Solution of the Cumulative Assignment Problem with a Well-Structured Tabu Search Method

by
Mauro Dell'Amico *
Andrea Lodi **
Francesco Maffioli ***

December 1997

* Università degli Studi di Modena

Dipartimento di Economia Politica
Viale Berengario, 51
41100 Modena (Italia)
e-mail: dellamico@unimo.it
** Università di Bologna
Dipartimento di Elettronica, Informatica e Sistemistica
Viale Risorgimento, 2
40136 Bologna
e-mail: alodi@deis.unibo.it
*** Politicenico di Milano
Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32
20133 Milano
e-mail: maffioli@elet.polimi.it

Solution of the cumulative assignment problem with a well-structured tabu search method

Mauro Dell'Amico
Dipartimento di Economia Politica, Università di Modena, via Berengario 51, 41100 Modena, Italy, email: dellamico@unimo.it

Andrea Lodi
Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, viale Risorgimento 2, 40136
Bologna, Italy, email: alodi@deis.unibo.it
FRancesco Maffioli
Dipartimento di Elettronica e Informazione, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy, email: maffioli@elet.polimi.it

Abstract

The Cumulative Assignment Problem is an NP-complete problem obtained by substituting the linear objective function of the classic Linear Assignment Problem, with a non-linear cumulative function. In this paper we present a first attempt to solve the Cumulative Assignment Problem with metaheuristic techniques. In particular we consider two standard techniques, namely the Simulated Annealing and the Multi-Start methods, and we describe the eXploring Tabu Search: a new structured Tabu Search algorithm which uses an iterative multi-level approach to improve the search. The new method is analyzed through extensive computational experiments and proves to be more effective than the standard methods.

Key Words: Metaheuristics, Linear Assignment, Cumulative Functions, Tabu Search

1. Introduction

Any problem in combinatorial optimization can be described by a pair (S, f) where S is a finite set of feasible solutions and $f: S \rightarrow \mathcal{R}$ is a given objective function. The goal is to find the solution $s^{*} \in S$ which minimizes (or maximizes) the objective function over S. It is well known that the computational complexity of a combinatorial problem can change when we maintain the solutions set S, but we change the objective function. One of the simplest examples of such behavior is given by the problem of finding a spanning tree of a graph. If f is linear, then the problem is equivalent to finding a base of a single matroid, so it is solvable in polynomial time with a greedy algorithm (see e.g. Lawler, 1976). However if we adopt different objective functions we often have NP-complete problems (see e.g. Camerimi, Galbiati and Maffioli, 1980; Dell'Amico, Labbé and Maffioli, 1996). When the problem is a two matroid intersection, i.e. S contains all common subsets of two matroids, we can still solve the problem in polynomial time. A classic example of two matroids intersection is the Linear Assignment Problem (AP) which consists of finding n elements of a given $n \times n$ cost matrix $C=\left[c_{i j}\right]$, such that no two elements belong to the same row or column, and the sum
of the elements chosen is a minimum. (Several polynomial time algorithms for solving AP have been given in the last thirty years, see e.g. Dell'Amico and Martello, 1997b.)

In this paper we consider a generalization of AP obtained by replacing its linear objective function with a cumulative function. The resulting problem, called Cumulative Assignment Problem (CumAP), is NP-complete and no specific technique has been proposed before now to solve it. To be more specific, let a be an n dimensional vector of penalties. CumAP asks for an assignment of each row to exactly one column and for an ordering of the elements of C involved, such that the scalar product of a times the ordered vector of the chosen elements of C is minimized.

An immediate application of $C u m A P$ is the following. We associate to each row i of matrix C an operator and to each column j a $j o b$. The value $c_{i j}$ is the time spent by operator i to perform job j. Moreover, each penalty $a_{i}(i=1, \ldots, n)$ is the cost of operator i for one time unit. Using these definitions, CumAP is to determine the assignment of each operator to a job in such a way that the cost paid to perform all the jobs is minimized. CumAP is also interesting since it is a relaxation of more general problems as the Delivery Man Problem (Fischetti, Laporte and Martello, 1993). Lastly CumAP is a special case of the Three-Dimensional Axial Assignment Problem (see, e.g. Balas and Saltzman, 1989).

In this paper we study the solution of $C u m A P$ by means of metaheuristic techniques. We consider a Multistart heuristic, a Simulated Annealing algorithm and a new well-structured Tabu Search approach that we have called the eXploring Tabu Search (\mathcal{X}-TS). The new method is described in detail and the effect of each of the strategies adopted is studied by means of extensive computational experiments. A preliminary version of \mathcal{X}-TS has been used with success in Dell'Amico and Maffioli, 1996; Dell'Amico and Trubian, 1997; Dell'Amico, Maffioli and Trubian, 1997.

In Section 2 we give a mathematical model of $C u m A P$, we discuss its complexity status and overview results from the literature on related problems. In Section 3 we present lower bounds on the optimal solution value. Section 4 is devoted to introducing the neighborhood we have used for all the metaheuristic algorithms, and to presenting an efficient implementation of the exploration of the neighborhood. In Section 5 we introduce the metaheuristic techniques we adopted and, in particular, we describe the \mathcal{X}-TS approach. Extensive computational results are presented in Section 6, whilst the last section summarizes the work and suggests some interesting directions for future research.

2. Mathematical model and complexity

Let C be an integer square cost matrix with n rows and columns, and let a be an n dimensional integer vector of penalties. Without loss of generality we will assume that

$$
\begin{equation*}
a_{1} \geq a_{2} \geq \ldots \geq a_{n} \tag{1}
\end{equation*}
$$

CumAP asks for two permutations of the integers $1,2, \ldots, n$, say ϕ and ξ, which minimize

$$
\begin{equation*}
z(\phi, \xi)=\sum_{k=1}^{n} a_{k} c_{\phi(k), \xi(\phi(k))} . \tag{2}
\end{equation*}
$$

Permutation ξ defines the assignment of each row to a column, whereas permutation ϕ gives the ordering of the elements chosen.

Observe that if we are given the "assignment" permutation ξ, then the optimal ordering ϕ is obtained by associating to the smallest $c_{i, \xi(i)}$ element the largest penalty, then associating to the second smallest element the second largest penalty, and so on, i.e.

$$
\begin{equation*}
\phi(k)=\operatorname{argkmin}\left\{c_{i, \xi(i)}, i=1, \ldots, n\right\} \quad k=1, \ldots, n, \tag{3}
\end{equation*}
$$

where argkmin denotes the argument of the k-th smallest element.
If we define the boolean variables

$$
x_{i j k}=\left\{\begin{array}{ll}
1 & \text { if row } i \text { is assigned to column } \mathrm{j} \\
0 & \text { and } c_{i j} \text { is the } k \text {-th element chosen } \\
\text { otherwise }
\end{array} \quad i, j, k=1, \ldots, n\right.
$$

then we can give the following linear programming model for CumAP:

$$
\begin{array}{rlrl}
(\text { CumAP }) \min z=\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{k} c_{i j} x_{i j k} & & & \\
\sum_{k=1}^{n} \sum_{j=1}^{n} x_{i j k} & =1 & & i=1, \ldots, n \\
\sum_{k=1}^{n} \sum_{i=1}^{n} x_{i j k} & =1 & & j=1, \ldots, n \\
\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j k} & =1 & k=1, \ldots, n \\
x_{i j k} & \in\{0,1\} \quad i, j, k=1, \ldots, n . \tag{8}
\end{array}
$$

Equations (5) and (6) are the classic "row" and "column" constraints of AP (for each fixed k value), whereas (7) impose that exactly one element of C is assigned to each ordering position k. Observe that (4)-(8) define a special case of the Three-Dimensional Axial Assignment Problem (3AP) which is given by the same constraints and by the more general objective function

$$
\min z=\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j k} x_{i j k}
$$

3AP is well known to be NP-hard and many of its special cases remain NP-hard too. For example Garey and Johnson (1979) have shown that 3AP is NP-hard even if the costs $d_{i j k}$ can only assume two distinct values. Another interesting special case is 3AP with decomposable costs (D3AP) in which $d_{i j k}=\alpha_{i} \beta_{j} \gamma_{k}$ where α, β and γ are n dimensional vectors of nonnegative numbers. Burkard, Rudolf and Woeginger (1996) have shown that also 3DAP is NP-hard.

It is immediately seen that CumAP is more general than D3AP. Indeed, any instance of D3AP can be polinomially transformed into an equivalent instance of CumAP by setting $a_{k}=\gamma_{k}$, for $k=1, \ldots, n$ and $c_{i j}=\alpha_{i} \beta_{j}$ for $i, j=1, \ldots, n$, thus proving CumAP to be NP-hard.

3AP has been attacked with implicit enumeration methods (Pierskalla, 1968; Burkard and Rudolf 1993) and with cutting plane techniques (Balas and Saltzman, 1989,1991; Qi, Balas and Gwan, 1994). The most effective method is a cutting plane algorithm which solves instances with up to 28 rows and columns in about 2.000 seconds on a Sequent Hydra multiprocessor. It seems therefore to be quite unlikely that the general techniques developed for the exact solution of 3 AP can solve large instances of $C u m A P$, and hence heuristic techniques are needed to obtain good solutions within reasonable running times.

3. Lower bounds

In this section we describe lower bounding procedures from the literature and our adaptation to CumAP of a lagrangean bound developed for 3AP.

The first two lower bounds for $C u m A P$ have been introduced by Haas (1995) and consist of relaxations by constraints elimination.

The first lower bound LE1 considers two problems obtained from CumAP by removing, respectively, constraints (5) and (7), and constraints (6) and (7). In the first case the elements of matrix C chosen are the minima of each column, whereas in the second case the elements are the minima of each row. The lower bound value is given by the maximum of the two solution values.

The second lower bound LE2 is obtained with a reformulation of the problem. We first define the "differences" of the penalties

$$
d_{k}=a_{k}-a_{k+1}, \quad k=1, \ldots, n
$$

where $a_{n+1}=0$. Then we define the n matrices $C^{k}=\left[c_{i j}^{k}\right]$ with $c_{i j}^{k}=d_{k} c_{i j}$, for $k=1, \ldots, n$ and we ask for an assignment of exactly k elements from each matrix C^{k}, with the additional constraint that if an element (i, j) is chosen in matrix C^{k} it must be chosen also in the next matrices C^{l} with $l>k$. More formally:

$$
\begin{array}{rlrl}
\left(\text { CumAP } P^{\prime}\right) \min \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}^{k} x_{i j k} & & \\
\sum_{j=1}^{n} x_{i j k} & \leq 1 \quad i, k=1, \ldots, n, \\
\sum_{i=1}^{n} x_{i j k} & \leq 1 \quad j, k=1, \ldots, n, \\
\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j k} & =k & & k=1, \ldots, n, \\
x_{i j k}-x_{i j l} & \leq 0 & i, j=1, \ldots, n, 1 \leq k<l \leq n \\
x_{i j k} & \in\{0,1\} \quad i, j, k=1, \ldots, n . \tag{14}
\end{array}
$$

Constraints (10) and (11) ensure that at most one element from each row and column is chosen from each matrix C^{k}. Equations (12) impose that exactly k elements be chosen from each matrix C^{k}, whereas (13) impose that the elements chosen in a matrix must also be chosen in all the following matrices.

Note that due to constraints (12) and (13) exactly one element is chosen for the first time from each matrix C^{k}, whereas the other $k-1$ elements have been chosen in the previous matrices. Moreover from the definition of the differences d_{k}, the element chosen for the first time in the k-th matrix "cumulates" the penalties $d_{k}, d_{k+1}, \ldots, d_{n}$. But $\sum_{h=k}^{n} d_{h}=a_{k}$, so choosing a new element from a matrix is equivalent to defining its ordering in the permutation ϕ (see (3)). Looking at this model, the meaning of the attribute "cumulative" given to our problem is clear.

Lower bound LE2 is obtained by eliminating constraints (13), thus the problem separates into n independent assignment problems with cardinalities $1,2, \ldots, n$. Each AP with fixed cardinality k (with $k \leq n$) has been efficiently solved with the procedure of Dell'Amico and Martello (1997a).

Another effective lower bound can be obtained by adapting to CumAP the lagrangean bound proposed by Balas and Saltzman (1991), for 3AP. This bound is obtained by embedding in a Lagrangean fashion constraints (7) in the objective function. Applying this technique to CumAP we obtain the following:

$$
\begin{equation*}
\operatorname{LCAP}(\lambda)=\min \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{k} c_{i j} x_{i j k}+\sum_{k=1}^{n} \lambda_{k}\left(1-\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j k}\right) \tag{15}
\end{equation*}
$$

subject to (5), (6) and (8). Observing that the above objective function can be rewritten as

$$
\begin{equation*}
\operatorname{LCAP}(\lambda)=\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{k} c_{i j}-\lambda_{k}\right) x_{i j k}+\sum_{k=1}^{n} \lambda_{k} \tag{16}
\end{equation*}
$$

one can see that the optimal solution to $\operatorname{LCAP}(\lambda)$ can be obtained by solving a linear assignment on the reduced costs $\bar{c}_{i j}=\min _{k}\left\{a_{k} c_{i j}-\lambda_{k}\right\}$, for $i, j=1, \ldots, n$.

The lagrangean dual LAG $=\max _{\lambda} \operatorname{LCAP}(\lambda)$ is then solved with the modified subgradient technique introduced by Camerini, Fratta and Maffioli (1975).

Our computational experiments with these three lower bounds show that bounds LE1 and LE2 give better results than LAG only when few iterations of the subgradient optimization are allowed. Since our final aim is to use the better lower bound value only to evaluate the quality of the solutions obtained with the heuristic algorithms, we therefore gave LAG a large time limit (one hour of CPU time on a Sun Sparc Ultra 2 workstation) so that the subgradient optimization converged, in almost all cases, to its maximum. With this time limit LAG always turned out to be the winner versus LE1 and LE2. Therefore the comparisons of Section 6 are made with the lower bound value computed by LAG. (We do not report our computational experiments with the three lower bounding procedures, since we are only interested in the final lower bound value and not in studying the relative performances of the three methods, when the time limit changes.)

4. A Neighborhood

In this section we introduce and discuss one of the basic elements, common to the metaheuristic methods: the neighborhood.

A metaheuristic algorithm is a strategy based on a local search (LS). Any LS presupposes the definition of a neighborhood function, $\mathcal{N}: S \rightarrow 2^{|S|}$, i.e. a mapping of the solution space
which associates with each solution $s \in S$ a subset $\mathcal{N}(s) \subset S$. The LS method starts with a solution s, moves to an adjacent solution $s^{\prime} \in \mathcal{N}(s)$, then defines $s=s^{\prime}$ and iterates the process until a given stopping criterion holds. Roughly speaking, the various metaheuristics differ in the choice of the neighborhood and in the strategy used to select the next solutions.

We are interested in studying the effect of different strategies, when the same neighborhood is used. Therefore we need a 'good' neighborhood and an efficient procedure for its exploration, which can be used for all the metaheuristics we consider.

One of the problems in the design of an algorithm based on LS is the trade-off between the width of the neighborhood and the time used for its exploration. The larger a neighborhood, the more accurate the search, for a single iteration, but the longer the time spent in the exploration. Both the accuracy of the search and the total number of iterations help in finding good solutions, therefore one has to deternine a suitable compromise between accuracy and speed. In order to have both the above advantages we adopted a wide neighborhood, but we carefully studied the implementation of its exploration, so that the resulting code is fast.

More precisely, let $\xi=(\xi(i), \ldots, \xi(n))$ be the permutation defining the current assignment. Since any permutation defines a unique solution of $C u m A P$, let us call ξ a "solution". Given two integers i, j with $1 \leq i<j \leq n$ we can define a new permutation ξ^{\prime} by suapping $\xi(i)$ with $\xi(j)$, i.e. setting $\xi^{\prime}(i)=\xi(j), \xi^{\prime}(j)=\xi(i)$ and $\xi^{\prime}(l)=\xi(l)$ for $l \neq i, l \neq j$. Our neighborhood $\mathcal{N}(\xi)$ consists of all the permutations generated with all the possible choices of pair i, j.

The value of the given solution ξ can be computed in $O(n \log n)$ time by reordering the elements $c_{l, \xi(l)}(l=1, \ldots, n)$ by nondecreasing weights and defining $\phi(l)=l$ for $l=1, \ldots, n$. The next solution values can be computed in $O(n)$ time, since only two elements are changed, at each iteration. Each neighborhood contains $O\left(n^{2}\right)$ different solutions, thus exploring \mathcal{N} with a standard implementation requires $O\left(n^{3}\right)$ computational time. But this is a very long time, for any effective heuristic algorithm, so we need to speed up the exploration with an improved implementation. In particular we describe how to reduce the time required to compute each solution value, from $O(n)$ to $O(\log n)$.

When a swap is performed the assignments $(i, \xi(i))$ and $(j, \xi(j))$ are removed from the current solution and the two new assignments $(i, \xi(j))$ and $(j, \xi(i))$ are added to the solution. This determines the substitution of two values from the set $A=\left\{c_{l, \xi(l)}, l=1, \ldots, n\right\}$ of the assigned elements with two new values. Let us store the elements of A into an n-dimensional vector e such that

$$
\begin{equation*}
e_{k} \leq e_{k+1}, \quad k=1, \ldots, n-1 \tag{17}
\end{equation*}
$$

Then the value of the current solution is obtained with the scalar product ea (recall that the penalties vector a is ordered according to (1)). Let out be the smallest index of an element of e which contains the value $M^{o}=\max \left(c_{i, \xi(i)}, c_{j, \xi(j)}\right)$ and let $i n$ be the smallest index of an element of e such that $e_{i n}>M^{i}=\max \left(c_{i, \xi(j)}, c_{j, \xi(i)}\right)$ (see Example 1 below). The indices out and in can be identified in $O(\log n)$ with a binary search. We now consider the variation of the solution obtained by removing the element with value M^{o} and adding the element of value M^{i}. We call e^{\prime} the resulting vector, reordered by nondecreasing values. According to the relative positions of in and out several cases arise: we describe in detail only the case in < out; the other cases are similar and a complete description of them could be rather boring.

The new partial solution value can be efficiently computed by observing that: (a) $e_{k}^{\prime}=e_{k}$ for $k=1, \ldots$, in -1 and for $k=o u t+1, \ldots, n$; (b) the elements $e_{i n}, \ldots, e_{o u t-1}$ are shifted one position right when M^{i} is inserted, i.e. $e_{k+1}^{\prime}=e_{k}$ for $k=i n, \ldots$,out -1 ; (c) $e_{i n}^{\prime}=M^{i}$. Therefore if z denotes the current solution value, then the new partial solution assumes value:

$$
\begin{equation*}
z^{p}=z-\sum_{k=\text { in }}^{\text {out }} e_{k} a_{k}+\sum_{k=\text { in }}^{\text {out }-1} e_{k} a_{k+1}+M^{i} a_{i n} \tag{18}
\end{equation*}
$$

Let us define the vectors:

$$
\begin{aligned}
\sigma_{k} & =\sum_{l=1}^{k} e_{l} a_{l} \quad k=1, \ldots, n \\
\widehat{\sigma}_{k} & =\sum_{l=1}^{k} e_{l} a_{l+1} \quad k=1, \ldots, n-1
\end{aligned}
$$

then $\sum_{k=\text { in }}^{\text {out }} e_{k} a_{k}=\left(\sigma_{\text {out }}-\sigma_{\text {in }-1}\right)$ and $\sum_{k=\text { in }}^{\text {out }-1} e_{k} a_{k+1}=\left(\hat{\sigma}_{\text {out }-1}-\widehat{\sigma}_{\text {in-1 }}\right)$. Thus if we have already stored σ and $\hat{\sigma}$ the computation of (18) can be done in constant time.

Example 1. Let us consider an instance with $n=10$, penalties $a=(25,22,19,13,10,8,6,4,1,0)$ and the vector of the values currently assigned being $e=(1,5,9,10,13,15,16,17,22,26)$. The current solution value is $z=872$. Assume that a swap removes the values 9 and 17 , and adds the new values 11 and 14. Our implementation first identifies the indices out $(=8)$ and in $(=6)$ associated with the two values $M^{0}(=17)$ and $M^{i}(=14)$. Vector e^{\prime} is obtained by removing value 17 , by shifting e_{6} and e_{7} one position right, and by inserting the value 14 into e_{6}^{\prime}.

$$
\begin{aligned}
& \left.e=\begin{array}{rrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 5 & 9 & 10 & 13 & 15 & 16 & 17 & 22 & 26
\end{array}\right) \\
& e^{\prime}=\left(\begin{array}{lllllllll}
1 & 5 & 9 & 10 & 13 & & & 15 & 16
\end{array}\right. \\
&
\end{aligned}
$$

Using vectors σ and $\widehat{\sigma}$ (18) becomes

$$
\begin{aligned}
z^{p} & =z-\left(\sigma_{8}+\sigma_{5}\right)+\left(\widehat{\sigma}_{7}-\widehat{\sigma}_{5}\right)+M^{i} a_{i n} \\
& =872-(850-566)+(592-438)+112=854
\end{aligned}
$$

Applying a procedure similar to the above, we can compute the complete value of the new solution ξ^{\prime}, by determining the change of z^{p} due to the other two elements involved in the swap: $m^{o}=\min \left(c_{i, \xi(i)}, c_{j, \xi(j)}\right)$ and $\left.m^{i}=\min \left(c_{i, \xi(j)}, c_{j, \xi(i)}\right)\right)$. We need to consider the vector e^{\prime} and to find the smallest index out such that $e_{o u t^{\prime}}^{\prime}=m^{o}$ and the smallest index in ${ }^{\prime}$ such that $e_{i n^{\prime}}^{\prime}>m^{i}$. Using a straightforward implementation one could determine the two indices in $O(n)$ time, by defining and scanning vector e^{\prime}, but we can speed up the search by avoiding the explicit definition of e^{\prime}. Let us consider first $i n^{\prime}$: since $m^{i} \leq M^{i}$, then
$i n^{\prime} \in\{1, \ldots, i n\}$. But in this interval e^{\prime} and e coincide, so we can search the required value in e instead than in e^{\prime}. The definition of out ${ }^{\prime}$ is a little more complicated. If $m^{o} \leq M^{i}$, then we can search again the required value in $e_{1}, \ldots, e_{i n-1}$, (which coincides with $e_{1}^{\prime}, \ldots, e_{i n-1}^{\prime}$). Otherwise ($m^{o}>M^{i}$) we know that $m^{o} \in\left\{e_{i n}, \ldots, e_{\text {out }-1}\right\}$, but these elements should be stored in e^{\prime} one position righter than in e. Hence we can simply search m^{o} in e (instead than in e^{\prime}) and define out' as the index of the element we found, plus one.

Lastly, to compute the complete solution value we should define the final vector $e^{\prime \prime}$ obtained from e^{\prime} by removing the element of value m^{o}, by inserting the element of value m^{i} and by shifting the elements between $i n^{\prime}$ and out ${ }^{\prime}$. Once again we want to avoid the explicit definition of $e^{\prime \prime}$, so we need to know the exact positioning of the elements of e in $e^{\prime \prime}$. If out $t^{\prime} \leq$ in then the elements of e with indices between $i n^{\prime}$ and out $t^{\prime}-1$ are shifted one position to the right when $e^{\prime \prime}$ is defined. Hence the final value z can te computed efficiently using vectors σ and $\hat{\sigma}$. If otherwise out ${ }^{\prime}>$ in then the elements of e with indices between positions in and out' should be shifted two positions right to obtain vector $e^{\prime \prime}$. Therefore to compute z efficiently we need to define a new vector $\bar{\sigma}$ in which a value e_{l} is associated with the penalty a_{l+2}, i.e.

$$
\bar{\sigma}_{k}=\sum_{l=1}^{k} e_{l} a_{l+2} \quad k=1, \ldots, n-2
$$

Summarizing, the computational time required to explore a neighborhood is as follows. We need $O(n \log n)$ time to compute the value of the starting solution ξ and to define the vectors $\sigma, \widehat{\sigma}, \bar{\sigma}$ and other similar vectors needed for the cases we have not described explicitly. Then for each solution in $\mathcal{N}(\xi)$ we need $O(\log n)$ to identify the indices in and out and a constant time to compute the value z^{p} of the partial solution. Then we need again $O(\log n)$ to define $i n^{\prime}$ and out t^{\prime} and a constant time to compute the value of the complete solution ξ^{\prime}. We have thus proved the following theorem.

Theorem 1. Neighborhood \mathcal{N} can be explored in $O\left(n^{2} \log n\right)$ time.
A further reduction of the average computing time was obtained by applying several simple criteria which, in many cases, allow one to determine if a solution is not improving with respect to the current best solution of the neighborhood, without computing the exact solution value.

5. Metaheuristic algorithms

We considered three metaheuristic methods based on local search: Multi-Start algorithm, a Simulated Annealing algorithm and an implementation of the Tabu Search method, called eXploring Tabu Search. As already observed, we will use the neighborhood described in the previous section for all the algorithms we consider. According to the general description of an algorithm based on local search, given at the beginning of Section 4, it remains to present only the search strategy adopted for each method.

5.1. Multi-Start

A Multi-Start algorithm basically consists of two nested loops. At each iteration of the external loop we simply generate a random feasible solution, which is improved by the
operations performed in the internal loop. Given a current solution s at each iteration of the inner loop, the best solution $s^{\prime} \in \mathcal{N}(s)$ is selected. If $z\left(s^{\prime}\right)<z(s)$ then we set $s=s^{\prime}$ and we start a new iteration of the internal loop, otherwise a local optimum has been found and the inner loop terminates. The most common criteria used to stop the algorithm consist of giving a global time limit, or of fixing the number of iterations of the external loop. The algorithm returns the best solution identified during the search.

The procedure we used to generate the random feasible solutions is an implementation of a greedy randomized (GR) algorithm. We start by ordering the entries of the cost matrix C by non-decreasing values, then we build a feasible solution by performing n times the following operations. At each iteration we enlarge a current partial solution by adding a pair (i, j) such that both row i and column j are not assigned in the partial solution. More specifically, given a parameter $K>0$, the pair to be added is randomly selected among the K pairs with smallest $c_{i j}$ which can be feasibly added to the partial solution. If $K=1$ this method is a pure (deterministic) greedy algorithm, otherwise it is a randomized method in which the effect of the randomization on the final solution is evident to the extent that the value of K increases. It is well known that the average value of the solutions obtained with a GR algorithm first decreases when K increases, but after a small threshold value it grows rapidly with K. Preliminary computational experiments were used to set the value of K to five.

5.2. Simulated annealing

The Simulated Annealing method (SA) we implemented starts with a random feasible solution s, generated with procedure GR, and iteratively applies the following steps:

1) randomly select a solution $s^{\prime} \in \mathcal{N}(s)$
2) if $z\left(s^{\prime}\right) \leq z(s)$ then set $s=s^{\prime}$
else set $s=s^{\prime}$ with probability $e^{\left(z(s)-z\left(s^{\prime}\right)\right) / \text { tem } p}$
where temp is the current temperature.
The overall algorithm starts by setting the value of temp to an initial temperature $T_{\text {start }}$. Then it repeats the above two steps a number $\operatorname{NITER}(n)$ of times, depending on the size of the problem, and decreases the temperature with the geometric cooling schedule: tem $p=\alpha \cdot$ temp $(\alpha<1)$. When the temperature descends below a minimum value $T_{\text {end }}$ it sets again temp $=T_{\text {start }}$ and continues as above until a time limit is reached. (See e.g. Aarts, Korst and Laarhoven, 1997 for a complete description of the SA method.)

In our experiments we defined $\operatorname{NITER}(n)=300 n$ and set α to 0.95 . The starting and ending values of the temperature were determined through a preprocessing phase which generates 100 random solutions and, for each of them, performs 100 random swaps. During this phase we compute the minimum and maximum difference in cost, say δ and Δ, respectively, between two adjacent solutions. The value $T_{\text {start }}$ is set to $-\Delta / \ln (0.90)$ whilst the value $T_{\text {end }}$ is set to $-\delta / \ln (0.01)$. This implies that if temp $=T_{\text {start }}$ (resp. temp $=T_{\text {end }}$), during step 2 a solution s^{\prime} whose value is equal to $z(s)+\Delta$ (resp. $z(s)+\delta$) is accepted with probability
90% (resp. 1\%).

5.3. The eXploring Tabu Search

In this section we describe a general structured method for implementing a Tabu Search algorithm (TS). In particular we introduce a combination of strategies from the Tabu Search framework (see e.g. Laguna and Glover, 1993 and Glover and Laguna, 1997) which leads to a new method that we have called the eXploring Tabu Search (\mathcal{X}-TS). The reason for the choice of this name will be explained later.

An ideal beginning level Tabu Search method starts with a feasible solution $s \in S$ and, at each iteration, it substitutes s with the best solution $s^{\prime} \in \mathcal{N}(s)$ that has not been visited in a previous iteration. The new solution can have an objective function value smaller, equal to or larger than the current solut on. In practice it is not possible to store all the information describing all the visited solutions, so we try to recognize a solution using only some attributes, i.e. partial information on the structure of the solution. These attributes are stored in a finite length list and a solution $\hat{s} \in \mathcal{N}(s)$ is said to be tabu, i.e. it is not considered as a possible candidate for the next iteration, if its attributes are in the list. The search terminates when a given time limit expires.

A common theme of tabu search is to join the beginning level TS with an intermediate term intensification strategy and a longer term diversification strategy, to create an iterated multi-level approach. In spite of this theme, many implementations are limited to the beginning level component of TS. Our \mathcal{X}-TS provides a specific and highly effective pattern of a more advanced multi-level design, which we demonstrate to be dramatically superior to the beginning level TS component by itself.

Before going into the details of the \mathcal{X}-TS strategies we must describe our implementation of the beginning level TS. Let ξ and ξ^{\prime} be, respectively, the permutations defining the current solution and the solution selected in $\mathcal{N}(\xi)$. Moreover, let i and j be the row indices of the elements involved in the swap which transforms ξ into ξ^{\prime}. When we have moved to ξ^{\prime}, the attributes we use to identify solution ξ are the two pairs $(i, \xi(i))$ and $(j, \xi(j))$. In the following iterations we consider tabu a solution which tries to assign again row i to column $\xi(i)$ or row j to column $\xi(j)$. The attributes are stored in a simple FIFO list of length ℓ : when a new solution is selected the two attributes of the new solution are added on the top of the list and the two oldest attributes are removed, if the list length exceeded ℓ. We also apply a simple aspiration criterion which removes the tabu status of a solution if the solution value is smaller than the current best solution value.

We are now ready to introduce the specific strategies we have adopted. We use a multilevel approach consisting of three intensification and/or diversification tools which operate on areas of the solution space growing with the level. The first level tool operates in the neighborhood of the current solution. The second level tool operates on a local area which is close to the trajectory in the solution space, followed during the search. The third level tool operates on the whole solution space. The first tool consists of a tabu list management, the second one is a proximate good solutions management, whilst the third is a global restarting strategy.

Tabu list management

This tool is an implementation of a strategy known as dynamic updating of the tabu list length. The main idea is to emphasize the intrinsic behavior of the TS method. Indeed TS is a so-called "hill climbing" method, i.e. it descends into a "valley" to find a local minimum, then it climbs one of the faces of the same valley trying to reach a different minimum, placed in another valley. The tabu tenure ℓ, i.e. the length of the tabu list (or the number of iterations a solution maintains its tabu status) is initialized to a given value start_tenure and is modified according to the evolution of the search. The aim is to intensify the search when we think we are close to a local minimum, and to accelerate the diversification when we are escaping from an already visited minimum.

The intensification is obtained by shortenirg the tabu tenure, i.e. allowing more solutions to be considered candidate for the next step. On the contrary the diversification is obtained by increasing the value ℓ, which avoids removing the attributes of the recent solutions from the tabu list. More specifically, let us call improving phase a set of $\Delta i m p$ consecutive iterations which lower the objective function value. If we detect an improving phase, then the search is certainly going toward a local minimum, so we reduce the tabu tenure. In particular we use the following updating which guarantees that the tabu tenure remains greater than a reasonable minimum:

$$
\ell=\max \left(\ell-1, \frac{1}{2} \text { start_tenure }\right) .
$$

Now let us consider the case in which the current solution is a local minimum and we start to climb a face of the valley. If the tabu tenure does not change, and the climbing is long enough, then after ℓ iterations the attributes of the local minimum are forgotten and there is the possibility of the search returning toward the already visited minimum. To avoid this, it is important that before ℓ iterations are performed we increase the value ℓ so that we do not forget the attributes of the local minimum. An effective choice is to increase the tabu tenure before ℓ climbing iterations have been performed, so providing that alsc the attributes of few solutions visited just before descending into the minimum remain in the list. Let us call worsening phase a set of Δ wor $<\ell$ consecutive iterations in which the objective function value does not improve. If a worsening phase is detected, then it is enough to increase the tabu tenure by one, in order to recall the attributes of the minimum and of the last $\ell-\Delta$ wor solutions visited before reaching the minimum. In practice, we adopt the following updating:

$$
\ell=\min \left(\ell+1, \frac{3}{2} \text { start_tenure }\right)
$$

which limits the tabu tenure, so that the tabu status does not become too binding.
Preliminary computational experiments were used to fix the value of start_tenure to 15 and the values of $\Delta i m p$ and $\Delta w o r$ to 3 . The same parameters were used for all the remaining experiments, presented in Section 6.

Proximate good solutions management
This is an implementation of another tool from the TS framework which is often neglected: a long term memory which enables the algorithm to learn from its evolution.

The basic idea of this tool is to store some good solutions which have been analyzed, but not visited, during the evolution of the algorithm. These solutions are used, under certain conditions, to continue the search. When we have recourse to one of such solutions, then we jump from the current solution s to a new one which is not in $N(s)$, but is in a promising region close to the trajectory in the solution space followed by the algorithm up to the current iteration. Hence the method implements both an intensification of the search into regions analyzed, but not completely explored, and a diversification from the current solution.

We implemented this tool as follows. We used a fixed length list called Second to store l high quality solutions which were analyzed during the search, but whose value was only the second best value in their neighborhood. At each iteration, when we determine, as well as the best solution $s^{\prime} \in N(s)$, also the second best solution $s^{\prime \prime} \in N(s)$, then we add $s^{\prime \prime}$ to Second, either if we have already stored less then l solutions or if there exists a solution $\hat{s} \in$ Second such that $z\left(s^{\prime \prime}\right)<z(\hat{s})$. Note that owing to our implementation not all the solutions in a neighborhood are examined, so it may happen that we compute completely only one solution and none is added to Second.

Instead of using a solution of the current neighborhood, we resort to a solution from Second, when the behavior of the search indicates that a great effort would be necessary to find an improving solution, if we continue the search from the current neighborhood. We use three conditions to try to detect the above situation:

1. the tabu status prevents all the solutions in the current neighborhood from being used;
2. the current objective function value has not been improved in the last $M C$ iterations;
3. in the last $M B$ iterations there was no improving of the global best solution.

If one of the three above conditions holds, we remove from Second the solution s^{*} with the best objective function value and we continue the search from it. Note that we obtain a correct working of the algorithm only if we can restore the conditions present when s^{*} was added to Second. To do this we need to store in Second, within each solution, also a copy of the tabu list and of the other parameters driveing the search.

The meaning of the first condition is obvious, but some explanations are necessary for the other two conditions. The value $M C$ involves using a solution from Second when the algorithm is climbing a very deep and high face, or when it is exploring a flat region. In both cases the last local optimum remains the best local solution for many iterations: using a solution from Second, we accelerate the search by jumping into a new region. This jump is a diversification from the current solution, but it is also an intensification of the search in the local area, since the solutions stored in Second are not too far from the current solution, (they were found along the path leading to the current solution).

From a set of few preliminary experiments we have seen that the value 15 is adequate for $M C$, for the instances we tested, but a slight growing with n is also useful. Hence we adopted the final formula $M C=\lceil 15+7 \ln (n / 100)\rceil$.

The value $M B$ is used to detect situations in which the exploration of the current area seems not to be fruitful in determineing the global optimum. In this case we need to have a complete but fast exploration of the area. This is achieved with a further recourse to a solution from Second, so that we increase the intensification, but we also draw the search toward a restart from a completely new solution (see below the subsection on the global
restarting). Thus the parameter $M B$ reduces the time needed to explore the local area, by inducing further intensification, but also reduces the time between two strong diversification points. For the above reasons the value of $M B$ must not be too small. With preliminary computational experiments we chose to set $M B=500$ for the smallest instances tested ($n=50$) and $M B=800$ for larger instances.

Global restarting strategy

The aim of the previous two tools is to optimize the ratio accuracy/speed in the exploration of a local area in the solution space.

When we are confident enough that no better solution can be found in the current local area, we must move to a new and not yet explored local area. To do this we generate a new starting solution and we re-initialize the search from this new point. This method determines a jump into a new area, so giving a strong diversification.

To apply this tool we obviously need a procedure which generates a different feasible solution at each run. Moreover, it would be most advisable if the procedure is able to define solutions which are "uniformly" distributed in the solution space. In general it is not too difficult to write a procedure satisfying the first requirement, but it is much more difficult to satisfy the second one. In this implementation we used procedure GR to generate the solutions. This is a randomized method which gives different solutions for different runs, with a sufficiently large probability. However this algorithm does not guarantee any uniformity in the distribution of the solutions. The study of greedy algorithms satisfying the two above requirements is a challenge for future research in the metaheuristic area.

The \mathcal{X}-TS method restarts the search when there is some evidence that the search in the current local area is no longer profitable. In particular, we adopted the three following inexact criteria to detect such situations: (a) the conditions adopted for the second level tool indicate that it is necessary to use a solution from Second, but the list is empty; (b) the value of the best solution found after I iterations from the last global restart is p percent larger than the value of the global best solution; (c) the second level tool has been used for $S L$ consecutive times without improving the best solution from the last restart, or from the beginning. Criterion (a) is an obvious extension of the considerations which define the use of the second level tool; criterion (b) is useful to detect situations in which the last randomly generated solution (after a restart) belongs to a local area with no good solutions; criterion (c) is introduced to avoid fury in the search inside a single local area.

The sets of parameters used for criteria (b) and (c) are as follows. Parameter I is adaptively set to $0.1[n / 100\rceil$ times the number of iterations performed from the starting of the algorithm to the first recourse to a global restart. The percentage value p is initially set to $0.05 n$ for instances with 'small' values of the starting solution (less than 10^{7}), and to 0.1 for the other instances. The value of p is increased of one third of its initial value whenever criterion (b) is applied twice consecutively. The value of the last parameter $S L$ is a little more sensitive to the instance. We set $S L=5$ for all instances, except for that of class C with $n \leq 100$, (see below Section 6) where we set $S L=10$.

Why the name?

Most of the metaheuristic and evolutionary methods owe their name to the resemblance of their behavior with some natural phenomenon. This is also true for \mathcal{X}-TS, but the phenomenon it tries to imitate is the way of operating of an expert human, in a particular field. Suppose you are a famous explorer whose main activity is to go to some lost-land to look for ancient treasures. In particular, suppose you are interested in finding a treasure hidden in a very large and intricate jungle. You can use all modern equipment (like helicopters, radios, etc.), but the nature of the environment makes them almost ineffective. For example you can take the helicopter and fly over the jungle, but it is so thick and intricate that nothing can be seen beneath the trees. So you can only choose a point on the map and descend to the ground from the helicopter with a rope. Then you can look around this point and if you find some interesting trace or piece of evidence, you can follow this trace and repeat your observation from the new position. Suppose you continue with this method until you see no interesting trace around your last position. Now you take your radio and call the helicopter that picks you up and delivers you to a new random position. This is exactly the behavior of a Multi-Start approach.

This explorer uses the technology, but not his brain. Indeed, he makes no effort to learn from his previous explorations. A more skilled explorer, instead, uses short and long term memory to drive the search. In order to obtain the maximum information from his walk on the ground and to avoid walking round in circles, he tries to remember the places where he has already passed by storing in his memory some peculiar aspects of the various places visited. So he moves from one point to an adjacent one, even if the second is no better than the first. This is the behavior of a beginning level explorer. A more advanced explorer recognizes exceptional interesting situations: for example, a series of consecutive traces. In this case he moves to a new point even if some aspects of the place are similar to those of places already visited. This can be seen as an intensification of the search, into a region close to the current position, obtained by discarding some old tabu status. If, instead, he does not see interesting traces for a certain time interval, then he becomes more cautious and tries to recall all the previously visited places, so that he certainly moves toward new places. This is a local diversification technique. But any explorer with a long experience also knows that if he is in a given point of the jungle and, looking around, he sees more than one interesting trace, then the best local trace does not always lead to the best find. Therefore he tries to recall good traces that he has seen during his walk, but has not followed. When the search fails to give interesting results for a long time, then he returns to the path at the point in which he recalls the first good unexplored trace, and continues the search in this new direction. This is an intensification of the search in the local area, but it is also a diversification from the current situation. Lastly, if the walk does not give good results for a long time he calls the helicopter and moves to a new area. These three ways of approaching the search are the three-level tools of our \mathcal{X}-TS method:

6. Computational experiments

We have implemented and tested the lower bounds of Section 3 and the approximating algorithms of Section 5. More precisely we have coded in C language the Multi-Start algorithm
(MS), the Simulated Annealing (SA) and four different Tabu Search algorithms. The first algorithm, called TS, is the beginning level tabu search. The second algorithm, denoted with TS1, is an improved version of TS obtained using the first level tool, algorithm TS2 is obtained from TS1 by adding the second level tool, and \mathcal{X}-TS is the complete algorithm which uses all the three-level tools. With these four implementations we aim to study the effect of each strategy on the final performances of the tabu search method. The computational experiments were performed on a Sun Sparc Ultra 2 workstation running under Unix System V 4.0.

To test the algorithms, we generated and solved 320 random instances from four different classes. The instances of Class A are obtained by randomly generating the costs $\left[c_{i j}\right]$ and the penalties a_{k}, in the interval $[0,100]$. The instances of Classes B, C and D are obtained by using, respectively, the intervals $[0,1000],[50,100]$ and $[500,1000]$. The number of rows and columns was set to $50,100,150$ and 200 . For each pair (n, Class) 20 random instances were generated and solved. We gave all the algorithms the same time limit: $4 n$ seconds.

The columns of the tables corresponding to the heuristic algorithms give: (i) the average percentage error $\Delta \%$ between the solution value and the lower bound value (i.e. $\Delta \%=$ 100 (upper bound value - LB) / LB); (ii) the number of times the procedure has found the best solution, among those generated by the heuristic algorithms (bst).

In Table 1 we report, for each value of n, the averages over the 80 instances generated from the four classes. The total number of best solutions found by the beginning level tabu search TS (see Figure 1) is more than double that of MS and SA. This value strictly increases

Figure 1: Grand total of the best solution found
when we add the first, the second and the third level tool. In particular, \mathcal{X}-TS obtains more than twice best solutions than TS. The average percentage error also decreases when we go from TS to \mathcal{X}-TS (see Figure 2). The error of SA, instead, is two times that of TS, while the error of MS is one order of magnitude larger. However, looking at the disaggregate data

Figure 2: Average errors (grand total)
of Table 2 we can see that the performances of MS change significantly with the class of instances and are not always bad. For class A it has very poor performances (only one best solution and errors up to two orders of magnitude larger than that of the other algorithms), but for the large instances of class D it performs very well and is slightly better than \mathcal{X} TS (for $n=200$ the average error of MS is 0.287 versus the average error of \mathcal{X}-TSwhich is 0.290).

Lastly it is worth noting that the performances of the tabu search improve at each addition of a tool, but the most significant changes are due to the first two tools. The situation is quite different when we consider other problems. For example in the equicut problem (see Dell'Amico and Maffioli, 1996; Dell'Amico and Trubian, 1997) the most important tools are the first and the third (tabu list management and global restarting strategy), while in the SS/TDMA problem considered in Dell'Amico, Maffioli and Trubian, 1997, the importance of the second tool (proximate good solutions management) and of the global restarting is comparable.

From these studies it seems that the tabu list management is a "basic" tool which should be used extensively in all tabu search algorithms. Instead the rules to determine when we have to use the second and the third tool are the object of a parameter tuning. Up to now we have no theory which helps to find these rules, therefore preliminary computational experiments are the only method we can apply to define rules and parameters. In the next section we propose some questions and research direction which should be considered to improve the use of long term memory and restarting strategies.

7. Conclusions and Future Research

We have considered an NP-complete problem which is obtained by substituting the objective function of the classic linear assignment problem with a cumulative function. We have

Table 1: Grand total for the four classes

n	MS	SA	TS	TS1	$\overline{\mathrm{TS} 2}$	\mathcal{X}-TS
	$\Delta \%$ bst					
50	1.2367	0.23128	0.25529	0.10041	0.08353	0.06852
100	5.4781	1.251	0.64919	0.36020	0.36935	0.31534
150	15.1987	3.496	1.26614	1.25511	1.09129	1.08330
200	31.67715	5.4240	3.4259	2.12416	$1.986 \quad 27$	2.06034
gr.tot	13.39730	2.60129	1.39971	0.96088	0.882144	0.881150

Sun Sparc Ultra 2 seconds, averages over 80 instances.
reviewed the relevant results of the literature and we have proposed a study of metaheuristic algorithms for solving the problem. In particular, we have carefully developed a procedure to explore a neighborhood function and have used this procedure to obtain different metaheuristic algorithms using different strategies with zero memory, local memory or long term memory. Lastly we have described a general meta-strategy using three tools from the tabu search framework. The resulting algorithm, called \mathcal{X}-TS, is a general well-structured tabu search approach. The computational results show that the systematic use of strategies based on long time memory helps towards improving dramatically the performances of a beginning level tabu search and that \mathcal{X}-TS is very effective as against other metaheuristic approaches.

We also observed that the rules and the parameters which determine the recourse to the second and third tools must be defined with preliminary computational experiments. The second level tool is a pure long term memory management, whilst the third one is a restarting procedure. Also the third tool can be considered a long term memory-based approach if we are able to drive the generation of new solutions far from the already visited areas. As already pointed out in the previous section, we believe that the study of procedures to generate feasible solutions which uniformly span the space of the solutions is a very important challenge in the theory of metaheuristic algorithms. But other questions arise. In particular, the use of long term memory would be much more effective if we know the mapping $\mathcal{M}_{\mathcal{N}}: S \rightarrow S$ which associates with each solution $s \in S$ the local minimum $\hat{s} \in S$ that we would find by applying a pure local search to s, with a certain neighborhood function \mathcal{N}. We believe that the study of properties of this mapping is a second very important challenge for future research. A third pont that should be considered for improving the theory of metaheuristic algorithms is how one can efficiently store the different local minima corresponding to already visited solutions and how one can efficiently check if the mapping of a given solution s corresponds to an already visited solution.

References

Aarts E., Korst J. H. M., and van Laarhoven P. J. M. (1997). Simulated Annealing. In E. Aarts and J. K. Lenstra (Eds.), Local Search in Combinatorial Optimization. J. Wiley \& Sons, Chichester, 91-120.

Balas E., and Saltzman E. J. (1989). Facets of the Three-Index Assignment Polytope. Discrete Applied Mathematics, 23, 201-229.

Balas E., and Saltzman E. J. (1991). An Algorithm for the Three-Index Assignment Problem. Operations Research, 39, 150-161.

Burkard R. E., and Rudolf R. (1993). Computational Investigation on 3-Dimensional Axial Assignment Problems. Belgian J. Oper. Res. Statist. Comput. Sci., 32, 85-98.

Burkard R. E., Rudolf R., and Woeginger G. J. (1996). Three-Dimensional Axial Assignment Problems with Decomposable Coefficients. Discrete Applied Mathematics, 65, 123139.

Camerini P., Fratta L., and Maffioli F. (1975). On Improving Relaxation Methods by Modified Gradient Techniques. Math. Prog. Study 3, 26-34.

Camerini P. M., Galbiati G., and Maffioli F. (1980). Complexity of Spanning Tree Problems: Part I. European J. Oper. Res., 5, 346-352.

Dell'Amico M., Labbé M., and Maffioli F. (1996). Complexity of Spanning Tree Problems with Leaf-Dependent Objective Function. Networks, 27, 175-181.

Dell'Amico M. and Maffioli F. (1996). A New Tabu Search Approach to the 0-1 Equicut Problem. In: I.H. Osman and P. Kelly (Eds). Meta-Heuristics: theory and applications, Kluwer Academic Publishers, 361-377.
Dell'Amico M., and Martello S. (1997a). The K-Cardinality Assignment Problem. Discrete Applied Mathematics, 76, 103-121.
Dell'Amico M., and Martello S. (1997b). Linear Assignment. In M. Dell'Amico, F. Maffioli and S. Martello (Eds.), Annotated Bibliographies in Combinatorial Optimization. J. Wiley \& Sons, Chichester, 355-371.

Dell'Amico M., and Trubian M. (1997). Solution of Large Weighted Equicut Problems. European J. Oper. Res. (to appear).

Dell'Amico M., Maffioli F., and Trubian M. (1997). New Bounds for Optimum Traffic Assignment in Satellite Communication. Materiali di Discussione 176, Department of Economics, University of Modena.
Fischetti M., Laporte G., and Martello S. (1993). The Delivery Man Problem and Cumulative Matroids. Operations Research, 41, 1055-1064.
Garey M. R., and Johnson D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, San Francisco.

Glover F., and Laguna M. (1997). Tabu Search. Kluwer Academic Publishers, Hingham.

Haas O. (1995). The Cumulative Assignment Problem - Local Search and Heuristics. Master Thesis, Dep. of Mathematics, University of Kaiserslautern, Germany

Laguna M., and Glover F. (1993). Tabu Search. In: C. R. Reeves (Ed.). Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publications, Oxford, 70-141

Lawler E. (1976). Combinatorial Optimization: Networks and Matroids, Holt, Reinehart and Winston.

Pierskalla W. P. (1968). The Multidimensional Assignment Problem. Operations Research, 16, 422-431.
Qi L., Balas E., and Gwan G. (1994). A New Facet Class and a Polyhedral Method for the Three-Index Assignment Problem. In Du D. Z. (Ed.). Advances in Optimization and Approximation, Kluwer Academic Publishers, 256-274.

Table 2, Sun Sparc Ultra 2 seconds, averages over 20 instances.

Class	n	MS $\Delta \%$ bst	SA $\Delta \%$ bst	TS $\Delta \%$ bst	$\begin{gathered} \text { TS1 } \\ \Delta \% \text { bst } \end{gathered}$	$\begin{aligned} & \hline \text { TS2 } \\ & \Delta \% \text { bst } \end{aligned}$	$\begin{aligned} & \hline \mathcal{X}-\mathrm{TS} \\ & \Delta \% \mathrm{bst} \end{aligned}$
	50	3.0701	$0.070 \quad 16$	0.47913	0.03919	0.12918	0.02520
A	100	15.6510	2.5341	1.598	0.486	$0.703 \quad 7$	0.48611
	150	50.0550	8.6880	3.277	2.981	$2.706 \quad 7$	2.693
	200	111.4520	15.6010	11.115	6.0527	5.46111	5.719
	tot	45.0571	6.72317	4.11721	2.39040	2.25043	2.23145

Class	n	$\Delta \%$ bst		$\Delta \% \mathrm{bst}$		$\Delta \%$ bst		$\Delta \%$ bst		$\Delta \% \mathrm{bst}$		$\Delta \% \mathrm{bst}$	
B	50	1.511	3	0.285	10	0.285	10	0.040	19	0.032	19	0.060	18
	100	5.603	0	1.408	0	0.364	8	0.355	9	0.280	9	0.280	9
	150	10.092	0	4.121	0	1.019	8	1.382	2	1.094	6	1.091	7
	200	14.668	0	5.040	0	1.886	6	1.785	6	1.887	8	1.962	8
	tot	7.969	3	2.714	0	0.889	2	0.891	36	0.823		0.848	

Class	n	$\Delta \%$ bst											
C	50	0.186	2	0.324	0	0.119	5	0.134	3	0.096	7	0.106	6
	100	0.367	0	0.523	0	0.319	6	0.284	3	0.257	8	0.255	6
	150	0.356	2	0.572	0	0.410	1	0.305	1	0.271	11	0.274	10
	200	0.301	4	0.458	0	0.366	1	0.306	3	0.292	4	0.268	10
	tot	0.303	8	0.469	0	0.303	13	0.257	10	0.229	30	0.226	32

Class	n	$\Delta \% \mathrm{bst}$	$\Delta \%$ bst									
	50	0.1781	0.245	2	0.138	1	0.187	0	0.076	9	0.080	8
D	100	0.2921	0.539	0	0.315	1	0.314	1	0.237	11	0.239	8
	150	$0.289 \quad 5$	0.604	0	0.358	2	0.353	1	0.294	5	0.275	8
	200	0.28711	0.596	0	0.334	1	0.354	0	0.302	4	0.290	7
	tot	$0.262 \quad 18$	0.496	2	0.286	5	0.302	2	0.227	29	0.221	31

1.	Maria Cristina Marcuzzo [1985] "Yoan Violet Robinson (19031983)", pp. 134	29.	Maria Cristina Marcuzzo (a cura di) [1988] "Richard F. Kahn. A discipline of Keynes", pp. 118
2.	Sergio Lugaresi [1986] "Le imposte nelle teorie del sovrappiü", pp. 26	30.	Paolo Bosi [1988] "MICROMOD. Un modello dell'economia italiana per la didattica della politica fiscale", pp. 34
3.	Massimo D'Angelillo e Leonardo Paggi [1986] "PCI e socialdemocrazie europee. Quale riformismo?", pp. 158	31.	Paolo Bosi [1988] "Indicatori della politica fiscale. Una rassegna e un confronto con l'aiuto di MICROMOD", pp. 25
4.	Gian Paolo Caselli e Gabriele Pastrello [1986] "Un suggerimento hobsoniano su terziario ed occupazione: il caso degli Stati Uniti 1960/1983", pp. 52	32.	Giovanna Procacci [1988] "Protesta popolare e agitazioni operaie in Italia 1915-1918", pp. 45
5.	Paolo Bosi e Paolo Silvestri [1986] "La distribuzione per aree disciplinari dei fondi destinati ai Dipartimenti, Istituti e Centri dell'Università di Modena: una proposta di riforma", pp. 25	33.	Margherita Russo [1988] "Distretto Industriale e servizi. Uno studio dei trasporti nella produzione e nella vendita delle piastrelle", pp. 157
6.	Marco Lippi [1986] "Aggregations and Dynamic in One-Equation Econometric Models", pp. 64	34.	Margherita Russo [1988] "The effect of technical change on skill requirements: an empirical analysis", pp. 28
7.	Paolo Silvestri [1986] "Le tasse scolastiche e universitarie nella Legge Finanziaria 1986", pp. 41	35.	Carlo Grillenzoni [1988] "Identification, estimations of multivariate transfer functions", pp. 33
8.	Mario Forni [1986] "Storie familiari e storie di proprietà Itinerari sociali nell'agricoltura italiana del dopoguerra", pp. 165	36. 37.	Nerio Naldi [1988] "'Keynes' concept of capital", pp. 40
9.	Sergio Paba [1986] "Gruppi strategici e concentrazione nell' industria europea degli elettrodomestici bianchi", pp. 56	38.	Giovanni Mottura [1988] "La 'persistenza' secolare. Appunti su agricoltura contadina ed agricoltura familiare nelle società industriali", pp. 40
10. 11.	Nerio Naldi [1986] "L'efficienza marginale del capitale nel breve periodo", pp. 54 Fernando Vianello [1986] "Labour Theory of Value", pp. 31	39.	Giovanni Mottura [1988] "L'anticamera dell'esodo. I contadini italiani della 'restaurazione contrattuale' fascista alla riforma fondiaria", pp. 40
12.	Piero Ganugi [1986] "Risparmio forzato e politica monetaria negli economisti italiani tra le due guerre", pp. 40	40.	Leonardo Paggi [1988] "Americanismo e riformismo. La socialdemocrazia europea nell'economia mondiale aperta", pp. 120
13.	Maria Cristina Marcuzzo e Annalisa Rosselli [1986] "The Theory of the Gold Standard and Ricardo's Standard Comodity", pp. 30	41.	Annamaria Simonazzi [1988] "Fenomeni di isteresi nella spiegazione degli alti tassi di interesse reale", pp. 44
14.	Giovanni Solinas [1986] "Mercati del lavoro locali e carriere di lavoro giovanili", pp. 66	42.	Antonietta Bassetti [1989] "Analisi dell'andamento e della casualità della borsa valori", pp. 12
15.	Giovanni Bonifati [1986] "Saggio dell'interesse e domanda effettiva. Osservazioni sul cap. 17 della General Theory", pp. 42	43.	Giovanna Procacci [1989] "State coercion and worker solidarity in Italy (1915-1918): the moral and political content of social unrest", pp. 41
16.	Marina Murat [1986] "Betwin old and new classical macroeconomics: notes on Lejonhufvud's notion of full information equilibrium", pp. 20	44.	Carlo Alberto Magni [1989] "Reputazione e credibilità di una minaccia in un gioco bargaining", pp. 56
17.	Sebastiano Brusco e Giovanni Solinas [1986] "Mobilità occupazionale e disoccupazione in Emilia Romagna", pp. 48	45.	Giovanni Mottura [1989] "Agricoltura familiare e sistema agroalimentare in Italia", pp. 84
18.	Mario Forni [1986] "Aggregazione ed esogeneita", pp. 13	46.	Mario Forni [1989] "Trend, Cycle and 'Fortuitous cancellation': a Note on a Paper by Nelson and Plosser", pp. 4
19.	Sergio Lugaresi [1987] "Redistribuzione del reddito, consumi e occupazione", pp. 17	47.	Paolo Bosi , Roberto Golinelli, Anna Stagni [1989] "Le origini del debito pubblico e il costo della stabilizzazione", pp. 26
20.	Fiorenzo Sperotto [1987] "L'immagine neopopulista di mercato debole nel primo dibattito sovietico sulla pianificazione", pp. 34	48.	Roberto Golinelli [1989] "Note sulla struttura e sull' impiego dei modelli macroeconometrici", pp. 21
21.	M. Cecilia Guerra [1987] "Benefici tributari nel regime misto per i dividendi proposto dalla commissione Sarcinelli: una nota critica", pp. 9	49.	Marco Lippi [1989] "A Shorte Note on Cointegration and Aggregation", pp. 11
22.	Leonardo Paggi [1987] "Contemporary Europe and Modern America: Theories of Modernity in Comparative Perspective", pp. 38	50.	Gian Paolo Caselli e Gabriele Pastrello [1989] "The Linkage between Tertiary and Industrial Sector in the Italian Economy: 1951 1988. From an External Dependence to an Intermational One", pp. 40
23.	Fernando Vianello [1987] "A Critique of Professor Goodwin's 'Critique of Sraffa'", pp. 12	51.	Gabriele Pastrello [1989] "Francois quesnay: dal Tableau Zig-zag al Tableau Formule: una ricostruzione", pp. 48
24.	Fernando Vianello [1987] "Effective Demand and the Rate of Profits. Some Thoughts on Marx, Kalecki and Sraffa", pp. 41	52.	Paolo Silvestri [1989] "Il bilancio dello stato", pp. 34
25.	Anna Maria Sala [1987] "Banche e territorio. Approccio ad un tema geografico-economico", pp. 40	53.	Tim Mason [1990] "Tre seminari di storia sociale contemporanea", pp. 26
26.	Enzo Mingione e Giovanni Mottura [1987] "Fattori di trasformazione e nuovi profili sociali nell'agricoltura italiana: qualche elemento di discussione", pp. 36	54.	Michele Lalla [1990] "The Aggregate Escape Rate Analysed throught the Queueing Model", pp. 23
27.	Giovanna Procacci [1988] "The State and Social Control in Italy	55.	Paclo Silvestri [1990] "Sull'autonomia finanziaria dell'università", pp. 11

58. Michele Lalla [1990] "Modelling Employment Spells from Emilia Labour Force Data", pp. 18
59. Gian Paolo Casellie Gabriele Pastrello [1990] "The service sector in planned economies. Past experiences and future prospectives", pp. 32
60. Giovanni Solinas [1990] "Competenze, grandi industrie e distretti industriah,. Il caso Magneti Marelli", pp. 23
61. Paola Bertolini [1990] "La situazione agro-alimentare nei paesi ad economia avanzata", pp. 20
62. Paola Bertolini [1990] "Sistema agro-alimentare in Emilia Romagna ed occupazione", pp. 65
63. Margherita Russo [1990] "Cambiamento tecnico e distretto industriale: una verifica empirica", pp. 115
64. Antonietta Bassetti e Costanza Tomicelli [1990] "Una riqualificazione dell'approccio bargaining alla selezioni di portafoglio", pp. 4

Antonietta Bassetti e Costanza Torricelli [1990] "Il portafoglio ottimo come soluzione di un gioco bargaining", pp. 15

Mario Forni [1990] "Una nota sull'errore di aggregazione", pp. 6
Francesca Bergamini [1991] "Alcune considerazioni sulle soluzioni di un gioco bargaining", pp. 21
81. Michele Grillo e Michele Polo [1991] "Political Exchange and the allocation of surplus: a Model of Two-party competition", pp. 34
82. Gian Paolo Caselli e Gabriele Pastrello [1991] "The 1990 Polish Recession: a Case of Truncated Multiplier Process", pp. 26
83. Gian Paolo Caselli e Gabriele Pastrello [1991] "Polish firms: Pricate Vices Pubblis Virtues", pp. 20

Sebastiano Brusco e Sergio Paba [1991] "Connessioni, competenze e capacità concorrenziale nell'industria della Sardegna", pp. 25
85. Claudio Grimaldi, Rony Hamaui, Nicola Rossi [1991] "Non Marketable assets and hauseholds' Portfolio Choice: a Case of Study of Italy", pp. 38
86. Giulio Righi, Massimo Baldini, Alessandra Brambilla [1991] "Le misure degli effetti redistributivi delle imposte indirette: confronto tra modelli alternativi", pp. 47
87. Roberto Fanfani, Luca Lanini [1991] "Innovazione e servizi nello sviluppo della meccanizzazione agricola in Italia", pp. 35
88. Antonella Caiumi e Roberto Golinelli [1992] "Stima e applicazioni di un sistema di domanda Almost Ideal per l'economia italiana", pp 34
89. Maria Cristina Marcuzzo [1992] "La relazione salari-occupazione tra rigidità reali e rigidità nominali", pp. 30
90. Mario Biagioli [1992] "Employee financial participation in enterprise results in Italy", pp. 50
91. Mario Biagioli [1992] "Wage structure, relative prices and international competitiveness", pp. 50
92. Paolo Silvestri e Giovanni Solinas [1993] "Abbandoni, esiti e carriera scolastica. Uno studio sugli studenti iscritti alla Facoltà di Economia e Commercio dell'Università di Modena nell'anno accademico 1990/1991", pp. 30
93. Gian Paolo Caselli e Luca Martinelli [1993] "Ttalian GPN growth 1890-1992: a unit root or segmented trend representatin?", pp. 30
94. Angela Politi [1993] "La rivoluzione fraintesa. I partigiani emiliani tra liberazione e guerra fredda, 1945-1955", pp. 55
95. Alberto Rinaldi [1993] "Lo sviluppo dell'industria metalmeccanica in provincia di Modena: 1945-1990", pp. 70
96. Paolo Emilio Mistrulli [1993] "Debito pubblico, intermediari finanziari e tassi d'interesse: il caso italiano", pp. 30
97. Barbara Pistoresi [1993] "Modelling disaggregate and aggregate labour demand equations. Cointegration analysis of a labour demand function for the Main Sectors of the Italian Economy: 19501990", pp. 45
98. Giovanni Bonifati [1993] "Progresso tecnico e accumulazione di conoscenza nella teoria neoclassica della crescita endogena. Una analisi critica del modello di Romer", pp. 50

Marcello D’Amato e Barbara Pistoresi [1994] "The relationship(s) among Wages, Prices, Unemployment and Productivity in Italy", pp 30
100. Mario Forni [1994] "Consumption Volatility and Income Persistence in the Permanent Income Model", pp. 30
101. Barbara Pistoresi [1994] "Using a VECM to characterise the relative importance of permanent and transitority components", pp. 28
102. Gian Paolo Caselli and Gabriele Pastrello [1994] "Polish recovery form the slump to an old dilemma", pp. 20
103. Sergio Paba [1994] "Imprese visibili, accesso al mercato e organizzazione della produzione", pp. 20
104. Giovanni Bonifati [1994] "Progresso tecnico, investimenti e capacità produttiva", pp. 30
105. Giuseppe Marotta [1994] "Credit view and trade credit: evidence from Italy", pp. 20
106. Margherita Russo [1994] "Unit of investigation for local economic development policies", pp. 25
107. Luigi Brighi [1995] "Monotonicity and the demand theory of the weak axioms", pp. 20
108. Mario Forni e Lucrezia Reichlin [1995] "Modelling the impact of technological change across sectors and over time in manufactoring", pp. 25
109. Marcello D'Amato and Barbara Pistoresi [1995] "Modelling wage growth dynamics in Italy: 1960-1990", pp. 38
110. Massimo Baldini [1995] "INDIMOD. Un modello di microsimulazione per lo studio delle imposte indirette", pp. 37
111. Paolo Bosi [1995] "Regionalismo fiscale e autonomia tributaria l'emersione di un modello di consenso", pp. 38
112. Massimo Baldini [1995] "Aggregation Factors and Aggregation Bias in Consumer Demand", pp. 33
113. Costanza Torricelli [1995] "The information in the term structure of interest rates. Can stocastic models help in resolving the puzzle?" pp. 25
114. Margherita Russo [1995] "Industrial complex, pôle de développement, distretto industriale. Alcune questioni sulle unità di indagine nell'analisi dello sviluppo." pp. 45
115. Angelika Moryson [1995] "50 Jahre Deutschland. 1945-1995"pp. 21
116. Paolo Bosi [1995] "Un punto di vista macroeconomico sulle caratteristiche di lungo periodo del nuovo sistema pensionistico italiano." pp. 32
117. Gian Paolo Caselli e Salvatore Curatolo [1995] "Esistono relazion stimabili fra dimensione ed efficienza delle istituzioni e crescita produttiva? Un esercizio nello spirito di D.C. North." pp. 11
118. Mario Forni e Marco Lippi [1995] "Permanent income, heterogeneity and the error correction mechanism." pp. 21
119. Barbara Pistoresi [1995] "Co-movements and convergence in international output. A Dynamic Principal Components Analysis" pp. 14
120. Mario Forni e Lucrezia Reichlin [1995] "Dynamic common factors in large cross-section" pp. 17
121. Giuseppe Marotta [1995] "Il credito commerciale in Italia: una nota su alcuni aspetti strutturali e sulle implicazioni di politica monetaria" pp. 20
122. Giovanni Bonifati [1995] "Progresso tecnico, concorrenza e decisioni di investimento: una analisi delle determinanti di lungo periodo degli investimenti" pp. 25
123. Giovanni Bonifati [1995] "Cambiamento tecnico e crescita endogena: una valutazione critica delle ipotesi del modello di Romer" pp. 21
124. Barbara Pistoresi e Marcello D'Amato [1995] "La riservatezza del banchiere centrale è un bene o un male? ,Effetti dell'informazione incompleta sul benessere in un modello di politica monetaria." pp. 32
125. Barbara Pistoresi [1995] "Radici unitarie e persistenza: l'analisi univariata delle fluttuazioni economiche." pp. 33
126. Barbara Pistoresi e Marcello D'Amato [1995] "Co-movements in European real outputs" pp. 20
127. Antonio Ribba [1996] "Ciclo economico, modello lineare-stocastico, forma dello spettro delle variabili macroeconomiche" pp. 31
128. Carlo Alberto Magni [1996] "Repeatable and una tantum real options a dynamic programming approach" pp. 23
129. Carlo Alberto Magni [1996] "Opzioni reali d'investimento e interazione competitiva: programmazione dinamica stocastica in optimal stopping" pp. 26
130. Carlo Alberto Magni [1996] "Vaghezza e logica fuzzy nella valutazione di un'opzione reale" pp. 20
131. Giuseppe Marotta [1996] "Does trade credit redistribution thwart monetary policy? Evidence from Italy" pp. 20
132. Mauro Dell'Amico e Marco Trubian [1996] "Almost-optimal solution of large weighted equicut problems" pp. 30
133. Carlo Alberto Magni [1996] "Un esempio di investimento industriale con interazione competitiva e avversione al rischio" pp. 20
134. Margherita Russo, Peter Borkey, Emilio Cubel, François Lévêque, Francisco Mas [1996] "Local sustainability and competitiveness: the case of the ceramic tile industry" pp. 66
135. Margherita Russo [1996] "Camionetto tecnico e relazioni tra imprese" pp. 190

David Avra Lane, Irene Poli, Michele Lalla, Alberto Roverato [1996] "Lezioni di probabilità e inferenza statistica" pp. 288
137. David Avra Lane, Irene Poli, Michele Lalla, Alberto Roverato [1996] "Lezioni di probabilità e inferenza statistica - Esercizi svolti "pp. 302
138. Barbara Pistoresi [1996] "Is an Aggregate Error Correction Model Representative of Disaggregate Behaviours? An example" pp. 24
139. Luisa Malaguti e Costanza Torricelli [1996] "Monetary policy and the term structure of interest rates", pp. 30
140. Mauro Dell'Amico, Martine Labbé, Francesco Maffioli [1996] "Exact solution of the SONET Ring Loading Problem", pp. 20
141. Mauro Dell'Amico, R.J.M. Vaessens [1996] "Flow and open shop scheduling on two machines with transportation times and machineindependent processing times in NP-hard, pp. 10
142. M. Dell'Amico, F. Maffioli, A. Sciomechen [1996] "A Lagrangean Heuristic for the Pirze Collecting Travelling Salesman Problem", pp. 14
143. Massimo Baldini [1996] "Inequality Decomposition by Income Source in Italy - 1987-1993", pp. 20
144. Graziella Bertocchi [1996] "Trade, Wages, and the Persistence of Underdevelopment" pp. 20
145. Graziella Bertocchi and Fabio Canova [1996] "Did Colonization matter for Growth? An Empirical Exploration into the Historical Causes of Africa's Underdevelopment" pp. 32
146. Paola Bertolini [1996] "La modernization de l'agricolture italienne et le cas de l'Emilie Romagne" pp. 20
147. Enrico Giovannetti [1996] "Organisation industrielle et développement local: le cas de l'agroindutrie in Emilie Romagne" pp. 18
148. Maria Elena Bontempi e Roberto Golinelli [1996] "Le determinanti del leverage delle imprese: una applicazione empirica ai settori industriali dell'economia italiana" pp. 31
149. Paola Bertolini [1996] "L'agriculture et la politique agricole italienne face aux recents scenarios", pp. 20
150. Enrico Giovannetti [1996] "ll grado di utilizzo della capacità produtiva come misura dei costi di transizione: una rilettura di 'Nature of the Firm' di R. Coase", pp. 75
151. Enrico Giovannetti [1996] "Il Io ciclo del Diploma Universitario Economia e Amministrazione delle Imprese", pp. 25
152. Paola Bertolini, Enrico Giovannetti, Giulia Santacaterina [1996] "Il Settore del Verde Pubblico. Analisi della domanda e valutazione economica dei benefici", pp. 35
153. Giovanni Solinas [1996] "Sistemi produttivi del Centro-Nord e del Mezzogiorno. L'industria delle calzature", pp. 55
154. Tindara Addabbo [1996] "Married Women's Labour Supply in Italy in a Regional Perspective", pp. 85
155. Paolo Silvestri, Giuseppe Catalano, Cristina Bevilacqua [1996] "Le tasse universitarie e gli interventi per il diritto allo studio: la prima fase di applicazione di una nuova normativa" pp. 159
156. Sebastiano Brusco, Paolo Bertossi, Margherita Russo [1996] "L'industria dei rifiuti urbani in Italia", pp. 25
157. Paolo Silvestri, Giuseppe Catalano [1996] "Le risorse del sistema universitario italiano: finanziamento e governo" pp. 400
158. Carlo Alberto Magni [1996] "Un semplice modello di opzione di differimento e di vendita in ambito discreto", pp. 10
159. Tito Pietra, Paolo Siconolfi [1996] "Fully Revealing Equilibria in Sequential Economies with Asset Markets" pp. 17
160. Tito Pietra, Paolo Siconolfi [1996] "Extrinsic Uncertainty and the Informational Role of Prices" pp. 42
161. Paolo Bertella Farnetti [1996] "Il negro e il rosso. Un precedente non esplorato dell'integrazione afroamericana negli Stati Uniti" pp. 26
162. David Lane [1996] "Is what is good for each best for all? Learning from others in the information contagion model" pp. 18
163. Antonio Ribba [1996] "A note on the equivalence of long-run and short-run identifying restrictions in cointegrated systems" pp. 10
164. Antonio Ribba [1996] "Scomposizioni permanenti-transitorie in sistemi cointegrati con una applicazione a dati italiani" pp. 23
165. Mario Forni, Sergio Paba [1996] "Economic Growth, Social Cohesion and Crime" pp. 20
166. Mario Forni, Lucrezia Reichlin [1996] "Let's get real: a factor analytical approch to disaggregated business cycle dynamics" pp. 25
167. Marcello D'Amato e Barbara Pistoresi [1996] "So many Italies: Statistical Evidence on Regional Cohesion" pp. 31
168. Elena Bonfiglioli, Paolo Bosi, Stefano Toso [1996] "L'equità del contributo straordinario per l'Europa" pp. 20
169. Graziella Bertocchi, Michael Spagat [1996] "Il ruolo dei licei e delle scuole tecnico-professionali tra progresso tecnologico, conflitto sociale e sviluppo economico" pp. 37
170. Gianna Boero, Costanza Torricelli [1997] "The Expectations Hypothesis of the Term Structure of Interest Rates: Evidence for Germany" pp. 15
171. Mario Forni, Lucrezia Reichlin [1997] "National Policies and Local Economies: Europe and the US" pp. 22
172. Carlo Alberto Magni [1997] "La trappola del Roe e la tridimensionalità del Van in un approccio sistemico", pp. 16
173. Mauro Dell'Amico [1997] "A Linear Time Algorithm for Scheduling Outforests with Communication Delays on Two or Three Processor"pp. 18
174. Paolo Bosi [1997] "Aumentare l'età pensionabile fa diminuire la spesa pensionistica? Ancora sulle caratteristiche di lungo periodo della riforma Dini" pp. 13
175. Paolo Bosi e Massimo Matteuzzi [1997] "Nuovi strumenti per l'assistenza sociale" pp 31
176. Mauro Dell'Amico, Francesco Maffioli e Marco Trubian [1997] "New bounds for optium traffic assignment in satellite communication" pp. 21
177. Carlo Alberto Magni [1997] "Paradossi, inverosimiglianze e contraddizioni del Van: operazioni certe" pp. 9
178. Barbara Pistoresi e Marcello D'Amato [1997] "Persistence of relative unemployment rates across italian regions" pp. 25
179. Margherita Russo, Franco Cavedoni e Riccardo Pianesani [1997] "Le spese ambientali dei Comuni in provincia di Modena, 1993-1995" pp. 23
180. Gabriele Pastrello [1997] "Time and Equilibrium, Two Elisive Guests in the Keynes-Hawtrey-Robertson Debate in the Thirties" pp. 25
181. Luisa Malaguti e Costanza Torricelli [1997] "The Interaction Between Monetary Policy and the Expectation Hypothesis of the Term Structure of Interest rates in a N-Period Rational Expectation Model" pp. 27
182. Mauro Dell'Amico [1997] "On the Continuous Relaxation of Packing Problems - Technical Note" pp. 8
183. Stefano Bordoni [1997] "Prova di Idoneità di Informatica Dispensa Esercizi Excel 5"pp 49
184. Francesca Bergamini e Stefano Bordoni [1997] "Una verifica empirica di un nuovo metodo di selezione ottima di portafoglio" pp. 22
185. Gian Paolo Caselli e Maurizio Battini [1997] "Following the tracks of atkinson and micklewright the changing distribution of income and earnings in poland from 1989 to 1995".pp 21
186. Mauro Dell’Amico e Francesco Maffioli [1997] "Combining Linear and Non-Linear Objectives in Spanning Tree Problems" pp. 21
187. Gianni Ricci e Vanessa Debbia [1997] "Una soluzione evolutiva in un gioco differenziale di lotta di classe" pp. 14
188. Fabio Canova e Eva Ortega [1997] "Testing Calibrated General Equilibrium Model" pp 34
189. Fabio Canova [1997] "Does Detrending Matter for the Determination of the Reference Cycle and the Selection of Turning Points?" pp. 35
190. Fabio Canova e Gianni De Nicolo [1997] "The Equity Premium and the Risk Free Rate: A Cross Country, Cross Maturity Examination" pp. 41
191. Fabio Canova e Angel J. Ubide [1997] "International Business Cycles, Financial Market and Household Production" pp. 32
192. Fabio Canova e Gianni De Nicolò [1997] "Stock Returns, Term Structure, Inflation and Real Activity: An International Perspective" pp. 33
193. Fabio Canova e Morten Ravn [1997] "The Macrocconomic Effects of German Unification: Real Adjustmentsand the Welfare State" pp. 34
194. Fabio Canova [1997] "Detrending and Business Cycle Facts" pp. 40
195. Fabio Canova e Morten O. Ravn [1997] "Crossing the Rio Grande: Migrations, Business Cycle and the Welfare State" pp. 37
196. Fabio Canova e Jane Marrinan [1997] "Sources and Propagation of International Output Cycles: Common Shocks or Transmission?" pp. 41
197. Fabio Canova e Albert Marcet [1997] "The Poor Stay Poor: NonConvergence Across Countries and Regions" pp. 44
198. Carlo Alberto Magni [1997] "Un Criterio Strutturalista per la Valutazione di Investimenti" pp. 17
199. Stefano Bordoni [1997] "Elaborazione Automatica dei Dati" pp. 60
200. Paolo Bertella Farnetti [1997] "The United States and the Origins of European Integration" pp. 19
201. Paolo Bosi [1997] "Sul Controllo Dinamico di un Sistema Pensionistico a Ripartizione di Tipo Contributivo" pp 17
202. Paola Bertolini [1997] "European Union Agricultural Policy: Problems and Perspectives" pp 18
203. Stefano Bordoni [1997] "Supporti Informatici per la Ricerca delle soluzioni di Problemi Decisionali" pp30

Carlo Alberto Magni [1997] "Paradossi, Inverosimiglianze e Contraddizioni del Van: Operazioni Aleatorie" pplo

Carlo Alberto Magni [1997] "Tir, Roe e Van: Distorsioni linguistiche e Cognitive nella Valutazione degli Investimenti" pp 17
206. Gisella Facchinetti, Roberto Ghiselli Ricci e Silvia Muzzioli [1997] "New Methods. For Ranking Triangular Fuzzy Numbers: An Investment Choice" pp 9

Mauro Dell'Amico e Silvano Martello [1997] "Reduction of the Three-Partition Problem" pp 16
208. Carlo Alberto Magni [1997] "IRR, ROE and NPV: a Systemic Approach" pp. 20

