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Abstract

Given a weighted undirected graph, the equicut problem consists of finding a
partition of the vertex set into two subsets of equal cardinality such that the sum of
the weights of the edges belonging to the cut defined by the vertex partition is min-
imized. The problem is NP-hard and has several practical applications. In the last
years a number of algorithms based on metaheuristic techniques have been proposed.
In this work we first present a survey of the algorithms from the literature, then we
propose a new tabu search algorithm and experimentally compare it with the other
heuristics on several classes of graphs, with up to 4000 nodes and 320000 edges. The
computational results show that our approach easily determines the optimal solution
for small graphs and its average performances are largely superior to those of the
other approximating algorithms.

Keywords: Heuristics; Graph partitioning; Tabu search; Metaheuristic

1 Introduction

In the equicut problem we are given a graph G = (V,FE) with vertex set V =
{1,...,n},"edge set E and with weights associated to the edges. A cut, i.e. a proper
partition (S, V\S) of the vertex set (with § C V,§ # 0), is an equicut if the number of
vertices in the two shores S and V'\S differs of at most one. We want to find the equicut
which minimizes the sum of the weights of the edges involved in the cut. The problem
is also known as the 2-way uniform partitioning problem (see [13]).

More formally let e = [i,j] € F, with ¢ € V,j € V and ¢ # j, be any edge of the graph
and we (or w(7,J)) be the weight of the edge. For any proper partition s = (§,V\S) let
6(S)={[i,jl€e E:i€ S,j € V\S} be the set of edges in the cut defined by partition s.
We want to find the partition s such that |S] = [§| and such that z(s) = F.e5(5) we is
a minimum.

The equicut problem is known to be A"P-hard (see e.g. Garey and Johnson, [11]),
even if w, € {0,1},Ve € E. In this case it is called the 0-1 equicut problem.

The equicut has several applications. In VLSI design it models the problem of opti-
mally placing “standard cells” in order to minimize the routing area required to connect



the cells (see Dunlop and Kernighan [8]). It also models the problem of minimizing the
number of holes on a circuit board, subject to pin preassignment and layer preferences
and has applications in Physics, where it models the problem of finding the ground state
magnetization of spin glasses having zero magnetic field (see Barahona et al.[1]). Other
applications arise in layout and floor planning (see Dai and Kuh [5]), in computer memory
paging and in Group Technology (see Feo and Khellaf [9]).

With no loss of generality we can always assume that the number of vertices in the
given graph is even. Moreover, to simplify the presentation, we assume that a generic
equipartition is given by (A4, B) with A C V,B C V,|A| = |B|,AUB=V,AnB =0.

Finally we assume that the reader is familiar with the basic concepts of the following
metaheuristic techniques: local search, multistart, genetic algorithms, simulated anneal-
ing and tabu search.

In the following Section we present an updated survey of the literature in which we
describe the existing heuristic and exact algorithms, we discuss the relevant ideas of each
approach and we compare their relative effectiveness. In Section 3 we introduce our new
tabu search algorithm, which is experimentally compared with the other approaches, in

the last Section 4.

2 A survey of the approaches from the literature

The equicut problem has been investigated for more than twenty five years. With
the exception of a classical deterministic heuristic (the first approach presented) and an
exact algorithm (one of the last approaches), all the other algorithms from the literature
use metaheuristic techniques. This is probably due to the simple structure of the problem
which allows to represent a solution with compact data structure, to have simple and
natural neighborhoods of a given solution and to have immediate feasibility tests.

The simplest data structure to store a solution s = (A, B) is a boolean array with
n elements: vertex : € V is assigned to shore A or B if the i-th element of the array is
given value 0 or 1. This representation immediately suggests a genetic approach where
each boolean array, defining a solution or chromosome, is partitioned into two or more
substrings so giving a number of alleles which are combined to obtain a new offspring.
The feasibility of the new solutions can be simply checked by counting the number of "0’
and ‘1’ in the new arrays.

Given a feasible solution s a set of neighboring solutions N(s) can be immediately
obtained by selecting 2k (1 < k < n/2) vertices, k from shore A and k from shore B, and
moving each vertex to the opposite shore. Alternatively one can move h (1 < h < n)
vertices from one shore to the other, allowing infeasible solutions that can be transformed
into feasible ones again, in successive iterations.

In the following we describe the results from the literature, then we compare the
performance of the various algorithms and finally we make some considerations on the
implementations of basic operations common to many approaches.



2.1 Algorithms from the literature

A first important difference between the existing approaches for the solution of the
equicut problem is the following: (a) algorithms for the equicut with generic weights
on the edges; (b) algorithms for the 0-1 equicut. Although the algorithms in (a) can
certainly solve the 0-1 equicut, the simple structure of the objective function with only 0-
1 costs allows to use sophisticated data structure and to obtain fast specialized heuristics.
Thus algorithms written for the weighted case are not effective for the 0-1 case. On the
contrary in order to modify an algorithm for the unweighted case to solve the general
problem, one has to reconsider the implementation, the data structure to be used and
the general strategy (see Section 2.3).

The first (classical) heuristic for the general equicut problem is due to Kernighan
and Lin [13] (K L in the following). This algorithm starts from a given feasible partition
(A, B) of the vertices (randomly generated) and iteratively improves it. At each iteration,
for all vertices @ € A let E, = Y ..pw(a,j) be the external cost and I, = 34 w(a, )
be the internal cost (similarly, for a vertex b € B, define Ey = } .4 w(b,j) and I, =
2 jesw(b,7)). For any vertex j the difference D (= E; —I;) of the external and internal
costs is the variation of the cut weight, or gain, if j is moved from one shore to the other.
If a vertex a € A and a vertex b € B are exchanged (i.e. a is moved to set B and b to
set A), the value of the new solution is D, + Dy — 2w(a,b) units less than the value of
the original solution. Each iteration of the algorithm determines a subset of k < n/2
vertices from set A to be exchanged with & vertices from B as follows. First determine
a(l) € A and b(1) € B such that the overall gain g(1) = Dy(1) + Dy) — 2w(a(1),b(1))
is a maximum among all possible pairs a,b. Then vertices a(1) and &(1) are temporarily
exchanged, the values D; (i € V') are updated and a(1), b(1) are removed from sets A
and B, respectively. A second pair of vertices a(2) € A, b(2) € B for which ¢g(2) =
Dy2y + Dy(zy — 2w(a(2),b(2)) is a maximum, is selected. This procedure is repeated
n/2 — 1 times to compute g(1),...,g(n/2 — 1) and finally the value k& which maximize
G =3xF, g(7) is determined. If G > 0, then a new (improved) solution is obtained
by moving-vertices a(1),...,a(k) from the original set A to set B and moving vertices
b(1),...,b(k) from the original set B to A, and a new iteration is started. If otherwise
G < 0 the procedure terminates.

Fiduccia and Mattheyses [10] proposed a variant of K'L in which the single vertex
J with maximum gain (D;) is moved to the opposite shore. In order to have balanced
partitions vertex j is chosen alternatively form A and B. This speeds up the algorithm,
but produces a slight decrease in the solution quality.

The first tentative to solve the equicut problem with a metaheuristic technique is
due to Kirkpatrik, Gelatt and Vecchi [15] and to Kirkpatrik [14], who used a simulated
annealing (SA) approach. The computational results presented were limited and a not
efficient implementation of the Kernighan-Lin algorithm was used as a competitor.

Johnson et al. [12] presented a deep and extensive study of the simulated annealing
approach to the 0-1 equicut problem. In order to optimize the parameter settings and to
determine the better components of the algorithm the authors perform a wide series of



computational experiments on two classes of unweighted graphs with up to 1000 vertices.
Worth is noting that the resulting algorithm is very effective for the 0-1 case, but not
necessarily good for the weighted case. Moreover the sophisticated data structure used
cannot be utilized for the weighted case (see Section 2.3, below).

The algorithm is as follows. Given a partition s = (5, V\S), not necessary feasible,
the neighborhood N(s) of s consists of all the partitions obtained by moving one vertex
from one shore to the other (i.e. N(s) = {(S\{v},(V\S)U {v}) : v € S} U {(SU
{v},V\(S U {v})) : v € V\S}. The value of a partition is computed by adding to the
weight of the cut a quadratic penalty function of the lack of balance. More precisely,
the cost of the partition s is ¢(s) = |86(5)| + a(|S] — [V\S])?, where o is an appropriate
parameter called the IMBALANCE FACTOR. (Note that this cost function is written
for the unweighted case.) The pseudocode of the general SA algorithm, which utilizes
four further parameters, follows.

Procedure 5S4
randomly select a starting solution s;
select an initial temperature 7' > 0 using parameter INITPROB;
while the number of accepted solutions is greater than MINPERCENT do
for n x SIZEFACTOR times do
select a neighbor s’ € N(s);
if c(s') — c(s) < 0 then set s := s;
else set s := s’ with probability elels)=e(sN/T
end for;
T:=TEMPFACTORXT
end while;
return s;

Basing on their experiments the authors suggest values for the five parameters. More-
over they observe that changes in the cooling strategy do not produce significant im-
provement§ in the performances. The same happen if a cutoff is included to speed up
the computation (i.e the for loop is terminated either after n x SIZEFACTQOR iter-
ations or when CUTOFF x n x SIZEFACTOR solutions have been accepted (with
0 < CUTOFF < 1)). Another characteristic observed is that if the initial solution is not
selected randomly, but with the K L heuristic, the performances do not change, however
starting solutions of different nature (e.g. manual solutions of real life problems) can
lead to better final values.

Two genetic algorithms have been developed by Rolland and Pirkul [20],[18]. The first
algorithm uses a one-point crossover (i.e. each chromosome is divided into two alleles),
a bit-by-bit probabilistic mutation technique and a fitness function which includes a
linear penalty function of the imbalance of the two shores. The second algorithm is
an improvement of the previous one obtained by removing the imbalance penalty and
transforming each chromosome in a feasible solution by means of a greedy balancing
procedure.



Laguna, Feo and Elrod [16] presented a Greedy Randomized Adaptive Search Pro-
cedure (GRAS P) for the 0-1 equicut problem. The main body of GRASP consists of
two phases: (i) identify an initial solution through a greedy randomized algorithm; (ii)
improve this solution using a local search procedure. Since phase (i) is randomized the
two phases can be repeated to look for new better solutions. Phase (i) starts with an
empty partition A = B = (), than selects one vertex at a time to be added to set A or B,
alternatively. For each unselected vertex j the difference D; is computed with respect to
the current sets A and B, and a vertex is randomly selected among the first k elements
with smallest value D; (were k is a fixed parameter). For the improving phase the au-
thors considered local search procedure based on the exchange of two vertices (one from
set A and one from set B). Among different strategies they have chosen the slightest
swap technique which search, among all possible pairs, the first exchange with minimum
positive gain (i.e. a pair a,b, with a € A,b € B such that ¢ = D, + Dy — 2w(a,b) = 1.)

Rolland, Pirkul and Glover [21] presented a tabu search approach T'S which uses
a restricted version of neighborhood N(s) of [12]. More specifically, given a partition
s =(85,V\S) (with 1 < |§] < n/2) the restricted neighborhood RN (s) C N(s)is equal to
N{(s) if the absolute value of the imbalance |S]—|V'\ 5] is less or equal to a specified value
I'mBalanceFactor; otherwise RN (s) contains only the partitions obtained by moving one
vertex from the largest shore to the smallest one. A solution obtained by moving a vertex
J from § to V\S is considered tabu if vertex j was moved from V\§ do S in the last tabu
tenure iterations. At each iteration the algorithm selects the solution s’ € RN (s) which
is not tabu and which maximize the improvement of the objective function value. A
move aspiration criteria is applied, which remove the tabu status if the move produces a
solution which improves the better solution found. The tabu tenure is fixed to 3 - /n/2.
The value I'mBalanceFactor, initially zero, is dynamically updated so as to obtain a
strategic oscillation (see Glover and Laguna [17]). The resulting algorithm is as follows.

Procedure T'S
randomly select a starting solution s;
Best_Sol = 0; NoImprove := ImBalanceFactor := 0;
for iterations := 1 to max(100,5n) do
let C' be the set of solutions s’ € RN(s) obtained from s with a not tabu move or
with a tabu, move, under the condition that 2(s') < z(Best_Sol) (aspiration criteria);
choose s’ € C which has minimum value;
define tabu the move which leads from s’ to s;
if (2(s") < z(Best_Sol) and ¢’ is feasible) then Best_Sol := s';
else Nolmprove := Nolmprove + 1;
if NoI'mprove > 20 then
I'mBalanceFactor := ImbalanceFactor + 1; Nolmprove := 0;
if ImBalanceFactor > 4 then I'mbalanceFactor := 0;
end for

A lagrangian based heuristic for the general equicut problem has been developed



by Pirkul and Rolland [19]. They start with a mathematical model, for the problem,
which uses two kinds of variables: z; to assign a vertex ¢ € V to one of the two shores,
and y;; to recognize if an edge [i,j] € E belongs to the cut determined by the current
partition. Embedding in a lagrangian fashion the constraints which relate the variables
associated to the vertices with the variables associated to the edges, two simple problems
with either z or y variables, are obtained. In particular the problem with only the z
variables defines an equipartition (disregarding the weights of the edges). Optimizing
the lagrangian parameters through a subgradient ascent technique a lower bound for the
equicut is obtained. During the ascent phase several feasible solutions are generated: at
each one a local search procedure is applied, which, in practice, is a single iteration of
K L. This heuristic can be seen as an “intelligent” multistart algorithm which generates
the next starting solution taking into account the status of the current relaxed problem.

Recently Dell’Amico and Maffioli [6] have presented an effective tabu search algo-
rithm, called EnTaS, for the 0-1 equicut problem. They consider only feasible par-
titions s and a neighborhood PN(s) containing all the partitions obtained from s by
interchanging a pair of vertices, one from set A and one from set B. Several diversifica-
tion techniques have been applied: dynamic updating of the tabu tenure, memeorization
of some promising, but not explored solutions, and restarting. The resulting algorithm
has been shown to be one of the most effective for solving unweighted equicut instances
(see Section 2.2 for further details).

For the exact solution of weighted equicut problems a branch-and-cut algorithm has
been written by Brunetta, Conforti and Rinaldi [2], basically using the theory developed
in Conforti, Rao and Sassano [3], [4].

2.2 Comparison of the algorithms

The K L procedure is well known to be the standard benchmark algorithm for equi-
cut problems. In particular a simple multistart algorithm M-KL can be obtained by
generating a random solution s, applying K L to s and repeating these two steps until a
stopping criterion results true. The algorithm returns the best solution found.

The variant of KL presented in [10] has not to be considered as a valid competitor
since the same authors recognize that the average performances are worst than that of
KL

For the above reasons we have chosen to use M-K L as one of the competitors for
our tabu search algorithm. To identify other possible competitors we first consider the
approaches for the 0-1 equicut, and than those for the general equicut.

The 0-1 equicut problem

The SA algorithms presented in {15] and [14] are very preliminary studies of this
technique and the computational experiments are limited. On the contrary the SA
algorithm of [12] is an accurate implementation based on an extensive computational
study. Unweighted graphs of two classes have been used to test the algorithm: (a)



random graph G, ,, were n is the number of vertices and 0 < p < 1 is the probability
that the edge between a given pair of vertices exists; (b) geometric graph Uy 4, generated
drawing from an uniform distribution n points in an unit square, associating a vertex to
each point and adding edge [u, v] to the graph iff the euclidean distance between the u and
v is less or equal to d. The expected average vertex degree ¥ is equal to p(n — 1) for the
random graphs, whereas it is approximately nrd? for the geometric graphs. The instances
considered have n = 124,250, 500,1000 and 7 = 2.5,5,10,20. The authors compare 54
with M-K L showing that simulated annealing beats the traditional heuristic for large
random graphs (n = 250 and # > 20 or n > 500) even when running time is taken into
account. It is substantially outperformed for geometric graphs.

The GRASP approach of [16] has been tested on random and geometric graphs
and compared with a single run of the KL heuristic. The instances considered have
n = 124,250,500,1000 and » = 2.5,5,10,20,40,80. After an extensive computational
study the authors conclude that: “GRAS P compares well with the average A L solution
when both methods employ the same computational effort. The average solution qual-
ity considerably improves with a modest increase in computational effort”. Therefore
GRASP can be considered the most effective technique with respect to K'L and S A, for
the 0-1 equicut.

The tabu search EnTaS introduced in [6] has been tested on the same kind of in-
stances used in [16] and compared with the GRASP algorithm. Wide computational
experiments led to conclude that “EnTaS beats GRASP on all problems, except on the
very sparse geometric graphs” (n > 500 and » < 10).

From the above discussion we have that GRAS P remains a possible competitor for

our new tabu search algorithm.
The weighted equicut problem

The genetic algorithms (GA) of {20] and [18] have been tested on 144 instances
of the general equicut problem, from four classes: (i) dense and (ii) sparse euclidean
instances With vertices randomly generated in a 100 x 100 square; (iii) dense and (iv)
sparse instances with weights randomly generated in [0,100]. For each class have been
generated 36 instances with n growing from 10 to 80, two at a time. The density of the
sparse instances ranges from 20% to 34%. The improved algorithm (see [18]) is shown to
dominate the approach of [20]. The authors give percentage errors with respect to a first
version of their lagrangian bound. They also compare the GA with their implementation
of the SA algorithm of [12] and with a single run of the KL heuristic, implemented
according to the original paper [13]. The average computational time for the 80 vertices
instances is 5,917 seconds on a Prime 9955 minicomputer. Following Dongarra [7] this
computer is at most 7 times slower than a PC486/DX2. Since we will show that our
approach determines the optimal solution of instances with up to 100 vertices in less than
one second on the PC486/DX2, we do not consider the genetic algorithms as potential
competitors.



The tabu search 7S presented in [21] has been tested on a set of 144 dense and sparse
graphs as those used to test the GA. The authors do not give an explicit comparison with
their genetic algorithms, but an inspection of the tables in the three papers shows that
algorithm T'S produces better solutions than G A and its computational times are small:
up to 27 seconds on a PC486/DX2. In [21] the authors also report results for 5 instances
with n = 100,200,...,500 and compare 7' with a single run of K'I. Algorithm TS
results to be always better than K L, so it is the natural competitor for our new tabu
search algorithm.

The same kind of problems (144 instances from the four classes (i)-(iv)) have been
used to test the lagrangian heuristic LAG of [19]. Again the authors do not give an ex-
plicit comparison with their other approaches, but examining the tables one can see that
L AG have worse average performances with respect to T'S. Moreover the computational
times are very high: on average 6,366 seconds on a Prime 9955 are required for solving
the instances with n = 80. As already done for GA we conclude that LAG is not to be
considered a valid competitor for our tabu search algorithm.

Finally a short consideration is required for the exact approach of [2]. This algorithm
has been able to solve various kind of weighted instances with up tc 100 vertices, within
127,297 seconds on a SUN sparc 10/41 workstation (this computer is 4 to 5 times faster
than a PC486/DX2). It is evident that this algorithm cannot be used for large size
problems. We will use the instances optimally solved in [2] to test the performances of
the competitors on problems with n < 100.

2.3 Implementation details

One of the most time consuming operations is to explore the neighborhood in order
to identify the most promising neighboring solution. With our neighborhood PN (s) we
want to swap the pair (a,b), with ¢ € A and b € B, which maximizes D, + Dy — 2w(a, b)
(i.e. the decrement of the objective function value, if the exchange is executed). This
is the same operation performed by each elementary iteration of the K L heuristic (here
we call “elementary” an iterations of K L which finds a pair of vertices to be temporarily
swapped; a full iteration, instead, determines the k pairs to be really swapped and
consists of up to n/2 — 1 elementary iterations). The search for the best pair, in practice,
is also the basic step of the slightest-swap procedure in the GRAS P approach. The only
difference is that the slightest-swap have to determine the minimum positive decrement
of the objective function. .

Using a naive implementation which simply determines each pair (a,b) and compares
its value with the best pair found so far, we need O(n?) time to explore the whole
neighborhood. In the following we discuss the implementations proposed to speed-up
this step and we point out the main differences between the 0-1 equicut and the weighted
case.

Let us first consider the 0-1 equicut problem. With the naive implementation a
“full iteration” of the K I heuristic requires O(n®) time. In order to have a better
time complexity Kernighan and Lin suggested to sort the two sets {D, : a € A} and



{Dy : b € B} by non-increasing values (time complexity O(nlogn)), and to evaluate
the pairs of vertices by scanning down the two sets. More precisely let MXA = {a €
A : Dy = mazieaDi}, MX1A = {a € A: D, = mazicaD; — 1}, MXB = {b € B :
Dy = maz;epD;} and MX1B = {b € B : Dy = mazjegD; — 1}. After the sorting we
have an immediate “good” candidate swap by selecting the first pair, say (5,5) (note that
GeMXAandbe M X B). If no edge exists between @ and b the swap has the maximum
possible gain among all the swaps of the neighborhood, and the search is terminated.
Otherwise the value D; + Dy — 2 of the current swap is used as a lower bound for the
maximum gain. We continue the search looking for a pair (a, ) such thata € M XA, b€
M X B and no edge exists between a and b. If such a pair exists we are done, otherwise
we look for a pair with gain D; + Dy — 1. In any case the maximum number of pairs
to be considered is sw = [MXA| X |MXB|+ |[MX1A| x |[MXB|+ |[MXA|x |MX1B|.
Although one can easily define instances with [M X A| = [MX B| = n/2 (i.e. sw = n?/4),
in practice the number of pairs to be evaluated is quite small. Probably for this reason
Kernighan and Lin [13] state that “... only a few likely contenders for a maximum
gain need be considered”, so they erroneously conclude that the time complexity of the
improved algorithm is O(nlogn) for each elementary iteration and O(n?logn) for a full
iteration.

In [13] the authors also propose a not exact method which does not require to sort
the two sets, but looks for at most three vertices in M X AUM X1A and threein M X BU
M X 1B and choose the pair to be swapped among the resulting nine pairs. The time
complexity for an elementary iteration with this method is O(n).

After each elementary iteration we have to update the D; values, according to the
swap (a,b). This is done by considering all the edges incidents in a and b, so giving an
O(|E}) time complexity for each full iteration. The overall time complexity of the full
iteration, using the sorting technique and assuming that the value of sw is a negligible
constant, is O(n?logn + |E|).

A faster version of the K L heuristic can be obtained, as described in [12], by using
bucket lists. The main idea with this data structure is to partition the set of the elements
to be considered into subsets, according to their values, and to store each subset in a
different “bucket”. More precisely the interval of all possible values assumed by the
elements is partitioned in subintervals each of which is associated to a different bucket.
The elements with value belonging to the same subinterval are stored in the same bucket.
The buckets are ordered by increasing values using a list of pointers. For the 0-1 equicut
the implementation of this structures is particularly simple and effective. Indeed the
elements to be stored are the vertices and their values are the differences D;, whose
possible values are the n — 1 integers in [—n/2,n/2— 1], therefore we can use subintervals
of unitary length. We can implement a bucket list for set A (or set B) using only three
arrays of n elements. The first array has one entry for each integer value in [-n/2,n/2—1]:
each entry is a pointer to a double linked list which stores the elements of a bucket. The
position of the entry gives the value common to all the elements in the associated bucket.
The other two arrays of n elements are used to store the pointers of the double linked



list. The elementary operations to be performed with this data structure are the insertion
and the removal of one element. Both operations require O(1), therefore building the
entire list requires O(n) time. When the bucked lists have been constructed the sets
MXAand MX1A (resp. MX B and M X1B) are obtained by scanning down the list of
pointers to the values D;, starting from value n/2-1. When the first nonempty pointer is
found, then the corresponding double linked list stores set M X A, the second nonempty
pointer identifies set M X 1A. Thus we can find the required sets with the improved time
complexity O(n) instead of O(nlogn).

The computational experience of the first author on the 0-1 equicut (see [6]) confirms
that using the bucket lists one can drastically reduce the running times of the various

algorithms.
Now let us consider the equicut problem with generic weights on the edges. It is not

difficult to see that the bucket lists loose their efficiency. Indeed, if edge [a,E] exists the
pair (@, b) has associated the value Dj+ Dy — 2w(d,b). Since w(@, b) may be large, better
swaps can be obtained with pairs (a,b) having D, < D -1 and Dy < Dy - 1, but
small (or null) weight w(a,b). Therefore we cannot limit the search to the first buckets.
Moreover, said U the maximum weight of an edge, the interval of the possible values for
D;is [-nU/2,nU/2~1], and we need to define buckets of lengths larger than one (possibly
different), so giving a more complicate code and a large overwork for maintaining the
data structures. Finally, since the elements in each bucket are not sorted, we have to
examine the entire bucket to find the better element. We have experimentally observed
that the number of pairs of vertices considered in each iteration of the K'L algorithm and
in the search of a neighborhood, significantly increases when the instance is weighted.

For both the above reasons it results that efficient algorithms for the 0-1 equicut
cannot be immediately transformed into algorithms for the weighted case, on the con-
trary algorithms for the weighted case used to solve the 0-1 equicut have generally poor
performances. A confirm of this assertion can be found in [6] where it is shown that
algorithm T'S of [21], written for the weighted problem, it is not competitive for the 0-1
equicut.

Another difference between the algorithms for the two classes of problems is that
algorithms for the 0-1 equicut can use ideas and strategies which are no more useful for
the weighted case. This happens with the GRASP approach of [16]: the slightest swap
procedure used to optimize an initial solution is effective for the 0-1 equicut, where the
idea of moving from a solution to a neighboring one which has the minimum possible
difference of value, can lead to good solutions in a not too large amount of iterations. On
the contrary in the weighted case this strategy requires a long time to obtain significative
improvements in the value of the initial solution (see Section 4 for more details).

According to the results of the above reasoning we have implemented all the algo-

rithms used for ours experiments with the sorting technique.

10



3 The new tabu search algorithm

In this section we present our new tabu search algorithm for the solution of the
weighted equicut problem. We start by resuming the fundamental ideas which are the
bases of the tabu search technique.

A tabu search algorithm can be seen as a development of a local search procedure.
Given a (feasible) solution s we call neighborhood of s, and denote it with N(s), the -
set of all the solutions which can be obtained with a (simple) modification of s. Any
modification which can lead from s to an element in A(s) is called a move. Given a
starting solution s a local search based algorithm basically repeats the following steps:
(a) compute AM(s); (b) select a solution sy € M (s); and (c) set s = sy, until a stopping
criterion becomes true. A pure local search algorithm selects the solution with the best
objective function value in A(s) and stops when such solution is not better than the
current one. In this way it performs only improving moves. On the contrary a tabu search
algorithm performs even non improving moves, but it imposes some restrictions on the
solutions which can be selected. At each iteration the new current solution becomes the
best among those in N (s)/TA, where 7N denotes a set of forbidden {{abu) solutions.
The quality of a solution is usually computed on the basis of its objective function
value but, in more sophisticated implementations, it can be computed on the basis of
information recorded during the evolution of the search (see e.g. Laguna and Glover [17]
for a survey on tabu search techniques). The general elements which define a tabu search
based algorithm are: (i) memory structures, which capture relevant information during
the search process and which help in determining which solutions belong to TN; and
(ii) strategies, to use those information in the best possible way. Memory structures are
normally classified in two types: short term memory, and long term memory.

We now describe in detail the main elements of our algorithm.

The short term memory

A short term memory is used to record attributes of those solutions recently generated
in the evolution of the search. This is done to have a (not exact) representative of a
solution which requires a small amount of memory to be stored, and a short time to be
compared with representatives of other solutions. The attributes of the solutions already
visited are used to identify the tabu solutions.

In our algorithm the structure of the neighborhood PN (s) of a solution s = (A, B)is
defined by all the moves which interchange a pair of vertices, one from set A and one from
set B. Since our algorithm starts the search from a feasible solution it always considers
only feasible partitions.

At each iteration we associate to the current solution a couple of attributes: the
names and the starting sets (A or B) of the two vertices interchanged by the move. For
example, if a move interchanges a from A and b from B we record the attributes “a was
in A” and “b was in B”. We have implemented the short term memory using two tabu
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lists: was_in_A and was_in_B. If the selected vertices are, as above, a € A and b € B we
put a in was_in_A and b in was_in_B. For a number of iterations all the selected moves
which propose the removal of a from B (or of b from A) are forbidden.

In our implementation the tabu tenure [ of the short term memory, i.e. the number of
iterations a solution maintains its tabu status or, in our case, the number of iterations a
vertex remains in a tabu list, has not a fixed value. Indeed, greater is the value of [, bigger
is the set of the forbidden solutions 7A and consequently greater is the number of tabu
moves. We set [ to the initial value tabu_tenure and we modify its value according to the
evolution of the search process within an interval of the same length: tabu_tenure. The
aim of decreasing [ is that of locally intensifying the search within those regions which
are more promising, whilst the aim of increasing [ is that of speeding up the leaving from
those regions which surround already visited local minima. Let us call an improving
phase a set of Aip consecutive iterations which lower the objective function value: after
any improving phase [ is set to max({/ — 1,%tabu_tenure). On the contrary let us call
a worsening phase a set of Awp consecutive iterations such that the objective function
value does not improve: after any worsening phase [ is set to min({ + 1, %tabu_tenure).

To implement the short term memory structure the algorithm requires only two vec-
tors of n integers. Basing ourselves on a set of preliminary experiments we fixed the
value of tabu_tenure to 10, and the values of Aip and Awp to 5 and 3 respectively.

Let us observe that the set 7A/ of the tabu moves contains as a subset those moves
which perform the exact reversal of recently swapped vertices. For this reason in a
preliminary version of the algorithm we assigned a tabu status with a longer tabu tenure
to such moves. The memory structure for this subset of moves was implemented with a
square (n X n) integer matrix [t;;]: if the current move performs the swap of the vertices
(a,b) then we assign the number of the current iteration to the cell ¢, of the matrix and
we use this information, for a number of following iterations, to forbid the execution of
the move which swaps the vertices (b,a). Since, after an extensive set of experiments,
we did not observe a sensible improvement in the quality of the solutions which we could
obtain with this approach, it was discarded.

As in any standard implementation of a tabu search based algorithm we choose at
each iteration the best not-tabu solution in the neighborhood, i.e. the not-tabu pair with
largest gain ¢ = D, + Dy — 2w(a,b) among all pairs (a,b) with a € A and b € B. This is
accomplished, as explained in the previous section, in such a way that not all the pairs
are explicitly evaluated.

The aspiration criteria

In tabu search algorithms some aspiration criteria are usually introduced to override
the tabu status of those moves which are supposed to lead to not already visited or
promising solutions. This mechanism is necessary because a few attributes are not enough
to completely identify a solution: i.e. a recorded set of attributes is usually shared both
by already visited solutions and by unexplored ones. In our implementation we adopted
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two aspiration criteria: the first one simply consists of accepting a tabu move if it leads
to a solution with an objective function value better than that of the best solution found
so far. The second criterion takes into consideration the value of the objective function
of three solutions. Let s,4,5 and $,.,, denote three consecutive solutions (i.e. s has been
obtained from s,y with a single move and sp., belongs to the neighborhood of s). If s
is the current solution and 2(spey) is strictly less than min(z(s.4), z) then any possible
tabu restriction on S, is not considered. Using this criterion we limit the restrictions
imposed by the two tabu lists to take into account the cases in which, after the swap of
two vertices, e.g. (a,b), and the execution of at least another swap not involving a or b,
a good solution could be reached by a swap involving either a or b but not both of them.

A similar criterion was proposed in [6] for the 0-1 case. In that paper z(Spew) has
to be strictly less than min(z, az(s,4)), where a was set to 0.99. For the weighted case
we also implemented the same criterion and we considered values of « ranging from
0.99 down to 0.85 without observing notable differences with the case in which a was
set to 1. For this reason we have chosen the simpler technique discarding the parameter a.

The long term memory

In the 0-1 equicut problem many solutions in a given neighborhood can have quite
similar objective function values. Such a behavior can be observed even in the weighted
case. For this reason we decided to adopt a long term memory structure. In this structure
we record some of those high quality solutions which were analyzed in some neighborhood
but whose value was worst than that of the selected solution. This memory structure,
denoted as Second, is implemented with an ordered list of fixed length L. Let sy denote
the not-tabu solution with the best second value among those evaluated in the current
neighborhood. At each iteration s; can be added to the list Second if the list is not
full or if the worst solution in Second, say s, has an objective function value worst
than that of sg: in this case s, is removed from Second. When one of three particular
conditions, explained later, holds we remove from Second the solution with the best
objective function value and we continue the search from that solution. In order to
restart the search with the same conditions which were present when a solution was put
into the list, we associate to each solution in Second a copy of the two complete tabu
lists and the values of the other parameters.

Note that we do not identify a solution to be added to Second in each neighbour-
hood, since we take advantage of the fast exploration of neighbourhoods presented in the
previous section. With this implementation can happen (especially with sparse graphs)
that the best solution is the first evaluated, and if it is not-tabu the analysis of the neigh-
borhood can stop. We lost this advantage if we have to continue the search looking for
the second best solution. Therefore in these cases no second best solution is evaluated
and no updating of the list Second is done. The effectiveness of this implementation was
proved with a set of preliminary experiments.

The use of restarting from a solution in Second has the aim of intensifying the search
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into not fully explored promising regions. On the other hand the rule of adding to Second
at most one solution from each neighborhood plays the role of a diversification strategy.

In a different set of experiments we studied a version in which, at each iteration,
the algorithm evaluates the whole neighbourhood and it updates Second with all the
solutions & such that z(§) < 2(sy). In this way Second could contain more than one
solution belonging to the same neighborhood and the attention is posed only on the
quality of the solutions and not on where they have been found. As a consequence the
role of the intensification dominated over that of the diversification with an observed
decreasing in the overall performances of the algorithm.

In the current version the best solution in Second is adopted as a restarting point of
the search when one or more of the following conditions is verified:

1. all the solutions in the current neighborhood are tabu and none of them satisfies
an aspiration criterion;

2. for a sequence of MC consecutive moves the current objective function value does
not improve;

3. for a sequence of M B consecutive moves there has been no improving of the best
solution found.

For the parameters involved in the management of the long term memory structure
we adopted the following values: L was experimentally set to the minimum between 5
and the average vertex degree, MC was set to 7 and M B was set to 200.

In a set of experiments we also tried to make a flexible use of the long term memory,
with a dynamic updating similar to that used for the tabu tenure of the short term
memory. We initially set M C to 5 and we increased it up to 10 when a threshecld number
of solutions from the list Second had been used to restart the search. The aim was
to reduce the role of the diversification in all the cases in which it seemed to overcome
that of the intensification. With the same aim M B was increased to 300, so imposing a
restarting only when an extensive and (fruitless) exploration of the current region had
been performed. Qur experience is that this more complicate way of managing the long
term memory does not determine significant improvement in the solution quality.

Another strategy based on long term memory is the following. We impose that every
solution with an objective function value equal to that of the current best solution has
to be considered tabu. This is done to prevent a cycling behavior on the long term.

Restarting the search

In all cases in which the algorithm requires a solution from the list Second but the
list is empty the algorithm restarts the search from a new generated solution. This is
a way of implementing a diversification strategy. The procedure adopted for randomly
generating feasible starting solutions is that presented in [6]. We restate it for sake of
completeness. Two seed vertices, one from set A and one for set B are selected. Then,

14



for n/2 — 1 iterations select the pair (a,b) of not yet selected vertices which minimize
the increment of the objective function value if a is assigned to A and b is assigned to
B, and assign them to 4 and B respectively. In order to enforce the exploration of truly
different regions of the space of the solutions the seed vertices are selected in such a way
that the algorithm, can produce up to n(n — 1)/2 different feasible partitions.

From the experience with the flexible use of the long term memory we decided to
enforce this kind of diversification strategy by imposing that no more than L (see above)
consecutive previously evaluated solutions, from list Second, can be used as starting point
of the search. This apparent use of the brute force was found quite effective especially
when considering those instances with one thousand of vertices or more. In that cases
the restarting from new solutions spreads out the search whilst the adaptive use of the
short and long term memory allows a fast exploration of each new region. Since the
procedure which generates the feasible solutions is fast then we save the time required
by a single start algorithm for identifying and traversing the “no man’s land” which can
separate the regions containing good quality solutions.

The pseudo code

Here we present the pseudo code of our algorithm called WEC-T'S. In step 1 we select
a starting feasible solution. In steps 2 and 3 we initialize the short and the long term
memory structures, respectively. In step 4 we initialize the counters used to determine
the improving and worsening phases, i.e. imp and wor, and that for counting the number
of steps without improving the current best solution, gw. They are updated in steps 16
and 20, respectively. In step 5 we initialize the boolean variable which allows the use of
the list Second, whilst in step 6 we initialize the variable used to determine the second
aspiration criterion, it is updated in step 19. If it is necessary, in steps 7 and 20, we
update the best solution found so far. In step 8 it starts the main loop: a single run
can consume up to max_time seconds. In steps 9 and 10 we test if there exists at least
one solution in the current neighbourhood PN(s) which is not tabu or which satisfies
an aspiration criterion. If such a solution does not exist we try to use the long term
memory, step 22. In step 11 we update the short memory structures. In steps 12-15 we
manage the long term memory structure. In steps 16-18 the tabu tenure of the short
term memory is updated according to the rules explained above. In step 21 we determine
if the current state of the search requires the use of the long term memory. In steps 23-30
we try to use the long term memory, if it is necessary. In step 25 we determine if the
list Second is not empty and if it has not been used more than L times. If we cannot
use the long term memory we restart the search from a new generated solution, step 30,
otherwise we restart the search from the best solution recorded in the list Second, and
we update the short term memory accordingly (steps 26-29). The algorithm returns the
best solution found during the search process.
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Procedure WEC-TS

L1:

Z* 1= o0;

generate a new starting solution s;

initialize lists was_in_A and was_in_B; [ := tabu_tenure;
Second := §; num_Second := 0;

imp = 0; wor :=0; gw:=0;

second_choice ;= FALSL;

Zold = 003
if 2 > 2(s)

then 2* := z(s); s* := s; endif;

while elapsed_time < max_time do
select the best solution s’ € PN (s) which is not tabu or
which satisfies an aspiration criterion; possibly determine the
second best solution so;

if

s’ # () then
update was.in-A and was_in_B;
if sy # () then

if |Second| < L then put s; in Second;

else find s, the solution with higher value in Second;

if 2(sy) < z(s,) then substitute s,, with s3 in Second;

endif;
endif;
if 2(s') < z(s) then imp := imp + 1; wor := 0;

else wor := wor + 1;imp := 0; endif
if imp = Aip then [ := max(l — 1, —%tabu-tenure); endif;
if wor = Awp then [ := max({ + 1, %tabu*tenure); endif;
Zoid = 2(8); 8 1= s's
if z* > z(s) then z* := 2(s); s
else gw := gw + 1;

if gw > M B or imp > MC then second_choice := T RU E; endif;

*

= sy gw =0

else second_choice := TRUF;
if second_choice then
second_choice := FALSFE,
if Second # () and num_Second < L then

choose the solution s’ with better value in Second;

reset was_in_A and was.in_B with the values stored with s';
num_Second := num_Second + 1;

imp = 0;wor := 0; 8 := §';

else goto L1; (% restarting %)
endif;

end while;
return s*;
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4 Computational Experiments

The tabu search WEC-T'S of the previous section has been implemented in ANSI
C language and tested on a PC 486/66 with 8 Mbyte of main memory. We have also
implemented the GRASP approach of [16] and a multistart algorithm M-KL which
iteratively generates a random starting solution and applies to it the K L heuristic. For
all these three algorithms, we have used the same implementation technique, described
in section 2.3, to explore the neighborhood. We have also made a line by line translation
from Pascal to C of the original source code of algorithm 7S of [21] modifying only the
stopping criterion. We removed the limit of the max(100,5n) iterations and added a
bound on the elapsed CPU time.

We first tested the four algorithms on the 259 instances from the library created for
the computational experiments of [2]. The first 250 instances of this library are randomly
generated instances from five classes: (i) pure random instances with a fived percentage
of edges; (ii) planar grid instances; (iii) toroidal grid instances; (iv) mizved grid instances
(dense instances with some edges having weights from 1 to 100 and the others having
weights from 1 to 10); (v) instances with negative weights. The remaining nine instances
are real-word instances arising from an application of the finite element method in fluids
(see [2] for further details). The problems have from 20 to 100 vertices and density from
3% to 100%. For all the problems the optimal solution value is given. We initially ran
our algorithms for two seconds: our tabu search WEC-T'S and the multistart approach
M-KL determined the optimal solution, for each of the 259 instances, in less than
one second. The two remaining approaches have not been able to optimally solve all
the instances, therefore we ran again algorithms GRASP and TS with a time limit
of 60 seconds. With the new run also TS determined the optimal solution for all the
previously unsolved instances within 46 seconds, whilst GRASP has not been able to
solve 15 instances. In a final run with a time limit of 120 seconds GRAS P could optimally
solve two more instances out of the 15 not yet solved.

From this computational experience we conclude that small (up to 100 vertices) in-
stances of the weighted equicut problem are quite easy to solve with at least two heuristic
approaches. On the contrary to prove the optimality of a solution is an hard task since
it requires up to 127,297 seconds on a workstation SUN sPARC 10/41 (see again [2]).

To have a better understanding of the behaviour of the heuristic algorithms we ran-
domly generated larger instances. In particular we tried to solve instances defined by
random graphs G, and geometric graphs Uy, 4 (see section 2.2 and [12]). The instances
considered have n = 124,250,500,1000 and © = 2.5,5,10,20,40,80, where v is the ex-
pected average vertex degree. For the random graphs we considered three classes of
weights for the edges: (@) w;; € [1,10%]; (8) wi; € [1,10%); and () wi; € [1,10%]. (For
the geometric graphs the weights are the euclidean distance of two points in a unitary
square.) For each class we generated and solved 20 instances giving to each algorithm a
time limit of 4, 12, 36 and 108 seconds for n = 124,250,500 and 1000, respectively (we
have experimentally observed that the average time required to obtain good solutions
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grows approximately with n!-®).

To compare the performances of the four algorithms we used the number of best
solution found (BT) and the average error with respect to the best solution value obtained
by the four algorithms (avgErr). In the appendix we report six tables with all the details
of our computational results. In that tables we also give the time required to find the best
solution (Tbt) and the maximum error with respect to the best solution value obtained
by the four algorithms (maxErr). Here we discuss the main results by means of four
pictures.

In Figure 1 we summarize the results for the first index: we give the percentage
number of best solution found, over all the 1920 instances on random and geometric
graphs. The sum of the percentages is greater than 100 since for some instances more
algorithms obtained the same solution value.

It results that WEC-TS obtains a much larger number of good solution than the
other api)roaches. The second best heuristic is the classical M-K L, which has perfor-
mances a little better than GRASP. Algorithm 7S is not competitive. Worth is noting
the difference with the 0-1 case were GRASP is better the M-K L.

In Figures 2 and 3 we report the results obtained for the random graphs (1440 in-
stances) and for the geometric graphs (480 instances). The performances of WEC-T'S, in
practice, do not change. Algorithms M-K L, GRASP and TS, instead, have a different
behaviour for the two classes: they determine less good solutions for random graphs than
they do for geometric graphs (about three time less for M-K L, almost four times less
for GRASP, whereas T'S determines a best solution for only one random instance).

In Figure 4 we report the average error (with respect to the smallest solution value)
for random graphs (the same index cannot be used for geometric graphs, since there are
often solutions with zero or very small value, and the error tents to infinity).

It results again that WEC-TS has excellent performances, followed by GRASP
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and M-K L. Note that M-K I determines more better solutions than GRAS P, on the
random graph, but its average error is larger. On the geometric graphs M-K L has better
performances than GRASP. For the 0-1 instances, instead, GRASP is comparable with
M-KL for the random graphs, but it outperforms M-K L for the geometric graphs (see
[6]). Moreover observe that GRAS P generally uses all its time to find its better solution
(see tables I-IV in the Appendix). This confirms our hypothesis on the behaviour of the
GRAS P approach (see Section 2.3).

Finally we note that when the range of the weights changes form [1,10%] to [1,10°]
(see tables I-III in the Appendix), the behaviour of the four algorithm remains almost
the same, showing a substantial robustness of all the approaches.

Motivated by the above results we have generated larger instances (n = 2000 and
n = 4000) to study the characteristics of the algorithms with very large weighted equicut
problems.. We considered random and geometric graphs, the same six values of o used
above, and the range [1,10%] for the weights of the edges. It was necessary to change a
little the codes since our PC has only eight Mbytes of RAM. Indeed, with the original
implementation we have used both a full n X n matrix and a forward star data structure
to store the costs of the edges. With this implementation we need O(1) time to determine
the weight of a single edge and O(|E|) time to update the D; values (see Section 2.3).
With the larger instances we had to remove the n X'n matrix, so finding the weight of a
single edge requires O(log ©) time, using a binary search. Sample experiments performed
with the new implementation, on instances with n < 1000, have shown that the num-
ber of iterations executed by the algorithms, within a given amount of time, in practice
do not change. For the large problems we have generated and solved five instances for
each different kind of graph, giving to each algorithm a time limit of 324 and 972 for
n = 2000 and n = 4000, respectively. The results for the large instances are similar to
those obtained for n < 1000, just observe that for random graphs M-K L determines
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more better solutions than GRASP, but its average error is far larger.
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Appendix

Table I. Random graphs; class (a): range = [1,102].

124 250
v index WEC-TS M-KL GRASP TS WEC-TS M-KL GRASP Ts
2.5 BT 17 2 6 0 15 0 10 0
Thbt 1.054 2.383 1.233 1.561 4.806 5.582 4.577 2.614
maxErr 0.039  0.442 0.157 1.951 0.026 0.514 0.047 1.724
avgErr 0.003 0.099 0.034 0.953 0.004 0.295 0.012 1.185
5 BT 20 10 6 0 16 3 1 0
Tht 0.599  1.823 1.911 1.848 6.445  5.624 7212  3.746
maxErr 0.000 0.041 0.055 0.345 0.026 0.068 0.100 0.338
avgErr 0.000  0.008 0.015 0.235 0.002 0.040 0.050 0.259
10 BT 19 11 3 0 20 0 0 0
Thbt 0.627  1.446 1.658  2.049 5.326 6.103 6.975  1.960
maxErr 0.002 0.015 0.023 0.157 0.000  0.036 0.053 0.206
avgErr 0.000 0.004 0.008 0.081 0.000 0.013 0.028 0.129
20 BT 20 16 7 1 18 2 1 0
Thbt 0.481 1.346 1.716  0.679 4.548  6.333 6.335 2.552
maxErr 0.000  0.003 0.015 0.186 0.009 0.013 0.026 0.110
avgErr 0.000 0.000 0.004 0.062 0.000 0.005 0.015 0.060
40 BT 20 18 4 0 19 3 0 0
Thbt 0.508  1.429 1.864 1.636 3.721  5.784 6.615 4.616
maxErr 0.000  0.003 0.008 0.045 0.000  0.008 0.011  0.067
avgErr 0.000  0.000 0.003 0.022 0.000  0.003 0.008 0.036
80 BT 20 15 12 0 18 4 1 0
Tht 0.579  2.082 1.834 2.097 4.372  6.681 8.144 7.687
maxErr 0.000 0.001 0.003 0.035 0.001  0.005 0.011 0.036
avgErr 0.000 0.000 0.000 0.013 0.000 0.001 0.006 0.017

500 1000
v index WEC-TS M-KL GRASP TSs WEC-TS M-KL GRASP Ts
2.5 BT 15 0 7 0 16 0 4 0
Tht 12.935 19.838  20.372 5.077 51.579 63.304  44.556 25.418
maxErr 0.036 1.021 0.083 2.089 0.014 1.052 0.099 2.107
avgErr 0.004 0.547 0.028 1425 0.002 0.688 0.032 1.375
b) BT 19 0 1 0 20 0 0 0
Thbt 20.401 15.759  21.801 18.120 54.384 46.799  90.507 14.952
maxErr 0.006 0.096 0.063 0.400 0.000 0.117 0.077  0.361
avgErr 0.000 0.063 0.038 0.294 0.000 0.072 0.043 0.294
10 BT 17 3 0 0 20 0 0 0
Thbt 16.062 17.210  25.140 3.684 53.739 68.631 99.758 19.774
maxErr 0.006  0.038 0.061 0.207 0.000  0.037 0.056 0.161
avgErr 0.000  0.019 0.036 0.133 0.000 0.018 0.033 0.122
20 BT 19 1 0 0 19 1 0 0
Tht 18.450 18.447  23.121 6.571 53.433 66.616 107.102 27.634
maxErr 0.005 0.026 0.037 0.134 0.003 0.018 0.046 0.146
avgErr 0.000  0.008 0.026 0.075 0.000 0.008 0.030 0.065
40 BT 20 0 0 0 19 1 0 0
Thbt 14.219 21.019  28.653 13.854 36.581 58.076 107.909 45.311
maxErr 0.000 0.011 0.025 0.063 0.001 0.010 0.036 0.061
avgErr 0.000 0.005 0.014 0.036 0.000  0.005 0.023 0.041
80 BT 18 2 0 0 17 3 0 0
Tht 13.231 23.687  27.601 23.350 36.651 48.904 108.000 84.923
maxErr 0.001  0.006 0.017 0.047 0.001  0.006 0.021 0.035
avgErr 0.000 0.003 0.010 0.027 0.000  0.003 0.015 0.023

PC486/DX2 seconds; 20 instances for each entry.
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Table II. Random graphs; class (a): range = [1,10%].

124 250
v index WEC-TS M-KL GRASP TS WEC-TS M-KL GRASP TS
2.5 BT 14 4 5 0 15 0 8 0
Tht 1.237  2.254 0.881 1.601 5.004 5.888 4.395 3.579
maxErr 0.041 0.184 0.067 1.976 0.038 0.584 0.063 1.730
avgErr 0.005  0.060 0.027 0.916 0.005 0.318 0.020 1.226
5 BT 19 11 5 0 16 2 2 0
Tht 1.118  1.473 1.608 1.865 7.058  6.044 6.153  3.669
maxErr 0.015  0.021 0.055 0.384 0.028 0.083 0.101 0.318
avgErr 0.001  0.005 0.019 0.252 0.002  0.037 0.046 0.260
10 BT 20 8 3 0 18 2 0 0
Thbt 0.482 1.396 1.719  2.171 3.890 5.713 7.528 1.547
maxErr 0.000 0.012 0.022 0.176 0.008 0.036 0.054 0.207
avgErr 0.000 0.003 0.011 0.077 0.001 0.013 0.029 0.131
20 BT 20 16 6 0 18 3 0 0
Tht 0.489 1.432 1.917 0.679 5.219  7.148 6.863 2.738
maxErr 0.000 0.001 0.013 0.187 0.001  0.023 0.030 0.098
avgErr 0.000  0.000 0.004 0.061 0.000  0.005 0.013 0.052
40 BT 20 16 9 0 20 2 0 0
Thbt 0.564 1.789 1.936  1.537 4242 6.001 6.929 3.301
maxErr 0.000  0.004 0.008 0.042 0.000  0.006 0.015 0.081
avgErr 0.000  0.000 0.001 0.022 0.000  0.002 0.008 0.039
80 BT 20 11 6 0 19 0 1 0
Tht 0.274 1.761 1.659 2.128 4.232 4979 6.037 7.464
maxErr 0.000  0.003 0.004 0.023 0.001  0.004 0.010 0.037
avgErr 0.000  0.000 0.001 0.012 0.000  0.002 0.004 0.021

500 1000
index WEC-TS M-KL GRASP Ts WEC-TS M-KL GRASP TS
2.5 BT 16 0 ) 0 15 0 5 0
Tbt 15.247 22.164 14.510 2.947 49.554 61.248  41.057 15.430
maxErr 0.028 0.980 0.120  2.123 0.041 1.120 0.112  2.187
avgErr 0.003  0.559 0.039 1.441 0.006 0.712 0.049 1.440
5 BT 17 2 1 0 20 0 0 0
Tht 16.359 20.199 21.027 19.172 52.427 62.684 85.438 12.792
maxErr 0.008 0.116 0.096 0.396 0.000 0.155 0.138 0.386
avgErr 0.001  0.057 0.037 0.275 0.000 0.069 0.049 0.293
10 BT 19 1 0 0 19 1 0 0
Tht 18.734 20.894  21.653 4.227 63.988 63.712 104.719 14.303
maxErr 0.007  0.042 0.062 0.204 0.003 0.035 0.066 0.222
avgkrr 0.000 0.019 0.037 0.138 0.000  0.019 0.040 0.146
20 BT 18 2 0 0 18 2 0 0
Thbt 15.963 21.069 24.538 9.504 40.417 71.511 108.000 34.377
maxErr 0.001  0.023 0.050 0.104 0.003 0.020 0.048 0.100
avgErr 0.000 0.009 0.026 0.065 0.000  0.008 0.035 0.061
40 BT 17 3 0 0 19 1 0 0
Thbt 12.950 19.769 31.084 14.665 49.780 54.397 107.994 46.898
maxErr 0.003 0.011 0.025 0.081 0.002 0.011 0.033 0.067
avgErr 0.000  0.005 0.015 0.035 0.000  0.005 0.024 0.037
80 BT 15 5 0 0 18 2 0 0
Thbt 15.558 19.137 25.942 26.362 54.716 68.681 108.000 90.990
maxErr 0.003  0.006 0.014 0.029 0.001  0.006 0.020 0.034
avgErr 0.000 0.002 0.009 0.021 0.000 0.003 0.016 0.022

PC486/DX2 seconds; 20 instances for each entry.
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Table III. Random graphs; class (a): range = [1,10°].

124 250
v index WEC-TS M-KL GRASP TS WEC-TS M-KL GRASP Ts
2.5 BT 14 3 6 0 16 1 7 0
Tht 1.071  2.396 1.049 1.408 5.642  5.595 4.407  3.052
maxErr 0.046  0.200 0.093 2.101 0.035 0.482 0.063 1.737
avgErr 0.006 0.070 0.027 0.923 0.004 0.300 0.021 1.225
) BT 19 10 6 0 18 1 1 0
Tht 0.759  1.588 1.633 1.973 7.450  6.430 6.550 5.035
maxErr 0.015 0.025 0.055 0.399 0.008 0.083 0.101  0.339
avgErr 0.001  0.006 0.019 0.248 0.001 0.035 0.048 0.277
10 BT 20 8 3 0 18 1 1 0
Thbt 0.577  1.404 1.944 0.841 5.236  4.988 6.987 0.979
maxErr 0.000 0.012 0.019 0.230 0.007  0.026 0.054 0.207
avgErr 0.000  0.003 0.010 0.139 0.006  0.010 0.027 0.137
20 BT 20 16 6 0 19 2 0 0
Thbt 0.540  1.429 2.200 0.384 5.753  6.092 6.192  1.586
maxErr 0.000 0.001 0.026 0.187 0.001 0.014 0.029 0.109
avgErr 0.000  0.000 0.005 0.078 0.000  0.006 0.015 0.061
40 BT 20 17 8 0 19 2 0 0
Tht 0.497 1.778 1.936 0.537 4.241  6.226 6.734 2322
maxErr 0.000  0.004 0.009 0.068 0.000  0.008 0.016 0.081
avgbrr 0.000  0.000 0.002  0.044 0.000 0.003 0.008 0.049
80 BT 20 13 8 0 19 0 1 0
Tht 0.382 1.809 1.837 0.850 3.563  5.910 6.271  4.717
maxErr 0.000 0.001 0.003 0.063 0.001  0.005 0.009 0.042
avgErr 0.000  0.000 0.001 0.026 0.000 0.002 0.005 0.025

500 1000
v index WEC-TS M-KL GRASP 75 WEC-TS M-KL GRASP TS
2.5 BT 16 0 ) 0 15 0 5 0
Tht 16.774 20.693 13.783  5.457 49.828 57.013  49.112 15536
maxErr 0.066 1.050 0.127  2.125 0.023 1.122 0.112  2.206
avgErr 0.006  0.546 0.040 1441 0.003 0.704 0.041  1.444
3 BT 19 0 1 0 20 0 0 0
Tht 18.399 21.979 20.916 16 277 50.091 43.714  94.201 14.432
maxErr 0.064 0.102 0.072 0377 0.000 0.147 0.137  0.386
avgErr 0.000  0.060 0.035 0.277 0.000 0.076 0.661 0.297
10 BT 19 0 1 0 18 2 0 0
Tht 23.989 16.518 26.027 4.664 54.794 63.427 104.130 13.350
maxErr 0.001 0.043 0.064 0.203 0.014 0.032 0.070 0.221
avgErr 0.000 0.018 0.037 0.135 0.0601  0.019 0.042 0.141
20 BT 18 2 0 0 18 2 0 0
Thbt 14573 18997  25.782 T7.122 44.647 64.570 108.000 26.199
maxErr 0.002  0.020 0.040  0.090 0.003 0.016 0.045 0.100
avgErr 0.000 0.010 0.024 0.068 0.000  0.008 0.034 0.063
40 BT 20 0 0 0 ’ 19 1 0 0
Thbt 8.597 20.051 25.521 10.497 35.864 55.673 108.000 41.405
maxErr 0.000 0.010 0.024 0.081 0.003 0.011 0.034 0.065
avgErr 0.000 0.005 0.015 0.043 0.000  0.005 0.023 0.042
80 BT 17 3 0 0 20 0 0 0
Thbt 13.909 20.478 27.364 21.397 49.808 64.974 108.000 82.770
maxErr 0.002  0.007 0.016 0.030 0.000  0.007 0.023 0.035
avgErr 0.000 0.002 0.009 0.023 0.000 0.003 0.017 0.024

PC486/DX2 seconds; 20 instances for each entry.
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Table IV. Geometric graphs.

124 250

v index WEC-TS M-KL GRASP TS5 WEC-TS M-KL GRASP TS5

25 BT 20 20 19 7 20 12 18 1
Tht 0.068 0.389 0.118 2.138 0.217  4.567 0.662 3.499

5 BT 20 16 12 0 20 0 6 0

Tht 0.481 1.513 0.838 1.579 3.187 6.476 5.393 2.017

10 BT 20 20 16 1 20 18 11 0
Thbt 0.202  0.267 0.650 1.383 1.010  3.497 3.925 5.809

20 BT 20 20 19 7 20 20 12 2
Tht 0.102 0.112 0.396 0.827 0.442 0.928 3.642 2.366

40 BT 20 20 20 12 20 20 16 7
Thbt 0.074 0.076 0.407 0.642 0.439  0.3%4 2573 3.121

80 BT 20 20 19 11 20 20 16 9
Tht 0.056 0.113 0.607 1.104 0.327  0.369 2.577 4.358

500 1000

v index WEC-TS M-KL GRASP TS WEC-TS M-KL GRASP TS5

25 BT 20 0 18 0 20 0 19 0
Tht 1.249 21.465 2418 7.186 5.065 71.617 19.611 25.977

5 BT 20 0 1 0 20 0 1 0

Tht 9.428 14918 14.979 10.776 34.348 51.018  48.507 16.851

10 BT 20 5 9 0 19 1 3 0
Tht 5.251 19.898 12.397  4.252 24.923 63.163 53.886 16.065

20 BT 19 20 8 0 17 11 1 0
Tht 5.312 10.038 12.215 7.481 32.146 53.066 69.697 27.347

40 BT 20 20 9 6 19 20 3 1
Thbt 3.116 1.813 19.442 12.836 8.577 17.238 75.806 47.784

80 BT 20 20 11 3 20 20 8 3
Thbt 1.523 1419 15.373 20.638 7.903 10.689 64.039 79.662

PC486/DX2 seconds; 20 instances for each entry.
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Table V. Random graphs; class (a): range = [1,10%].

2000 4000
v index WEC-TS M-KIL GRASP TS5 WEC-TS M-KL GRASP TS
2.5 BT 5 0 0 0 4 0 1 0
Tht 207.802 186.926 136.344 22.002 538.968 611.556 799.780 132.810
maxErr 0.000  0.953 0.113 1.552 0.013  0.929 0.083 1.403
avgErr 0.000 0.786 0.064 1.462 0.003  0.860 0.044 1.319
5 BT 5 0 0 0 5 0 0 0
Tht 221.672 200.874 321.666 89.530 770.864 690.854 973.592 207.876
maxErr 0.000 0.115 0.0566  0.350 0.000  0.153 0.055  0.307
avgErr 0.000  0.088 0.028  0.297 0.600  0.107 0.043  0.273
10 BT 5 0 0 0 5 0 0 0
Thbt 203.136 101.284 324.480 74.480 612.288 681.452 974.682 240.308
maxErr 0.000  0.017 0.037  0.155 0.000  0.029 0.036  0.109
avgErr 0.000 0.014 0.031  0.117 0.000  0.022 0.027  0.100
20 BT 4 1 0 0 3 2 0 0
Tht 169.238 164.396 324.488 130.460 569.712 630.952 972.850 371.418
maxErr 0.001  0.009 0.032  0.062 0.001  0.008 0.028  0.067
avgErr 0.000  0.005 0.026  0.052 0.000  0.002 0.024  0.060
40 BT 4 1 0 0 1 4 0 0
Tht 138.502 250.802 324.524 170.744 218.318 713.294 973.750 649.124
maxErr 0.005  0.007 0.027  0.050 0.005  0.001 0.023  0.041
avgErr 0.001  0.002 0.022  0.036 0.001  0.000 0.019  0.035
80 BT 5 0 0 0 4 1 0 0
Tht 95.932 164.320 324.434 314.580 169.650 588.552 973.846 972.154
maxErr 0.000  0.004 0.020 0.024 0.001  0.005 0.016  0.037
avgErr 0.000  0.002 0.016  0.022 0.000  0.002 0.014  0.034
PC486/DX2 seconds; 5 instances for each entry.
Table VI. Geometric graphs.
2000 4000
v index WEC-TS M-KL GRASP TS5 WEC-TS M-KL GRASP TS
25 BT 5 0 5 0 5 0 5 0
Tht 22.698 193424  21.852 32.504 112.268 480.860  97.250 177.720
5 BT 5 0 0 0 4 0 1 0
Tht 53.026 128.820 176.882 39.162 400.504 702.864 495.854 154.648
10 BT~ 5 0 0 0 5 0 0 0
Tht 160.330 186.5680 258.484 63.230 241.016 414.350 885.676 260.662
20 BT 4 1 0 0 5 0 0 0
Tht 83.128 280.658 275.222 122.866 449.588 711.564 974.584 504.878
40 BT 5 3 0 0 5 1 0 0
Tht 78.916 248.640 324.358 213.280 311.736 603.262 973.628 891.578
80 BT 5 5 0 0 5 4 0 0
Tht 26.530  32.770 324.534 324.004 584.896 417.194 922.780 972.330

PC486/DX2 seconds; 5 instances for each entry.
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