ0)
r(φ0)

∝
∏v

i=1 φ0 ii∏v
i=1 φ0 ii

= 1.

2

By Corollary 4, reference conditioning can be straightforwardly applied within the

φ-parameterisation by simply conditioning on the event {φij = 0; (i, j) ∈ E\E0}.

In DAG modelling it is common practice to specify prior distributions which

satisfy the property of global parameter independence, see Spiegelhalter and Lau-

ritzen (1990). In our context this amounts to assuming that the blocks φ1, . . . , φv

of φ are mutually stochastically independent, so that reference conditioning can

be performed separately for each block φi. Trivially, the resulting compatible dis-

tribution for the parameter of a submodel will also satisfy the global parameter

independence property. Moreover, if a local regressionMD
i ofMD is unchanged

in the submodel, then reference conditioning leaves the corresponding parameter

prior also unchanged, so that prior modularity, see Heckerman et al. (1995), is

automatically satisfied.

The inverse Wishart distribution represents the most used prior distribution

for the parameter Σ of a complete Gaussian DAG model. In this case the distri-

bution of φ is easily derived and reference conditioning can be routinely applied
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using Corollary 4, thereby providing a practical method for assigning parameter

priors to candidate DAG models via a small number of direct assessments. A

related but different procedure is described in Geiger and Heckerman (1999) for

DAG models having no causal interpretation.

Example 4 For the problem in Example 2 let Σ ∼ IW (δ,A) as in Example 1.

It can be easily checked from standard result for the Wishart distribution (see

Muirhead, 1982, Theorem 3.2.10) that (φ11, φ12)⊥⊥φ22 and

φ2
11 ∼ χ2

δ+1/a11·2

φ12|φ11 ∼ N
(
−φ11a12/a22, a

−1
22

)
φ2

22 ∼ χ2
δ/a22

where a11·2 = a11 − a2
12/a22. Applying reference conditioning, i.e. conditioning

on {φ12 = 0}, one obtains

σ11 ∼ a11/χ
2
δ+1, σ22 ∼ a22/χ

2
δ, independently

which is different from any of the results obtained in Example 1. In particular,

unlike the result iii) arising from Jeffreys conditioning, the distribution of σ22 =

1/φ2
22 is the same under the two models.

5.2 Undirected Gaussian graphical models

For an undirected graph G with vertex set V , we denote by MG the Gaussian

graphical model with graph G, that is the family of v-dimensional Gaussian dis-

tributions, with zero mean, satisfying the pairwise Markov property with respect

to G (Dempster, 1972; Wermuth, 1976). If D and D0 are perfect DAGs then

G = D∼ and G0 = D∼0 are decomposable undirected graphs. Furthermore G

and D∼, as well as G0 and D∼0 , are Markov equivalent, so that MD ≡ MG and

MD0 ≡ MG0 , and thus the only difference between the two types of models is

that in the directed case vertex ordering is of relevance. When no well-ordering is

specified, as in undirected graphical models, Jeffreys conditioning appears more
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natural, since no constraint on the set of allowable parameterisations seems sen-

sible. As a consequence it is of some interest to generalise Example 1 and see

which is the corresponding implicit parameterisation. The following Proposition

provides a partial answer to this problem.

Proposition 5 Let G be a complete graph and G0 the graph obtained from G by

removing exactly one edge. Consider the comparison of the undirected Gaussian

graphical models MG and MG0. Then R is a parameterisation implicitly leading

to Jeffreys conditioning.

Proof. See the Appendix. 2

6 Conclusions

We argue in this paper that (causal) DAG models encapsulate a modular struc-

ture given by the local conditional distributions of nodes given parents together

with a well-ordering of the variables. As a consequence, unlike other statistical

models, DAG models cannot be arbitrarily reparameterised; indeed we define

a class of allowable parameter transformations, which essentially preserves the

original modular structure. Building on work of Dawid and Lauritzen (2000), we

propose a new method to construct compatible prior distributions for the param-

eters of DAG models, which we name reference conditioning. This differs from

Jeffreys conditioning, since the baseline measure is provided by an order-invariant

group reference prior. Our method is more general than Jeffreys conditioning and

reduces to it when no restriction is imposed on the set of allowable parameter

transformations, save for the usual smoothness assumptions, as for example with

undirected graphical models. An interesting byproduct of our research is the

identification of parameterisations implicitly leading to reference conditioning.

We discuss the issue in detail for Gaussian DAG models. Using the parameter-

isation induced by the Cholesky decomposition of the concentration matrix, we

show that reference conditioning can be performed through usual conditioning
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simply setting to zero the components of the parameter corresponding to arrows

that are absent in the underlying DAG.

Our approach only requires the specification of a prior distribution for the

parameter of the most complex (possibly complete) model; prior distributions

for the parameters of each submodel are then determined by usual conditioning

as described above. In particular, for Gaussian DAG models, we show that if

the starting prior satisfies the property of global parameter independence, this

property propagates through reference conditioning, thus facilitating prior-to-

posterior inference under complete sampling. Furthermore parameter modularity

is automatically satisfied.

A natural extension of our methodology is to discrete Bayesian networks,

followed by chain graphs, and possibly mixed graphical models, containing both

discrete and continuous nodes. We hope to report on these developments in the

near future.
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Appendix: Proofs

Proof of Proposition 2

Let D∗ be any DAG in the set of Markov equivalent DAGs [D] and let η∗ denote

the standard parameterisation ofMD∗ . We denote by φ∗ the alternative param-

eterisation of MD∗ defined by (8) and by Φ∗ = {φ∗ij} the matrix obtained from

φ∗ as described in Section 5, so that Σ∗−1 = Φ∗T Φ∗T . It is worth pointing out

that, although Σ−1 is the same for all the DAGs in [D], by deriving it from Φ∗

we need to specify some well-ordering (α1, . . . , αv) of the vertices of D∗. As a

consequence, the first row and column of Σ will correspond to Xαv , the second

to Xαv−1 and so on. Two Markov equivalent DAGs differ for the well-ordering
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of their vertex sets, and we add an asterisk to Σ−1 when row and column well-

ordering is of relevance for the operation being performed, and similarly for Σ

and P .

We first show that Σ−1 is allowable for MD∗ . Consider the group ordering

of the unconstrained entries of Σ−1 given by (σ∗1, . . . , σ∗v) with σ∗i = (σij , j ∈

fa∗(i)) where fa∗(i) denotes the family of i with respect to D∗. Note that σ∗i is

made up of the unconstrained entries of the i-th row of Σ∗−1. It can be easily

checked that the first row of Σ∗−1 is a function of the first row of Φ∗, namely

σ∗1 = σ∗1(φ∗1), the second row of Σ∗−1 is a function of the first two rows of Φ∗,

σ∗2 = σ∗2(φ∗1, φ
∗
2), and so on. Thus, by Proposition 1, Σ−1 is allowable forMD∗ .

We proceed in a similar way for Σ. Consider the grouping (σ∗1, . . . , σ
∗
v) with

σ∗i = (σij , j ∈ fa∗(i)) so that σ∗i is made up of the unconstrained entries of the

i-th row of Σ∗. Recalling that, for all i = 1, . . . , v, if B = {i, i + 1, . . . , v} then

Σ∗
BB =

(
Φ∗T

BBΦ∗
BB

)−1
(see Roverato, 2000) we obtain that σ∗i is a function of

the last i rows of Φ∗, that is σ∗i = σ∗i (φ
∗
i , φ

∗
i+1, . . . , φ

∗
v). As a consequence Σ is

allowable forMD∗ . To show that also P is allowable forMD∗ we put (ρ∗1, . . . , ρ
∗
v)

with ρ∗i = (σii, ρij ; j ∈ pa∗(i)). It is easy to check that ρ∗i = ρ∗i (σ
∗
i , σ

∗
i+1, . . . , σ

∗
v)

for i = 1, . . . , v, so that ρ∗i is itself a function of (φ∗i , φ
∗
i+1, . . . , φ

∗
v) and therefore

P is allowable forMD∗ by Proposition 1.

Proof of Theorem 3

i) The parameter φ is made up of variation independent groups (φ1, . . . , φv) and

it is clear from (3) that the Fisher information matrix for φ is block-diagonal with

i-th block given by

Hii(φ) = −E
{
∂2 log p(Xi|X pa(i), φi)

∂φT
i ∂φi

}
, (9)

where X fa(i) ∼ N(0,Σ fa(i), fa(i)) and p(·|·) denotes density function of the con-

ditional distribution of Xi given X pa(i). Therefore, the computation of the

i-th block of H(φ) only involves the distribution of X fa(i). More precisely,

p(xi|xpa(i), φi) in (9) is the density of the first local regression of any complete

23



DAG model for X fa(i) with Xi as pure response variable and Hii(φ) can be com-

puted locally with respect to such a complete DAG model.

Let Di = ( fa(i), Ei) be a complete DAG such that i is the first vertex, that

is the set of parents of i in Di is pa(i), and assume that the rows and columns of

Σ−1
fa(i), fa(i) are ordered according to the vertex ordering. In this way, the upper-

triangular matrix Φi obtained from the Cholesky decomposition Σ−1
fa(i), fa(i) =

(Φi)T Φi provides the φ-parameterisation of MDi
and the first row of Φi is φi as

in (9).

We first give the Fisher information matrix for the inverse variance,H(Σ−1
fa(i), fa(i)),

and derive the Fisher information for Φi by using the relationH(Φi) = JTH(Σ−1)J

where J is the Jacobian of the transformation from Σ−1
fa(i), fa(i) to Φi. InH(Σ−1

fa(i), fa(i))

we take the distinct elements of Σ−1
fa(i), fa(i) ordered according to the rows of

Σ−1
fa(i), fa(i) and similarly for H(Φi). Thereby, H(Φi) is block-diagonal and its first

block is Hii(φ). We make use of the theory related to the duplication matrix Dp,

the commutation matrix Kpp and the elimination matrix Lp, where p = | fa(i)|.

We refer to Lütkepohl (1996) for the definition of such matrices and a description

of their properties.

The Fisher information matrix for Σ−1
fa(i), fa(i) has form

H
(
Σ−1

fa(i), fa(i)

)
=

1
2
DT

p

(
Σ fa(i), fa(i) ⊗ Σ fa(i), fa(i)

)
Dp

where ⊗ denotes the Kronecker product (see Gutierrez-Peña and Smith, 1995,

equation (18)), and can be factorised as

H
(
Σ−1

fa(i), fa(i)

)
=

1
2
DT

p (ΨiΨiT ⊗ΨiΨiT )Dp

=
1
2
DT

p

[
(Ψi ⊗Ψi)(ΨiT ⊗ΨiT )

]
Dp

=
1
2

[
DT

p (Ψi ⊗Ψi)
] [
DT

p (Ψi ⊗Ψi)
]T

where Ψi = (Φi)−1.

The Jacobian J of the transformation Σ−1
fa(i), fa(i) → Φi is given in Lütkepohl

(1996, §10.5.4 (3)) and has form

J = 2D+
p (ΦiT ⊗ Ip)LT

p

24



where Ip is the p × p identity matrix and D+
p = (DT

p Dp)−1DT
p . Making use of

some known matrix algebra results (see Lütkepohl, 1996, §2.4 (5), §9.2.1 (16),

§9.2.2 (2) and §9.5.2 (1)) we have that

JT
[
DT

p (Ψi ⊗Ψi)
]

=
[
2D+

p (ΦiT ⊗ Ip)LT
p

]T [
DT

p (Ψi ⊗Ψi)
]

= Lp(Φi ⊗ Ip)(Ip2 +Kpp)(Ψi ⊗Ψi)

= Lp(Φi ⊗ Ip)(Ψi ⊗Ψi)(Ip2 +Kpp)

= Lp(ΦiΨi ⊗ IpΨi)(Ip2 +Kpp)

= Lp(Ip ⊗Ψi)(Ip2 +Kpp)

= 2Lp(Ip ⊗Ψi)DpD
+
p .

Hence, we can write

H(Φi) = JTH
(
Σ−1

fa(i), fa(i)

)
J

= M
(
2D+

p D
+T
p

)
MT

where M = Lp(Ip ⊗Ψi)Dp. It can be checked that M is block-diagonal and that

its first block, corresponding to φi, is Ψi. The matrix D+
p D

+T
p is described in

Lütkepohl (1996 §9.5.1 (11)) and it is such that the submatrix of H(Φi) corre-

sponding to φi can be written as

Hii(φ) = Ψi

 2 0

0 Ip−1

 ΨiT . (10)

ii) To construct the reference prior on φ = (φ1, . . . , φv) we make use of a result

in Datta and Ghosh (1995). Assume that the Fisher information matrix for φ is

block-diagonal, H(φ) = diag{H11(φ),H22(φ), . . . ,Hvv(φ)}, with Hii(φ) a square

submatrix of dimension dim(φi). If the determinant of Hii(φ) can be factorised

as

|Hii(φ)| = ai(φi)bi(φ1, . . . , φi−1, φi+1, . . . , φv) i = 1, . . . , v (11)

for some positive functions ai(·) and bi(·), then the ordered group reference prior

relative for φ does not depend on the order of the v groups and has density with

respect to Lebesgue measure r(φ) ∝
∏v

i=1 ai(φi)1/2.
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We now prove that the determinant of Hii(φ) in (10) can be factorised as in

(11) with ai(φi) = 1/φ2
ii so that

r(φ) ∝
v∏

i=1

ai(φi)1/2 =
v∏

i=1

1
φii
. (12)

Now partition Ψi and Φi as

Ψi =

 ψi
11 Ψi

pa(i)

0 Ψi
pa(i), pa(i)

 and Φi =

 φi
11 Φi

pa(i)

0 Φi
pa(i), pa(i).


The determinant of Hii(φ) can now be written as

|Hii(φ)| = 2(ψi
11)

2|Ψi
pa(i), pa(i)|

2,

and we show that Ψi
pa(i), pa(i) is a function of (φi+1, . . . , φv) whereas ψi

11 is a

function of φi.

If we put pr(i) = {i + 1, . . . , v}, then pa(i) ⊆ pr(i) and Σ pa(i), pa(i) =

Ψi
pa(i), pa(i)(Ψ

i
pa(i), pa(i))

T is a submatrix of Σ pr(i), pr(i). Hence Ψi
pa(i), pa(i) is a

function of Σ pr(i), pr(i). Let Φ = {φij} denote the matrix, defined in Section 5,

made up of the elements of φ so that Σ−1 = ΦT Φ. It is not difficult to check that,

because of the upper-triangular form of Φ, Σ−1
pr(i), pr(i) = ΦT

pr(i), pr(i)Φ pr(i), pr(i)

for all i = 1, . . . , v (see also Roverato, 2000). Thus Σ pr(i), pr(i) is a function of

(φi+1, . . . , φv) and the same is true for Ψi
pa(i), pa(i).

Because of the upper-triangular form of Ψi = (Φi)−1 it holds that ψi
11 = 1/φi

11.

By standard results on the multivariate normal distribution (see Whittaker, 1990

p.143) (φi
11)

2 =
{
Σ−1

fa(i), fa(i)

}
11

= 1/σii· pa(i). Since, by (8), φii = 1/√σii· pa(i), it

turns out that φi
11 = φii and ψi

11 = 1/φii.

We can conclude that, with respect to (11), we can put ai(φi) = 1/φ2
ii and

bi(φi+1, . . . , φv) = |Ψi
pa(i), pa(i)|

2 from which (12) follows.

Proof of Proposition 5

Let G1 = (V,E1) be a complete graph and G0 = (V,E0) the graph obtained from

G1 by removing edge (r, s). Moreover, let j1(R1) = |H1(R1)|1/2 and j0(R0) =
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|H0(R0)|1/2 be the densities of the Jeffrey measures for the parameters R1 ofMG1

and R0 ofMG0 respectively. We have to show that j0(R0)/j1(R0), or equivalently

|H0(R0)|/|H1(R0)|, is constant for all R0.

The Fisher information matrix for the parameter R of the Gaussian graphical

model MG with arbitrary undirected graph G = (V,E), can be derived from

the Fisher information matrix for the parameter Σ−1 = {σij} of the model by

using the relation H(R) = JTH(Σ−1)J where J is the Jacobian matrix of the

transformation from Σ−1 to R. Consequently, |H(R)| ∝ |J |2|H(Σ−1)|.

We first consider |J |. If we order the distinct nonzero entries of Σ−1 by taking

first the diagonal elements and then the off-diagonal elements, and similarly for

R, the Jacobian matrix J = ∂
∂RΣ−1 is triangular and its determinant is the

product of the diagonal elements. Since for i = 1, . . . , v {Σ−1}ii = {R}ii and

for (i, j) ∈ E, {Σ−1}ij = −ρij·V \{i,j}
√
σiiσjj , the diagonal elements of J are

∂
∂{R}ii

σii = 1 for i = 1, . . . , v and ∂
∂{R}ij

σij = −
√
σiiσjj for (i, j) ∈ E. Therefore,

|J |2 =
∏

(i,j)∈E σ
iiσjj .

The graph G0 has two cliques, Cr = V \{r} and Cs = V \{s}, and one separa-

tor, S = V \{r, s}, and the determinants of H1(Σ−1
1 ) and H0(Σ−1

0 ) are

|H1(Σ−1
1 )| ∝ |Σ1|v+1 and |H0(Σ−1

0 )| ∝ |ΣCrCr |v|ΣCsCs |v

|ΣSS |v−1

respectively (Roverato and Whittaker, 1998).

Recalling that |Σ0| = |ΣCrCr ||ΣCsCs ||ΣSS |−1 (see Lauritzen, 1996 p.145),

|ΣCrCr | = σrr·S |ΣSS | and |ΣCsCs | = σss·S |ΣSS | (see Lauritzen, 1996 equation

(B.1)) and that σrr·S = 1/σrr
0 and σss·S = 1/σss

0 we obtain

|H0(R0)|
|H1(R0)|

∝
∏

(i,j)∈E0
σii

0 σ
jj
0∏

(i,j)∈E1
σii

0 σ
jj
0

× |ΣSS |2

|ΣCrCr ||ΣCsCs |

=
1

σrr
0 σ

ss
0

× 1
σrr·Sσss·S

= 1

and the proof is complete.
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