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ABSTRACT 
 
The aim of this paper is to price an option, in a one-period binomial model, written on a stock 

whose possible jumps are opaque to the investors. The opacity is captured by the use of fuzzy sets. 

The pricing methodology is still based on a risk neutral valuation approach, whereby weighted 

intervals of risk neutral probabilities, are used. These intervals of probabilities arise because of the 

uncertainty on the magnitude of the two possible states up and down of the binomial tree, even if 

the real probabilities of the stock price jumps are crisp and known in advance. 

The idea of using intervals of risk neutral probabilities instead of a point estimate goes back to the 

Dempster and Shafer theory of evidence that is based upon two types of nonadditive measures: 

belief and plausibility measures. Since belief measures are always smaller than or equal to the 

corresponding plausibility measures, they may be seen as lower and upper probabilities 

respectively. Computing the expected value of the call under the risk neutral probabilities results in 

an expected value interval, within which we do not know what is the most likely price. 

Our methodology is able to overcome this limit. Using weighted intervals of probabilities, i.e. 

possibility distributions on the risk neutral probabilities, we find a weighted expected value interval 

for the call price and thus we are able to determine a “most likely” value of the call within the 

interval.  
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1. INTRODUCTION 

 

The additivity property of classical probability measure is too restrictive in some application 

contexts, such as finance, where risk is replaced by uncertainty. Additivity works well under error 

free conditions, but it doesn’t seem appropriate for real, phisical measurements, where errors, the 

presence of non-repeatable experiments or the need of subjective judgements complicates the 

idealized setting. Information ambiguity leaves room to grey areas in which is impossible to give 

precise probability estimates. Unless using additional assumptions, classical probability theory is 

incapable of accounting for this type of uncertainty. 

Sometimes reliable estimates of the risk neutral probabilities involved are hard to come by. When it 

is impossible to assess complete probability distributions, one can try to bound the acceptable 

probabilities of events, working with intervals rather than precise point estimates. 

This is the essence of the Dempster and Shafer theory of evidence that is based upon two types of 

nonadditive measures: belief and plausibility measures. These measures are obtained by replacing 

the additivity requirement by superadditivity or subadditivity respectively. The dual relationship 

between the two types of measures ensures that given a measure of either of the two types, it 

induces a unique measure of the other type. Since belief measures are always smaller than or equal 

to the corresponding plausibility measures, they may be seen as lower and upper probabilities 

respectively. Computing the expected value of the call under the risk neutral probabilities results in 

an expected value interval, within which we do not know what is the most likely price. 

In this paper we use weighted intervals of probabilities, i.e. possibility distributions on the risk 

neutral probabilities, obtaining a weighted expected value interval and thus a “most likely” value of 

the call within the interval. We price a call option, written on an underlying in a simple one period 

binomial model. The pricing methodology is based on the no-arbitrage principle. 

The purpose of this paper is to trace back the necessity of using an interval of probabilities, to the 

opacity of the two possible states up and down of the binomial tree. In our setting the risk neutral 

probabilities interval arise from the possibility distributions given on each of the two possible 

values of the asset. 

The plan of the paper is the following. In section 2 we describe the opacity in the two possible 

jumps by the use of fuzzy triangular numbers. In section 3 we derive the risk neutral probabilities 

and we analyse their main characteristics. In section 4 we present the payoff of an option written on 

the stock and in section 5 we describe the pricing methodology. In section 6 we price a put option 

written on the stock and in the last section we provide conclusions and some lines of future research 

work. 
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2. THE FUZZY-BINOMIAL TREE 

 

We assume that the price of the underlying at t=1 takes only two possible values: given the current 

value RP0 it may either jump up or down with an exogenously given probability p and (1-p) 

p∈[0,1]. The fuzziness present in the model is of the following type: since we do not know the 

exact increase or decrease in the stock price, the two possible events up and down are ill-defined. 

We thus have two possibility distributions: one for the increase and one for the decrease of the stock 

price, as illustrated in Figure 1. Triangular fuzzy numbers are used to model the two possibility 

distributions. Among all the different types of numbers, the choice of using triangular numbers is 

made for the sake of simplicity, since assuming more complicated shapes may increase the 

computational complexity without substantially affecting the significance of the results. The up and 

down jump factors, u and d respectively, are represented by two triangular fuzzy numbers identified 

by the following characteristic function )(x
i

µ , linear in x:  
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More simply, for each state, we can write: )3,2,1( iiiI = , where i1 is the minimum possible value, 

i3 the maximum, and i2 the most possible. The possibility distribution is induced by the 

characteristic function of the fuzzy set. 

Alternatively, we can write a triangular fuzzy number in terms of its α-cuts (or confidence 

intervals) by the following formula: 

])23(3),12(
1

[)](3),(1[)( iiiiiiiii −−−+== ααααα

where α is the level of confidence, α ∈[0,1], i={d,u}. 

This representation will be useful to do some algebra with fuzzy numbers. 

 



d2 d3d1 d3(α)

 

The aim of th

stock. Let us 

money marke

value at t=1 

observable, w

the previous s

The following

A1) All inves

A2) Markets 

sales and asse

A3) Every inv

A4) Interest r

A5) No arbitr

A6) The mark
d1(α)
4

u2 u3u1 u3(α)

Figure 1. The two possible jump factors of

3. THE RISK NEUTRAL PROBABIL

 

is section is to derive the risk neutral probabil

consider a one-period model where  t∈[0,1] i

t account, and the risky stock. The money mar

is 1+r, where r is the risk-free interest rate

hile its price at time one, is obtained multiplyi

ection. 

 assumptions are made: 

tors have homogeneous beliefs. 

are frictionless i.e. markets have no transaction

t are infinitely divisible. 

estor acts as a price taker. 

ates are positive. The interest rate is equal to r>

age opportunities are allowed. This condition i
13 )1( urd <+<

et is incomplete [1,0[∈∀α .
u1(α)
Down 
factor 
Up 
factor 
α=1
α

 the underlying at t=1. 

ITIES INTERVALS 

ities in order to price a call written on a 

s time, the two basic securities are: the 

ket account, is worth one at t=0 and its 

. The stock price at time zero, RP0 , is 

ng RP0 by the jump factors introduced in 

 costs, no taxes, no restrictions on short 

0 percent per unit time. 

s expressed by the following formula: 

(1) 



5

On the basis of these assumptions we now apply the standard methodology for deriving the risk 

neutral probabilities. 

 

Starting from the system: 
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This system may be splitted in the following two: 
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Solving system (2) yields:  
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The two solutions represent the bounds of the intervals of probabilities that are respectively: 
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It is easy to check that the following duality relations hold: 1=+
du pp and 1=+

ud pp . To draw a 

comparison with Evidence Theory, we indeed have two measures, ip and 
i

p , with i=d,u, where 

ip is the dual measure of 
i

p .

It is interesting to observe that, differently from the standard binomial option pricing model, we 

obtain risk neutral probability intervals instead of point estimates. This is clearly a consequence of 

the incompleteness of the market (except for α=1). The risk neutral probability intervals arise from 

the opacity of the stock price at t=1, even if the real probabilities of the stock price jumps are crisp 

and known in advance. 

Moreover, the intervals of risk neutral probabilities are weighted, they are indeed fuzzy numbers. 

This is a very important feature of our pricing model, since it allows us to find a weighted expected 

value interval for the call price as is shown in the following sections. 

In order to determine the shape of the two probabilities, we compute their value at α=0 and α=1 and 

then we analyse their behaviour as α varies (proofs are in Appendix 3). 
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If α=1 then: 
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It is easy to show that the derivative with respect to α is positive for both the left bounds and is 

negative for both the right bounds of the probabilities. This means that the bounds are getting 

narrower as α increases. In particular, if α=1, these bounds collapse in only one point. If α=1, the 

stock price in each state assume only one value, in other words, the market is complete and as a 

consequence we find a unique risk neutral probability measure. Thus our model can be seen as a 
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generalisation of the standard binomial option pricing model as the latter is a special case (if α=1) 

of the former. 

By inspection of 
u

p , it is easy to prove that its first derivative is positive and that the second 

derivative is positive if 2323 dduu −>− ; in the opposite case it is negative. Note that if 

2323 dduu −=− then 
u

p is linear in α.

Analogously it is easy to prove that the first derivative of up is negative and that the second 

derivative is positive if 1212 dduu −>− ; in the opposite case it is negative. Not that if 

1212 dduu −=− then up is linear in α.

As for 
d

p , we can prove that its first derivative is positive and that the second derivative is negative 

if 1212 dduu −>− ; in the opposite case it is positive. Note that if 2323 dduu −=− then 
d

p is 

linear in α.

Analogously for dp , we can prove that its first derivative is negative and that the second derivative 

is negative if 2323 dduu −>− ; in the opposite case it is positive. Note that if 

2323 dduu −=− then dp is linear in α.

It follows that depending on the relative positions of 321321 ,,,,, ddduuu we can have different 

shapes for pu and pd as illustrated in Table 1. The graphs, that are just possible outcomes, show how 

the probability intervals shrink with α. In fact for α=1 each of the risk neutral probabilities assumes 

a single value. Note that the two bounds and the most possible value are determined by equations 

(5) and (6).  

In table 1 are not reported, for reasons of space, the cases in which we have u2-d2=u1-d1 or u3-d3=u2-

d2. It is clear that if u2-d2=u1-d1 then both up and 
d

p are linear in α; if u3-d3=u2-d2 then both 
u

p

dp are linear in α.

As a special case we examine what happens if both the triangular fuzzy numbers that represent the 

up and down jump factors are symmetrical and equally flat, i.e. if  

u3-u2=u2-u1=d3-d2=d2-d1=k,          (7) 

k being the left or right spread. 

Note that this implies also: 

u3-d3=u2-d2=u1-d1=h 

In this case both pu and pd are linear in α, i.e. they are triangular fuzzy numbers: 
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4. THE PAYOFF OF A CALL OPTION  

 

At the maturity date, a call option has a positive value if the price of the underlying is greater than 

the exercise price; in the opposite case it remains unexercised and has zero value. As we are in a 

one period model, it makes no sense to distinguish between American and European options.  

The payoff of a call option depends on the price of the underlying asset. The stock price at t=1 is 

given by either RP0 d or RP0 u. Since u and d are triangular fuzzy numbers, it follows that the stock 

price at t=1 in each state is represented by a triangular fuzzy number, as represented in figure 2. 
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5. THE PRICING METHODOLOGY  
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It is easy to prove that as α increases the call option interval of prices shrinks (for the proof see 

Appendix 4). It follows that if α=0 the price interval is the largest: 
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As expected, this is the same result of the standard binomial option pricing model. 

Having a weighted expected value interval for the call price is clearly a very important feature for 

financial applications since it enables us to determine the most possible outcome of the call price. 

It is also interesting to observe that the “most likely value” of the call is the one that we would have 

obtained if the market were complete. In our model the incompleteness of the market that arise 

because of the opacity in the possible jumps of the underlying provides us with an interval of call 

prices built around the “complete market” price. 
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Note that the two bounds and the most possible value are determined by equations (10) and (11). 

The graphs in Table 2 are just possible outcomes. Cases in which the call price is linear in α are not 

reported in the table. 
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6. THE PRICING OF A PUT OPTION 

 

At the maturity date, a put option has a positive value if the price of the underlying is smaller than 

the exercise price K; in the opposite case it has zero value and remains unexercised. As we are in a 

one period model, it makes no sense to distinguish between American and European options. 

To make a put option an interesting contract we assume that: 

1030 uPKdP ≤≤  

We denote the put payoff in state “up” with Q(u) and in state down with Q(d). It follows that  

Q(d)= (K-P0*d) and Q(u)=0.

Applying the algebra of fuzzy numbers (see Appendix 2), we obtain the put payoff which is still a 

triangular fuzzy number equal to: 

Q(d)= (K-P0 d3, K-P0 d2, K-P0 d1)

as shown in figure 4. 
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α increases the put option interval of prices shrinks (for the proof see the 

if α=0 the price interval is the largest: 
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7. CONCLUSIONS 

 

In this paper we have priced an option, in a one-period binomial model, written on a stock whose 

possible jumps are opaque to the investors, being modelled by the use of triangular fuzzy numbers.  

The pricing methodology is still based on a risk neutral valuation approach, whereby weighted 

intervals of risk neutral probabilities, are used. These intervals of probabilities arise because of the 

uncertainty on the magnitude of the two possible states up and down of the binomial tree, even if 

the real probabilities of the stock price jumps are crisp and known in advance. The possibility 

distribution given on each of the two possible jump of the asset induces in turn a possibility 

distribution on each of the risk neutral probabilities. It follows that we have also a weighted 

expected value interval for the call price, where the best guess is the call price computed supposing 

that the market is complete. 

Our methodology offers some advantages. First, it provides an intuitive way to look at the 

uncertainty in the stock price jumps. Second, it includes the results of the Standard Binomial Option 

Pricing Model. Third, it traces back the need of using intervals of risk neutral probabilities, to the 

opacity in the two possible jumps of the stock. Finally, using weighted intervals of probabilities, i.e. 

possibility distributions on the risk neutral probabilities, it provides us with a weighted expected 

value interval for the call price and thus we are able to determine a “most likely” value of the call 

within the interval.  

This work has to be seen as preliminary to future research and still lends itself to be extended in 

many directions. High on the research agenda are the extension to different shapes of fuzzy 

numbers that represent the two jumps of the stock price and to a multiperiod discrete version of the 

model. 
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Appendix 1. Belief measures and plausibility measures. 

 

Let P(P(X)) be the power set of P(X). If p is a discrete probability measure on (P(X),P(P(X))),  with 

p({∅})=0, then the set function m:P(X)→[0,1] determined by:  

m(E)=p({E}) for any E∈P(X) 

is called a basic probability assignment on P(X). 

A set function m: P(X)→[0,1] is called a basic probability assignment if and only if: 

1)  m(∅)=0 

2) ∑
∈

=
)(E

1m(E)
XP

for the proof see [11] p.55. 

If m is basic probability assignment on P(X), then the set function Bel: P(X)→[0,1] determined by: 

Bel (E) = ∑
⊂EF

Fm )(  for any E∈P(X) 

Is called a belief measure  on  (X,P(X)) induced from m.

Theorem 1). If Bel is a belief measure on (X,P(X)), then: 

1) Bel(∅)=0 

2) Bel(X)=1 

3) 
{ }
∑

∅≠⊂ ∈

+

=

−≥






InI Ii
i

I
n

i
i EBelEBel

,,...,1

1

1
)1( IU

4) Bel is continuous from above. 

5) Bel is monotone and superadditive. 

for the proofs see [11] pp.56-58. 

If m is basic probability assignment on P(X), then the set function Pl: P(X)→[0,1] determined by: 

Pl(E) = ∑
≠∩ 0

)(
EF

Fm for any E∈P(X) 

Is called a plausibility measure  on  (X,P(X)) induced from m.

Theorem 2). If Pl is a plausibility measure on (X,P(X)), then: 

1) Pl(∅)=0 

2) Pl(X)=1 

3) 
{ }
∑

∅≠⊂ ∈

+

=





−≤







InI Ii
i

I
n

i
i EPlEPl

,,...,1

1

1
)1( UI

4) Pl is continuous from below. 

5) Pl is monotone and subadditive. 

for the proofs see [11] pp.60-61. 
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Theorem 3). If Bel and Pl are the belief measures and plausibility measures induced from the same 

basic probability assignment, then: 

Bel(E)=1-Pl( E )

Bel (E)≤Pl(E) 

for the proofs see [11] p.59. 

Theorem 4). If Bel coincides with Pl, then m focuses only on singletons. 

for the proofs see [11] p.59. 

 

Appendix 2. Operations on triangular fuzzy numbers. 

 

Let ),,( 321 aaaA = and ),,( 321 bbbB = be two triangular fuzzy numbers written in triplet form, the 

following operations are defined: 

Addition. 

),,(),,(),,( 332211321321 babababbbaaaBA +++=+=+

Subtraction. 

),,(),,(),,( 132231321321 babababbbaaaBA −−−=−=−

Multiplication. 

)*,*,*(),,(*),,(* 332211321321 babababbbaaaBA ==  

Division. 

):,:,:(),,(:),,(: 132231321321 babababbbaaaBA ==  

Multiplication of a triangular fuzzy number by an ordinary number. 

∀y∈R, y*A = (y*a1, y*a2, y*a3)

Alternatively, a more accurate method of adding fuzzy numbers consists of adding the confidence 

intervals at each α-level: let )](),([ 31 αα aaA = , )](),([ 31 αα bbB =

Addition. 

))()(),()(( 3311 αααα babaBA ++=+

Subtraction. 

))()(),()(( 1331 αααα babaBA −−=−

Multiplication. 

))(*)(),(*)((* 3311 αααα babaBA =

Division. 
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))(:)(),(:)((: 1331 αααα babaBA =

Multiplication of a triangular fuzzy number by an ordinary number. 

∀y∈R, y*A = (y*a1(α),  y*a3(α))  

 

Appendix 3. Properties of the risk neutral probabilities. 

 

Recall that the following inequalities hold: 

d1 <d2 <d3 < (1+r) < u1 <u2 <u3 (A3.1) 

10 <<
d

p , 10 << dp , 10 <<
u

p , 10 << up (A3.2) 

Analysing the behaviour of: 

D
N

dduudu
dddrp

u
=

+−−−−
−+−+

=
)(

)()1(

232333

233

α
α

The first derivative with respect to α is: 

2
2323 )())(('

D
uuNNDddp u

−+−−
=

Given (A3.1) and (A3.2) the sign is always positive. 

The second derivative is: 

D
dduup

p u
u

)(2'
'' 2323 +−−+

=

the sign clearly depends on the quantity )( 2323 dduu +−− , in particular, if  2323 dduu −>−

the second derivative is positive; in the opposite case it is negative. 

Analysing the behaviour of: 

Q
P

dduudu
dddrp u =
+−−+−

−−−+
=

)(
)()1(

121211

121

α
α

The first derivative with respect to α is: 

2
1212 )())((

'
Q

uuPPQddp u

−−−−−
=

Given (A3.1) and (A3.2) the sign is always negative. 

The second derivative is: 

Q
dduupp u

u

)(2''' 1212 +−−−
=
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the sign clearly depends on the quantity )( 1212 dduu +−− , in particular, if  1212 dduu −>− the 

second derivative is positive; in the opposite case it is negative. 

Analysing the behaviour of: 

S
R

dduudu
ruuu

p
d

=
+−−+−

+−−+
=

)(
)1()(

121211

121

α
α

The first derivative with respect to α is: 

2
1212 )())((

'
S

ddRRSuu
p d

−+−−
=

and is clearly positive, given (A3.1) and (A3.2). 

The second derivative is: 

S
dduup

p d
d

)(2'
'' 1212 +−−−

=

the sign clearly depends on the quantity )( 1212 dduu +−− , in particular, if   1212 dduu −>− the 

second derivative is negative; in the opposite case it is positive. 

Analysing the behaviour of: 

Z
T

dduudu
ruuupd =
+−−−−

+−−−
=

)(
)1()(

232333

233

α
α

The first derivative with respect to α is: 

2
2323 )())((

'
Z

TddTZuu
p d

−−−−−
=

and is clearly negative given (A3.1) and (A3.2). 

The second derivative is: 

Z
dduup

p d
d

)(2'
'' 2323 +−−+

=

the sign clearly depends on the quantity )( 2323 dduu +−− , in particular, if  2323 dduu −>− the 

second derivative is negative; in the opposite case it is positive. 
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Appendix 4. Properties of the call price. 

 

Recall that the following inequalities hold: 

d1 <d2 <d3 < (1+r) < u1 <u2 <u3 (A4.1) 

10 <<
d

p , 10 << dp , 10 <<
u

p , 10 << up (A4.2) 

1030 uPXdP ≤≤  (A4.3) 

Analysing the left bound of the call price in equation (9) the first derivative with respect to α is: 

0
1

)(
'*

1
)(

' 12010120
0 >

+
−+−

+
+
−

=
uuPXuP

pp
uuP

C
uu

α

and is positive given A4.1, A4.2 and A4.3  and since 
u

p' is positive (see appendix 3). 

The second derivative is: 

[ ]))(())((*
)]()[1(

'2
'' 10222033

232333
0 XuPduXuPdu

dduudur

p
C u

−−−−−
+−−−−+

=
α

Since the fraction is always positive, the sign depends on the quantity in brackets: 

if [ ] 0))(())(( 10222033 >−−−−− XuPduXuPdu then the sign is positive, in the opposite case it is 

negative.  Note that if ))(())(( 10222033 XuPduXuPdu −−=−− then 0C is linear in α.

Analysing the shape of the right part we have that the first derivative with respect to α is:  

0
1

)(
'

1
)(

' 23030230
0 <

+
−−−

+
+
−

−=
uuPXuP

pp
uuP

C uu

α

and is negative given A4.1, A4.2 and A4.3 and since up' is negative (see Appendix 3). 
The second derivative is: 

[ ]))(())((*
)]()[1(

'2
'' 20113022

121211
0 XuPduXuPdu

dduudur
p

C u −−−−−
+−−+−+

−=
α

Since the fraction is always positive, the sign depends on the quantity in brackets: 

if [ ] 0))(())(( 20113022 >−−−−− XuPduXuPdu then the sign is positive, in the opposite case it is 

negative. Note that if ))(())(( 20113022 XuPduXuPdu −−=−− then 0C is linear in α.
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