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Abstract

In this paper we address the problem of planning the capacity of the local rings
in Synchronous Optical NETworks (SONET). We present efficient lower and upper
bound procedures and a branch and bound algorithm which is able to find the exact
solution of large instances within short computing times.
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1 Introduction

One of the most successful ways to exploit the great potential of fiber optics technology is
offered by the recent introduction of the Synchronous Digital Hierarchy (SDH) in Europe
and Synchronous Optical NETwork (SONET) in the US. This has suggested a number of
new optimization problems, most of them in the field of Combinatorial Optimization. We
address here the problem of planning the capacity of a single bi-directional ring of n fiber
links connectink n Add-and-Drop Multiplexers (ADM) corresponding to n customer (or
set of customers) locations.

This problem has been first studied in [1] where it is called the SONET Ring Loading
Problem. To the author’s knowledge no exact approach has yet been proposed for this
problem, which is known to be NP-hard [1], but not yet satisfactory classified with respect
to its approximability status: in particular it is still unknown if it can have a Polynomial
Time Approximation Scheme. Only when the demands are all equal to one the problem
is known to be polynomially solvable [2].

After having formulate the problem and presented a simple heuristic having a factor
of 2 approximability guarantee in Section 2, we present in Section 3 a strongly polynomial
algorithm for the continuous relaxation of the integer formulation. This is exploited in
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Section 4 within an exact branch-and-bound approach, whose performances are extensively
tested as shown by the computational results in Section 5.

2 Formulation and heuristic solution

We are given a ring graph G = (V, E) that is a simple circuit with node set V = {1,... ,n}
and edge set £ = {1,...,n}. We also consider a set of m demands D = {1,...,m}. Each
demand ¢ is defined by an origin node o;, a destination node d; and a weight w; which
represent the amount of traffic which must be routed from o; to d; along the ring. The
entire traffic of a demand must be routed either clockwise or counter-clockwise and it
cannot be splitted to be transmitted on both directions contemporarily. Fach edge £ € E
may be initially loaded with a fixed trathic ¢, > 0, which i1s independent of the demands in
D (this traffic is due to pre-routed demands). The problem we consider is to determine
the routing of each demand in D, in order to minimize the total load of an edge.

Without loss of generality we can assume that all the input data are integers.

In order to present a mathematical model we need to introduce some notation. For
each demand : let II7 denote the path from node o; to node d;, clockwise, and II; the
path from o; to d;, counter-clockwise. For each demand ¢ € D let z; be a boolean variable
which takes value one if the traffic w; is routed clockwise, value zero otherwise. We also
use the continuous variable z to identify the maximum load of an edge. The model is as
follows.

(P) minz (1)

stz > > wze+ Y, wi(l—wp)+t, VEE, (2)
k:0eTlf kLelly

z, € {0,1}, Vke€ D. (3)

The objective function (1) minimizes the maximum load of an edge. Constraints (2) ensure
that the value of variable z is not less than the load of each edge ¢ € E. In particular the
first sum in (2) gives the total load of edge ¢ due to the demands routed clockwise; the
second sum gives the load due to the demands routed counter-clockwise. Constraints (3)
impose that the variables are binary.

The continuous relaxation C(P) of problem P is obtained by allowing the variables z;
to assume any real value in [0, 1], i.e. substituting (3) with

0<zx <1, Vk e D. (3"

Then a demand can be splitted routing part of the traffic w; clockwise and the remain-
ing traffic counter-clockwise.

A feasible solution for problem P can be obtained from the solution of the continuous
relaxation by rounding each variable with fractional value to the closest integer. This
corresponds to route each fractional demand k (i.e a demand associated with a value z;
with 0 < zp < 1) either clockwise (counter-clockwise) if zx > 0.5 (zx < 0.5). We call HR
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the heuristic algorithm which determine an approximate solution by applying this simple
rounding technique.

Theorem 2.1 The value of the solution obtained by algorithm HR is at most two times
the value of the optimal solution

Proof. Algorithm HR routes the entire traffic of a demand k along the path I} if z; > 0.5
and along I, otherwise. It follows that the traffic on an edge in the approximate solution
is at most two times the traffic routed on that edge in the continuous relaxation. Thus
the maximum load of an edge in the heuristic solution is at most 2L, were L is the value
of the continuous relaxation. Since L is a lower bound on the optimum solution value the

result follows. O

Algorithm HR can be improved by introducing a post-processing of the first A demands
with largest weight, having fractional values. In particular we start by rounding the
values of the variables of all demands, except that of the K fractional selected. Then we
enumerate the 25 solutions obtained with all the possibie routing combinations of the K
fractional demands and we choose the best integer solution. If K is a constant independent
of the input data the procedure can be implemented to run in polynomial time. We call

this improved algorithm AHR.
In the next section we show how to solve efficiently problem C(P). The effectiveness of

procedure KHR is evaluated in Section 5.

3 A strongly polynomial algorithm for the continu-
- ous relaxation

Before giving the details of our efficient algorithm to solve problem C(P), we need to
introduce some further notation. For each pair of distinct edges r € E,s € E let C,
denote the set of crossing demands, i.e. the set of demands which must be routed exactly

on one of the two edges r, s. Formally,
Crs={keD:rellf andsclly or rcll; and s € II}}.

Any pair of distinct edges (r, s) partitions the node set into two subsets, and is thus called

a straight cut of G.

In the following we will speak indifferently of the pair of distinct edges (r, s) or of the
cut (r,s). Let 7 denote the set of all possible straight cuts of G.

Given a demand index ¢ € D and a partial solution x4,k = 1,...,1, let

FZ = Z WrTE + Z wk(l — .’Itk), le F

k<i:ell} k<ielly

denote the total traffic on edge ¢, due to the first ¢ demands. In a solution to C(P), the
load of an edge £ is then F}* + t,.



We start the description of our algorithm by introducing a simple lower bound on the
value of the optimal solution to C(P). Given a cut (r, s) one can see that the traffic of each
crossing demand must be routed through edge r or edge s, so

1
Ll == max( >, wp+t +1,) (4)
2 (r,s)€T kEC.,

is a valid lower bound.
Since the optimal load of an edge £ € E is at least t;, an improved bound is

L = max{L1, L2}, (5)

with L2 = maxeegt;. The bound L is the optimal solution value for problem C(P). To
prove this we give an O(mn?) algorithm, called CSONET, which determines a feasible
solution to C(P).

Our algorithm considers a demand at a time and routes it optimally by determining the
maximum traffic which can be routed clockwise (or counter-clockwise) without exceeding
the bound L. More precisely we have m iterations, one for each demand. At iteration ¢
the routing of the first 7 — 1 demands is already fixed so that the edges of the ring have
preassigned loads and we consider demand 7 and the path IT}. For all edges and straight
cuts in II} we compute two values C'1 and C2, similar to L1 and L2, which give the total
amount of traffic which have to be certainly routed on some edge of I}, disregarding
demand i. We do the same for path II; and we determine the gaps A* and A~ between
the lower bound L and the above quantities. If AT > A~ then we route the traffic equal
to the minimum of w; and At along II}, and the possibly remaining traffic of demand :
along II7. A similar routing is made if A~ > Ay, but with paths I} and II; exchanged.

The details of procedure CSONET are given in the pseudocode below.

Algorithm CSONET
begin
compute L1 = 1 max ( > wi + 1t +1,);
(r,s)er =
compute L = max(L1, maxcg tr);
for each £ € E do F) :=0;
for 1:=1tondo
Cl:= % max ( Z wg + Ff"l + Fi7l 4, +t,);
(rs)ellf k>i
k€Cre
C2 := maxep+ (te + E,7h)
AY := L — max(C1, C2);
Cl:=1 max ( Y w4+ F 7'+ F7 4+t +1t);

2 (r,s)EH‘_ k 2 i
k € Crs

C2 := maX,en-(te + Fi™h



AT := L —max(C1,C2);
if At > A~ then

x; := min(l, %—j—);
else
z; := max(0,1 — ﬁ}—:);
endif
endfor
end.

The following theorem proves the correcteness of algorithm CSONET

Theorem 3.1 Algorithm CSONET determines an optimal solution of problem C(P) and
the optimal solution value is L.

Proof. We show that at the end of each iteration z of the main loop for in CSONET, the
following two conditions hold:

1 N .
L2 5( X wtF+F+t+t) Yrs)er (6)
k>i
keCrs
L > t,+F}, VI€E. (7)

If condition (7) is satisfied at the end of the n-th iteration, then no edge £ has load greater
than L. Since value L is a lower bound on the optimal solution value to C(P), then the
solution provided by algorithm CSONET is optimal and the result follows.

We now prove, by induction, that conditions (7)—(6) hold at each iteration. We will
give the details of the proof for the case AT > A~ the prove for the other case (A* < A7)
can be obtained with similar arguments.

The two conditions (7) and (6) are certainly satisfied at the beginning of the procedure
(iteration 0), by definition of L. Now suppose they hold at the end of iteration i — 1
(0 < 7 < n): we will show that they hold also at the end of iteration ¢.

From the definition of C1 and C2, and the fact that conditions (7) and (6) are satisfied
at the end of iteration 7 — 1, we have that C1 < L,C2 < L, so AY > 0 and the algorithm
routes w;z; (=min(w;, A*)) traffic units of demand ¢, on each edge ¢ € II}.

We first prove that the thesis holds for the edges and the straight cuts in II7. From
the above considerations we have that w;z; < At < L —C2and C2 > t,+ FZ'I for each
¢ € TI, so that L > t, + F;~' + w;z;. Since F§j = F;~' + w;x;, condition (7) immediately
holds. Similarly, for condition (6) we have

1 . .
wiz; SAT<SL-C1<L—2( Y w+F 7 +F7+t+1,)
2 k> i

k € Cre



for each r € [T}, s € 11F. Since demand 1 is not included in C, ; for all r € I} and s € II}

we have

1 : : 1 S

L= 50 wk+F:“‘+F;‘1+2wixi+tr+ts):5( Yo wp+F A+ Fy+t 4 t,)
k>i k>1
keCrs keCrs

and condition (6) holds for any straight cut in II;.

We now prove that the two conditions (6), (7) hold for the edges and the straight cuts
in II7. If z; = 1 then no traffic from demand z is routed on path II;, so the only remaining
case is 0 < A+ < w; (i.e. the algorithm routes A¥ traffic units along path II} and w; — A+
along II7). By definition of At we know that after iteration i at least one of the following

two cases arises: '
case (i) an edge £ in 1T is saturatedie. t; + F;™' +wiz; =t 4+ F} = L,
case (ii) a straight cut (r,s) with r € II}, s € [I} is saturated, i.e.

1 . . 1 . )
SO WA T FET e+ 428 ) = D)) w+ EP+ Fi 4t + 1) = L
205 25

ke Cr,s ke Cr,s

In the remaining of the proof we refer to four particular edges r,s,u,v (see Figure 1),
with » € IIT, s € 1}, v € II7, v € II7and such that edge r preceedes edge s, if we move

[ 19 1

clockwise from o; to d;, and u preceedes v, if we move counter-clockwise from o; to d;.

0;

Figure 1: The four particular edges r,s,u and v.
Case (i). Let r denote the edge in I} saturated by the routing of demand i, i.e
tr+ FF' 4+ AT =L (8)
Since condition (6) holds, at the end of iteration ¢ — 1, for any cut (r, j) with r € II} and
j € II7, we have that
l( Yo w+ FTN A FE 4t ) = —;-( o wptwi+ FTN 4 F 4+ < L(9)

2 k>1i k>i
keCjr k€ Gy
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Multiplying inequality (9) by 2 and subtracting equation (8) we obtain:

Yo wpdw+ FTP = AT+, < L
k>1
ke C_j,r
Observing that Ff = Fj“l +w; — A™, for each edge 7 € I, we immediately conclude that
t; + F} < L, and condition (7) holds.

Condition (6) has to be considered for straight cuts in [I7 only if I contains at least
two distinct edges, say w and v. Therefore we can refer to the two cuts (u,r) and (v, r).
Adding two inequalities of the type (9) for y = v and j = u, respectively, and subtracting
(8) we obtain

1 . )
-2—( Z wy + Z wk+2wi+FZ”l +Fj_1+tu+tv—2A+) < L.
k>1 k>1
kecu,r kEcv,r

Reminding again that F® = Fi~! 4+ w; — A% and that F! = Fi~! + w; — A%, we obtain

1 . ‘

5( o we+ Y, wk+Fi+F4t,+t) < L.
k>i k>i

kecu,r kECV,I‘

It is now sufficient to observe that C,, C C,, U C,, to derive

1 . .
2 g
>1
k € Cu

which shows that condition (6) holds for any straight cut (u,v) in II;.

Case(ii). Let (r,s) with r € II} and s € I} denote the saturated cut, i.e.
1 . .
5 o wp+ TN T bt 4+ t)+ AT =L (10)
K>i
keCrs

and consider an edge j € II] and the two cuts (j,7) and (7, s). Note that inequality (9) can
be rewritten with s instead of r, so that adding the two inequalities of type (9) associated
with cuts (j,7) and (j, s), and observing that: C,, C C;, U C;, we obtain

. 1 : :
tj+wi+F;“+§( S w4 Py 1) <20
k>1
ke Crs

Subtracting equation (10) and reminding that: (a) demand i ¢ Cy.; (b) Fi = F; ™" +w; —
At we obtain t; + F} < L and condition (7) holds.

7



We conclude the proof by showing that condition (6) holds also for any cut (u,v)
with v € II; and v € II7. Consider the two cuts (v,7) and (u,s) and observe that
CuyUC,s C O, UC, . Adding the two inequalities of type (9) associated to the cuts
(u,s) and (v, r), and subtracting equation (10) we obtain

LS we+ B R bt 2w - AY) <
2 k>
kECu,V

Since F} = F;™' 4wy — A*, V£ € TI7 condition (6) immediately follows. O

3.1 Complexity and implementation

Algorithm CSONET performs m iterations, one for each demand. At the generic iteration
1 we have to compute two times the quantities C'l and C2. Each evaluation of C'2 requires
O(n) time, whereas to determine the value of C'l we have to consider all the possible
straight cuts with both edges in I} (or in II]) and for each cut (r,s) we have to compute

ST owp+ T FU 4t 4t (11)
k>i
k€ Crg

A naive implementation requires O(m) time for each evaluation of (11), and O(mn?)
time to determine C'1. A more efficient implementation can be obtained using a matrix
A = [a;;] to store the n x (n —1)/2 sums {>Jwi : k > i,k € C,,}, for all cuts (r,s) of
the ring. With this data structure we need O(1) time to evaluate (11) and O(n?) time
to determine C'1. Matrix A needs to be initialized at iteration 0 of the algorithm and
updated when each iteration is concluded. The construction of the initial matrix can be
done in O(mn) time, as we show here below. The updating, instead, requires O(n?) time
since it is enough to consider all the (n? ~ n)/2 cuts (r,s) and subtract w; from a, , if
i € Cys. Therefore the overall time complexity of algorithm CSONET is O(mn?).

Moreover we note that if matrix A is given, then the lower bound L1 can be computed
in O(n?), and the lower bound L2 can be obtained in O(n). Therefore if one is only
interested into the value L of the solution to C(P) (and not to the corresponding values
of z;) the entire computation requires O(mn) time against the O(mn?) time necessary to
have the complete solution.

We now show how to compute the initial matrix A in O(mn) time. We select each
edge r in turn and we compute the weight a,s = Yy, , wr + 1 + ;s for all s € E,s # 7.
The computation of the values a, ; starts with s being the first edge following r, clockwise,
and continue choosing s as the next edge of the ring, clockwise, until we reach r. At the
first step, when r and s are adjacents, the value of a, s is given by the sum of all demands
with origin or destination in the node common to the edges r and s. When we consider
a cut (r, s’) immediately after the computation of a, s, with s and s’ being adjacent edges

8



Figure 2: The case of adjacents edges while computing matrix A.

(see Figure 2), we do not need to compute the new value from scratch, but it is enough to
set a,y = a,,, and then to remove from a, .« the weights of the demands which have their
origin or destination in the node 5 common to s and s’ and destination or origin on the path
from r to s, clockwise, and to add to a, the weights of the demands which have origin
or destination on node j and destination or origin on the path from s’ to r, clockwise. For
a given edge r, during the computation of all the values a, ,, we consider each demand at
most twice, so giving a time complexity of O(m). Repeating this procedure for the n — 1
possible choices of r we obtain the overall time complexity of O(mn).

4 An exact algorithm

The results of the previous sections have been used to develop a depth-first branch-and-
bound algorithm for the exact solution of problem P. Our basic algorithm is as follows.

We use a binary decision teee. At the each node we solve problem C(P) modified
by fixing the routing of a set of demands. Among the demands routed with a fractional
traffic, in the solution to C(P), we determine the one having maximum traffic. Two child
nodes are generated by assigning this demand either clockwise or counter-clockwise.

At the root node we set t, = 0 for each £ € E, then we apply algorithm CSONET of the
previous section to solve problem C(P) and to obtain the lower bound L. The continuous
solution is used by algorithm K HR of Section 2 to obtain an heuristic solution of value
UB. If L = UB we are done, otherwise we start the exploration of the branching decision
tree. When a demand i is routed along a path = (i.e. a forward step is performed) we
increase by w; the values ¢, for each £ € 7. When a backtracking occurs the value w; is
subtracted from t,, for all £ € w. Observe that the loads ¢, completely describe the traffic
due to a partial solution, therefore no modification in the algorithms of Sections 2 and 3
is required in order to compute lower and upper bounds for the intermediate nodes of the
tree.

Preliminary computational experiments performed with instances randomly generated



as in [1] show that the time required by our algorithm to find an optimal solution is one
order of magnitude less than the time required by CPLEX to find an integer solution
which is within 0.5% of the optimum (for more details on the experiments with CPLEX
see [1]).

Stimulated by these results we tried to improve the performances of our basic algorithm
with several techniques.

Presorting of the demands. We observed experimentally that the value of the heuristic
solution obtained with KHR is very close to the optimum value. Therefore we decided
to change the branching rule. We do not select the fractional variable with maximum
traffic, but the first fractional variable in a presorted list. This list is defined in such a way
that that the first descent in the branch-decision-tree, from the root node to a leaf, builds
exactly the heuristic solution. Our guess is that a limited number of backtrackings (i.e.
routing changes) are required to obtain the optimal solution. We also tried a presorting
by nonincreasing weights.

Improvement of the lower bound. Given the solution to C(P), we consider the K largest
demands with fractional value (where K is the same parameter introduced in Section 2
to obtain the improved heuristic algorithm). Similarly to procedure KHR, we enumerate
the 2% partial solutions obtained with all the possible routing combinations of these K
demands and we apply the lower bound procedure to the remaining m — K demands of
each partial solution. The minimum of these bounds is a valid lower bound which improves
bound L. We apply this technique to all the nodes of the tree.

Second lower bound. Given a straight cut (r,s) and the crossing demands C, 5, we know
that each of these demands must be routed through edge r or s. Thus minimizing the
maximum load on r and s, with an integer assignment of the demands in C, ;, gives a
valid lower bound on the optimum solution value. This problem can be transformed into
a subset-sum problem in which a set of ¢ items is given, each of which has an associated
weight, and a subset S of the ¢ items which maximizes the sum of the weights of the item
in S without exceeding a given capacity c is sought. Given a straight cut (r,s), we define
an instance of subset-sum with capacity ¢ = % Yicc,, wi and with an item 1, having weight
w;, associated to each demand : € C, ;. The optimal sclution to the subset-sum problem
minimizes the difference between c and the sum of the weights of the items selected, so it
also minimizes the difference between the items selected and discarded. In terms of the
SONET problem this solution minimizes the difference of the traffic loads on r and s and
thus the maximum of the two. For each of the n(n — 1)/2 straight cuts we solve the cor-
responding subset-sum problem with a C translation of the FORTRAN routine contained
in the book by Martello and Toth [3]. We apply this bound to all the nodes of the tree.

All the above improvements of the basic branch-and-bound have been tested with
several computational experiments. The impact of each technique on the computational
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times is the following.

e Fach kind of presorting leads to smaller computational times for some instances and
largest for other instances, so, on average, no improvement can be obtained with

this techinique.
o The improvement of the lower bound halves the computational times.

e The second lower bound has value larger than that of the continuos relaxation only
for a few instances. In these cases, it allows to reduce drastically the size of the
branch-decision-tree, but on average the computational time required to compute
the bound is not compensated by the reduction of the tree.

From the above preliminar computational experiments we have seen that significative
improvements are obtained only with a strenghtening of the lower bound coming from
continuous relaxation. In order to obtain the maximum information from this bound we
have developed the following fizing procedure which tries to fix the values of the fractional
variables either to zero or one. The procedure performs a series of iterations. At each
iteration we consider, in turn, each demand, say j, with fractional value in the optimal
solution to C(P). We route the entire traflic of demand j clockwise updating the values ¢,
accordingly and we compute again the lower bound L. If the lower bound is larger than or
equal to the current best solution value then the demand must be routed counter-clockwise
to have a chance to obtain a better solution value. If the value of the fractional variable has
not been fixed by this tentative, we route the demand 7 counter-clockwise and we repeat
the same steps to try to fix it. When all the fractional demands have been considered we
compute the new solution of the continuous relaxation of the problem obtained from P by
fixing the routing of some demands, and a new iteration is started. The algorithm stops
when, at one iteration, no demand have been fixed. The pseudocode follows.

Procedure FIXING
input: upper bound value U,
repeat
compute lower bound L; find the optimal solution z* of C(P);
NOFIX := TRUE;
for each demand j with 2} # |z}] do
route demand j clockwise; compute lower bound L;

if L > U then
fix z7:=0; let NOFIX := FALSE;
else

route demand j counter-clockwise; compute lower bound L;
if L > U then fix z} := 1; let NOFIX:=FALSE;
endif

endfor
until (NOFIX = TRUE)
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The time complexity of procedure FIXING is O(I(mn? + Fmn)) where [ is the number
of iteration performed and F' the number of fractional variables. In the worst case it is
O(m®n?), but in practice, since the number of fractional demands is small, it is quite fast.

The use of this procedure at each node of the branch-decision-tree reduced the compu-
tational times of one order of magnitude. Moreover we noted that with this procedure the
improved lower bound has no more effect. So our final code is the basic branch-and-bound
with procedure FIXING applied at each node.

5 Computational results

We have coded in C language the heuristic procedure KHR of Section 2, the lower bound
procedure CSONET of Section 3 and the branch-and-bound of the previous Section. More-
over we have implemented two greedy heuristics as those described in [1]. The first heuris-
tic, that we call 1PQG, is a One Phase Greedy which consider a demand at a time and
tentatively routes it clockwise and counter-clockwise. The demand is routed on the path
which determines the minimum increasing in the current solution value. The second
heuristic, say 2P@G, is a Two Phase Greedy which tentatively routes the current demand
clockwise and counter-clockwise, then complete the partial solution with 1PG and routes
the demand along the path associated with the minimum solution value. This algorithm
is slightly different from that in [1], since we use 1PG to determine the routing of each
demand, instead Cosares and Saniee apply 1PG only if there is a tie in the partial load
determined by the routing of the current demenad clockwise or counter-clockwise.

We generated random instances as in [1]: the weights of the demands are randomly
selected according to the uniform distribution in [5,100] and origins and destinations are
different integers also uniformly randomly selected. The results for this class of problems,
with values of n = (20,40,60,80,100) and values of m ranging from 50 to 1000 are reported
in Table I.

Let z be the solution value of the generic heuristic H for a specific instance, and let
z* be its otimum solution value (computed using our branch-and-bound algorithm). For
each instance we compute the percentage error respect to the optimal solution, i.e. err =
100(zH — 2*)/2*. The columns labelled A,,; and A4z, in the table, report, respectively,
the average and the maximum percentage error. The columns labelled time give the
average computing time in seconds on a PC Pentium with a clock at 100 Mhertz. For each
entry in the tables 20 instances have been generated and solved. The labels Fi,, and F,,.z
indicate, respectively, the average and maximum number of fractional variables obtained
in the solution of the continuous relaxation.

For these experiments we fixed the parameter K of heuristic KHR to five.
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Table I. Uniformly random instances with w; € [5, 100]: heuristic solutions
KHR 1PG 2PG
n m ADgyg Dpmar Favg Fraz time  Agyy Apar time  Agyy Apag time
20 50 23 6.3 1.55 0.01 16.8 40.0 0.01 9.7 20.1 0.04
100 1.2 2.7 1.60 0.04 20.2 50.1 0.01 120 21.6 0.12
200 0.5 1.0 1.20 0.04 21.2 322 0.01 12.0 18.0 0.69
40 100 1.1 29 1.75 0.08 192 29.3 0.01 123 22.7 0.33
200 0.6 1.7 1.40 020 24.0 316 0.01 143 196 144
400 0.3 0.6 1.30 046 25.8 31.2 0.04 179 241 5.80
60 150 0.7 1.8 1.50 0.36 185 31.6 0.01 9.6 17.5 1.19
300 0.5 1.0 1.45 0.78 23.6 32.6 0.04 146 19.6 4.86
600 0.2 0.5 1.00 1.60 25.0 326 0.12 18.0 25.0 19.44
80 200 0.5 1.4 1.65 0.50 21.1 339 001 134 213 2.18
400 0.3 0.7 0.95 1.81 241 376 0.68 16.0 21.1 8.73
800 0.1 0.3 1.15 3.58 26.7 31.0 0.28 20.4 23.7 34.85
100 250 0.6 1.2 1.65 1.72 232 288 0.04 156 21.1 4.23
500 0.2 0.6 1.11 2.29 24.0 272 0.09 159 20.2 16.71
1000 0.1 0.2 1.12 481 273 359 0.22 208 23.0 67.01

Pentium/100 seconds; averages over 20 instances.

DO BN QW N W o WU R WO W

Procedure KHR dominates the other heuristics and it is fast. Its average errors are
very small: they exceeds one percent only for small instances (n = 20, m < 100, and
n =40, m = 100). The maximum error never exceeds a few percent. Heuristics 1PG and
2PG have errors one order of magnitude larger than that of KHR. 1PG has negligible
computing time, but produces the worst solutions. The average error of 2PG is one third
to one half less that of 1PG, but its computing time is two order of magnitude larger.
KHR has computing times larger than that of 1PG, but very small: less than five seconds
for the largest instances.

It is worth noting that currently the real instances have n < 20 and m < 200 and the
largest weight of a demand is bounded by 100, so the first three rows of our table give a
sample of real life problems.

The same instances of Table I have been solved with the branch-and-bound algorithm
of the previous Section. The results are given in Table II. For each pair n,m we give the
average and maximum computing time (over 20 instances), the average and maximum
number of explored nodes, the average and maximum depth of the branch-decision-tree
and the ratio between the value of the lower bound at the root node (L1) and the optimum

solution value (z*).
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Table II. Uniformly random instances with w; € [5, 100]: exact solution
Time Exp. Nodes Depth
n m avg maz avg  maz avg maez L1/z*
20 50 0.26 0.82 35.8 215 6.3 12 0.994
100 1.02 2.55 44.6 127 10.2 22 0.997

200 2.68 7.86 23.0 77 9.3 33 0.993
40 100 2.49 7.70 46.0 209 10.1 25 0.998
200 7.71 17.71 38.0 133 12.2 28 0.996

400  36.40 81.89 87.0 323 21.4 87 0.996
60 150 9.83 22.16 42.3 163 14.1 33 0.999
300 24.17 71.92 43.1 263 13.5 43 0.999
600 233.94 2541.64 674.4 12761 19.1 72 0.999

80 200 25.30 109.95 56.8 507 13.7 50 0.999
400 135.31  682.79 185.3 1637 19.2 48 0.999

800 251.03 949.85 44.8 219 18.5 80 0.999

100 250 41.97  129.26 52.0 208 16.4 32 0.992
500 162.16  752.41 253.8 2191 22.7 63 0.999

1000 304.84 1117.81 72.0 338 24.0 114 0.999

Pentium/100 seconds; averages over 20 instances.

All the instances with size as those of the largest real life problems (n < 20 and
m < 200) are solved by the exact approach with small computing times. Larger instances
are also solved in reasonable computing times, but the maximum times grow up to one
hour. The average number of explored nodes is, in general, small. This is mainly due
to our fixing procedure (see Section 4). For large instances however the lower bound at
the root node, in many cases, is equal to the optimum solution value, but the algorithm
determines a feasible solution with this value only after visiting a large number of nodes.

To better understand the behaviour of the heuristic KHR and of the branch-and-
bound procedure we generated instances from three further classes: (i) w; € [5,1000]; (ii)
w; € [50,100] and (iii) w; € [500,1000].

The performances of the three heuristics are very similar to those obtained with weights
w; € [5,100], but the new instances are more difficult for the branch-and-bound. The
results are reported in Tables III-V: the numbers in brackets give the number of instances
which have not been solved within one hour of CPU time (in these cases the averages are
computed on the number of solved instances).
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Table III. Uniformly random instances with w; € [5,1000]: exact solution

Time Exp. Nodes Depth
n m avy max avg  maz avg  mazw L1/z*
20 50 0.16 1.57 399.9 1569 199.7 784 0.998
100 0.47 1.57 376.3 1195 187.9 597 0.999
200 3.93 15.71 636.7 1632 318.1 816 1.000
40 100 2.99 6.29 516.3 1123 257.9 561 0.997
200 20.27 103.71 1396.8 9094 698.0 4547 1.000
400  39.60 80.14 557.8 1989 278.6 994 1.000
60 150 15.09 33.00 903.6 2490 451.7 1245 1.000
300 24.04 73.86 3106 1414 155.0 707 1.000
600  55.00 128.86 160.3 666 79.8 333 1.000
80 200 20.43 48.71 333.6 894 166.5 447 1.000
400 73.86 198.00 308.1 943 153.8 471 1.000
800 260.32 (1)831.29 4813.8 33127 2406.6 16563 0.998
100 250  50.29 136.71 541.6 1608 270.6 804 1.000
500 161.07 781.00 782.0 6512 390.9 3256 1.000
1000 374.79 1145.57 197.1 666 98.3 333 1.000

Pentium/100 seconds; averages over 20 instances.

Table IV. Uniformly random instances with w; € [50, 100]: exact solution

Time Exp. Nodes Depth
n m  avg maz avg mazx avg maz L1/z*
20 50 0.31 3.14 330.3 2382 164.9 1191 0.994
100 2.20 7.86 916.2 3244 458.0 1622 1.000
200 1.26 4.71 91.8 441 45.7 220 0.999
40 100 4.09 17.29 498.3 1735 249.0 867 1.000
200 16.81 106.86 1068.5 7902 534.1 3951 0.999
400 33.52 (1)138.29 746.5 4394 373.3 2197 0.999
60 150 8.96 26.71 479.6 2020 239.6 1010 0.998
300 42.74 262.43 735.7 6272 367.6 3136 0.999
600 106.86 660.00 195.7 1516 97.8 758 1.000
80 200 60.34 180.71 1181.6 3952 590.7 1976 0.999
400 46.04 161.86 366.8 2605 183.2 1302 0.999
800 143.47 424.29 145.9 609 72.8 304 1.000
100 250 348.07 2669.86 42582.5 394236 21291.1 197118 0.999
500 79.99 220.00 85.2 229 42.3 114 1.000
1000 229.74 534.29 135.7 717 67.8 358 1.000

Pentium /100 seconds; averages over 20 instances.
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Table V. Uniformly random instances with w; € [500, 1000]: exact solution

Time Exp. Nodes Depth
n m avyg mazr avyg maz avyg maz L1/z*
20 50 4.40 15.71 3442.7 11066 1721.1 5533 0.995
100 4.09 14.14 1838.3 6947 919.0 3474 0.997
200 29.86 103.71 6109.6 20117 30564.7 10058 0.999
40 100 15.09 48.71 2843.7 10667 1421.6 5333 0.998
200 47.14 201.14 4274.4 13821 2137.0 6910 0.997
400  348.07 1796.14 11493.3 57066 5746.5 28533 1.600
60 150 107.49 271.86 7317.2 22844 3658.4 11422 0.999
300 247.19 595.57 24586.2 193262 12293.0 96631 1.000
600  226.60 1293.29 9066.6 32528 4533.1 16264 1.600
80 200 234.77 895.71 6001.7 12460 3000.7 6230 0.998
400 454.61 3034.43 24827.5 77485 12413.5 38742 1.600
800 1331.85 (2)2742.14 8428.1 22283 4214.3 11141 0.998
100 250 480.80 1535.28 7704.1 36110 3851.8 18055 0.998

500  256.14 3177.45 11912.3 52994 5956.0 26497 0.999
1000 1002.67 (2)2819.56 32456.2 113245 11087.4 112341 0.999
Pentium/100 seconds; averages over 20 instances.

6 Some final remarks

During the final writing of this work it came to our attention that part of it, namely
the arguments upon which the algorithm for the continuous relaxation of Section 3 is
based has been independently developed in an undated report by Schrijver, Seymour and
Winkler [4]. In this report the authors develop a very efficient heuristic for SONET Ring
Loading Problem, and also prove that it is 3/2-Approximable by a simple Greedy rounding
algorithm. Moreover their algorithm finds the optimum solution whenever all demands
are equal to one.

Whenever the computing time available is sufficient it is obviously much more satis-
factory to use the exact method presented here. As computational results of Section 5
tend to show, this exact approach is quite efficient and probably suitable in most practical

situations.
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