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Abstract

In this study, we contribute to the existing literature on the impact of temperature on

growth by examining the orthogonalized seasonal effect jointly with the feedback from

economic activity (hence treating the increase in global temperature as anthropogenic)

on a sample of 225 EU NUTS2 regions. For this purpose, we use a Panel Mixed-

Frequency VAR. The empirical findings show, first, a worsening impact of temperature

on growth over the last sub-sample (2000-2019) relative to the full sample analysis

(covering the 1981-2019 time span). Moreover, our findings show that seasonal

temperature effects are not restricted only to the agriculture sector, and we also

find evidence of a heterogeneous impact of seasonal temperature on growth when

we turn our focus on hot and cold regions (using the average EU median annual

temperature as a threshold), rich and poor regions (using the average EU median

income per capita as a threshold) and between competitiveness (using the median

Regional Competitiveness index as a threshold).
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1 Introduction

The focus of this study is the analysis of the impact of rising temperature on economic

growth using sub-national data for Europe. The recent report by Copernicus in the 2022

Annual Climate Summary shows, for Europe, the hottest summer ever recorded, and

the highest rate of increase of any continent in the world (European temperatures have

increased by more than twice the global average over the past 30 years). Therefore, it

has become more stringent a prompt action by policymakers to implement the climate

policies necessary to meet, in Europe, the 2030 greenhouse gas emissions net reduction

intermediate target of 55% below 1990 levels, and to achieve the long-term European

Green Deal target of EU-wide climate neutrality by 2050. In the baseline analysis, we

use data on air temperature levels and on a proxy of real economic output observed for

225 EU NUTS2 regions over the period 1981− 2019. While data on regional economic

activity is typically sampled at an annual frequency, temperature level series for European

regions are available at a higher frequency. We construct a quarterly (i.e., seasonal) series

of air temperature levels and we model the joint interactions between seasonal temperature

and annual economic growth (aggregate and sector-specific) by estimating structural

mixed-frequency Panel Vector Autoregressions (hereafter Panel MF-VAR).

Our contribution to the existing literature on temperature effect on growth is as follows.

First, we focus on a linear seasonal effect model as an alternative to non-linear single

equation model specification considered in the cross-country studies of Burke et al. (2015)

and Burke et al. (2018) finding a concave relationship between temperature and income, or

the one by Kahn et al. (2021) finding a different impact of positive and negative deviation

from a temperature norm proxied by a moving average observed over a long-horizon.1 To

our knowledge, the only study accounting for seasonal effect is the one by Colacito et al.

(2019). Our contribution to Colacito et al. (2019) is, first, based on the orthogonalization

of shocks to seasonal temperature to avoid that a shock in a given season (e.g., summer) is

contaminated by shocks occurring in other seasons. For this purpose, we use a structural

form Mixed Frequency Panel VAR fitted to five endogenous series: four seasonal temper-

ature series and GVA growth and identification is achieved through recursive ordering

(with GVA growth ordered last).

1Studies based on sub-national data which find evidence of an inverted-U relationship between income
and temperature are those by Olper et al. (2021) focusing on Italy and by Zhao et al. (2018) using 10597
global grid cells. Mohaddes et al. (2022) focus on US states using positive and negative deviation from a
temperature norm in a way similar to Kahn et al. (2021).
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A further contribution to Colacito et al. (2019) is the feedback from economic activ-

ity (hence treating the increase in global temperature as anthropogenic; see the study of

Bansal et al., 2016, among others) given the multiple equations setting characterizing our

model specification. Contrary to our study, the literature addressing the endogeneity bias

of the impact of temperature on growth does not include seasonal effects, and it is based,

first, on single equation panel regression, such as an autoregressive distributed lag, ARDL

(see the Kahn et al., 2021 and Mohaddes et al., 2022, focusing mainly on the long-run, or

the local projection studies by Acevedo et al., 2020 and by Olper et al., 2021). Second,

feedback effects have been explicitly taken into account through Panel VAR. In particular,

while Donadelli et al. (2021) focus on the joint interaction between temperature levels

and economic growth, Alessandri and Mumtaz (2021) focus on the relationship between

temperature volatility and economic growth. In particular, Alessandri and Mumtaz (2021)

estimate a structural Panel VAR augmented with stochastic volatility using data for 133

countries observed over the 1960−2019 time span. This methodology allows the authors to

identify shocks both to the levels and the volatility of temperature and economic growth.2

Contrary to our model specification based on mixed frequency data (in a Panel VAR

context), the aforementioned studies do not include seasonal temperature effect. It is

important to observe that the use of mixed frequency data allows to avoid a potential

temporal aggregation bias that might arise when high-frequency data are aggregated to a

lower sampling frequency (see for example Ghysels, 2016; Marcellino, 1999, for a discussion

on the consequences of temporal aggregation bias in time series regressions).

An additional contribution to the literature on temperature and growth is the focus on

seasonal temperature effects using sub-national data, which allow to account for the within-

country heterogeneity in temperatures and growth. The need to avoid aggregation at the

country level is motivated by, first, taking into account the exposure of different regions

units within a country to opposing temperature shocks within a given period; second,

by the wide income differences within countries. In particular, the growth-temperature

relationship based on sub-national data is the focus of Deryugina and Hsiang (2014),

Colacito et al. (2019), Mohaddes et al. (2022) using data for the US states. Li et al.

(2019) focus on Chinese provinces; the studies of Zhao et al. (2018), Acevedo et al. (2020),

Kalkuhl and Wenz (2020), Greßer et al. (2021) use sub-national data for a sample of global

economies; Olper et al. (2021) focus on NUTS3 data for Italian provinces. Our focus is on

225 NUTS2 region of Europe.

Our final contribution is the analysis of heterogeneity. Several studies find evidence that a

2See also Kotz et al. (2021) study of temperature variability effect on growth using sub-national data.
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temperature increase has a detrimental effect, especially in relatively hot countries, and

in those relatively poor (given that they have fewer means available to adapt to further

temperature increases). In particular, Dell et al. (2012) find a negative and statistically

significant impact of temperature on economic growth only for poor countries. Kahn et al.

(2021) find that poor countries are largely affected by temperature shocks. Nevertheless,

negative effects are also found for rich countries. Furthermore, the empirical evidence

in Burke and Tanutama (2019) suggests that while the negative impact of temperature

exposure is much more common in poor regions, there are no meaningful variations in

the response of poor and rich economies to increasing temperature. In their study on

US, Colacito et al. (2019) show that the negative effect of rising temperature on GDP

growth in hot states is not driven by the relatively poor states. Our final contribution is

to the literature studying the heterogenous response of growth to temperature shocks by

conditioning not only on hot/cold (using the average EU median annual temperature as a

threshold to split the sample) and on rich/poor regions (using the average EU median

income per capita as a threshold for sub-sample splitting), but also on high and low

competitiveness (using the median Regional Competitiveness index as a threshold to split

the sample).

Contrary to the study of Colacito et al. (2019), which finds a statistically negative effect

of temperature on growth only during summer, our empirical evidence suggests a negative

relationship between temperature and real GVA growth also during other seasons. Over

the period 1981− 2019, an exogenous 1◦ Celsius increase in seasonal temperature levels

leads to a contemporaneous reduction in GVA growth, particularly pronounced in summer

and, to a lesser extent, in winter (although non-statistically significant). We find that

the negative response of GVA growth reaches its peak typically after a one-year horizon.

Moreover, the results suggest that the magnitude of the detrimental effect of increasing

temperature on real economic activity is larger over a more recent sub-sample period

(2000− 2019), both at aggregate and sectoral levels, showing non-negligible responses in

GVA not only for agriculture, forestry and fishing sector but also for construction, industry

and services. The use of panel data regressions allows us to investigate the presence of

heterogeneity in the response of GVA growth to temperature shocks over different groups of

regions: cold vs. hot regions, rich vs. poor regions, and highly- vs. low-competitive regions.

Heterogenous temperature effects on growth show up once we account for seasonalities,

that is only in the mixed-frequency Panel VAR analysis. In particular, the detrimental

effects of shocks to temperature on growth during winter, summer and fall are more
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pronounced in hot regions (e.g., those above the median temperature) than in colder ones

(e.g., those below the median temperature). These findings are in line with Kahn et al.

(2021) for a large number of countries and with Mohaddes et al. (2022) and Colacito et al.

(2019) for US. Moreover, the negative effects of shocks to temperature on growth during

each season are more pronounced in poor regions (e.g., those below the median per capita

income) than in rich ones (e.g., those above the median per capita income). The only

exception is summer which shows a rebound (positive and statistically significant) effect

at a horizon corresponding to one year. A similar heterogeneous pattern is observed when

considering low and high competitive regions (e.g., those below and above the median

Regional Competitiveness index, respectively): the former are affected more negatively

than the latter during winter, spring and fall. As for the summer, only on impact, there

is evidence for low competitive regions of a more detrimental effect on growth than for

the highly competitive ones with a rebound effect after one year. While the common

frequency study of Kahn et al. (2021) finds evidence of a heterogenous temperature effect

on growth only when the average world growth is introduced to control for cross-sectional

dependence, our study shows the role played by seasonal effects interacting with level

development (proxied by either income per capita or regional competitiveness) in driving

the resilience of economic growth to temperature shocks.

Our paper is structured as follows. Section 2 describes the empirical model. Section 3

describes the empirical analysis: data and empirical findings. Section 4 discusses a number

of robustness checks and Section 5 concludes.

2 Panel VAR analysis

We estimate a pooled stacked mixed-frequency Panel VAR (Panel MF-VAR) fitted to a

Kh = 1 quarterly (seasonal) series of temperature levels and to a Kl = 1 macroeconomic

variable observed at an annual frequency, that is every four seasons (s = 4):

Yi,t = αi + βdt +

p∑
ℓ=1

Ai,ℓYi,t−ℓ + ui,t (1)

where Yi,t = (T ′
i,winter, T

′
i,spring, T

′
i,summer, T

′
i,fall,∆y′i,t)

′ is a K-dimensional stacked vector

of mixed-frequency variables observed for the i-th NUT2 region at year t, with K =

Kl +Khs = 5. The stacked vector of endogenous variables includes the quarterly series of

temperature levels (Ti,s) observed for the i-th NUTS2 region during season s (i.e., winter,
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spring, summer, and fall) and the annual log changes of the proxy of real economic activity

(∆yi,t) observed for the i-th NUTS2 region at year t. As described by Ghysels (2016), in

the stacked mixed-frequency VAR the vector of endogenous variables evolves according to a

standard common frequency VAR at the lowest sampling frequency available in the sample.

Hence, in our case, Yi,t evolves according to an annual panel VAR model. Furthermore,

αi indicates the region-fixed effects, while dt indicates the vector of annual dummies.

Moreover, given that we rely on pooled estimation, the slope coefficients matrices (Ai,ℓ, for

ℓ = 1, . . . , p) associated with the lagged endogenous variables (Yi,t−ℓ) and the reduced-form

residuals ui,t are common across regions (i.e., homogeneity assumption), that is Ai,ℓ = Aℓ

and ui,t = ut ∼ N (0,Σ).3 The homogeneity assumption is imposed in our study due to

the short sample length, especially when the model is estimated over the 2000 − 2019

subsample period. We partially release this assumption by exploring the response of

economic activity to temperature shocks in different groups of regions, according to the

initial level of temperature, income and competitiveness degree.4

In the baseline specification, the proxy of real economic activity (yi,t) is the (log of) regional

real Gross Value Added (GVA).5 Alternative proxies of regional economic activity are

used: (i) (log of) real GVA by NACE sector, (ii) (log of) real GVA per capita. The model

is estimated using data for an unbalanced panel of 225 NUTS2 regions in 22 EU countries,

over two sample periods: (i) 1981−2019 and (ii) the more recent 2000−2019 sub-sample.6

The lag length is set equal to one. We also estimate a common-frequency Panel VAR

(Panel CF-VAR), where both the levels of temperature and the proxy of economic growth

are observed at an annual frequency. In particular, the annual series of temperature levels

is obtained by computing the mean of the four seasonal observations. For comparison, the

Panel MF-VAR and the Panel CF-VAR are estimated using the same estimation samples

and lag structure.

Both the MF- and Panel CF-VARs are estimated using Bayesian techniques. In particular,

following Bańbura et al. (2010), we impose a Natural conjugate prior on the VAR coefficients

by using artificial observations. The Gibbs sampling is used to simulate the posterior

3See Canova and Ciccarelli (2013) for a discussion on the pooled estimation with fixed effects in Panel
VAR models.

4A similar empirical strategy is used in the study of Ciccarelli and Marotta (2021), which investigates
the macroeconomic effects of climate-related transition and physical risks in 24 OECD countries over the
1990− 2019 time span.

5Data on real Gross Domestic Product (GDP) are also available in the ARDECO database. However,
we prefer to use real GVA as a proxy for real economic activity whose data are also available for the
different economic sectors. Results for real GDP are qualitatively and quantitatively similar to those
obtained using real GVA and they are available upon request.

6For more details on the availability of data for each country, see Section 3.1.
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distribution of the VAR parameters. The number of replications is set equal to 25000,

using the last 10000 for inference (see Appendix A for technical details).7

The seasonal temperature shocks are identified by computing the Cholesky decomposition

of the residual covariance matrix:

Σ = B0B
′
0 (2)

where B0 is a lower triangular matrix containing the contemporaneous effect of the

structural shocks εt ∼ N (0, IK), such that ut = B0εt. In our study, the block of seasonal

temperatures is ordered before the proxy of real economic activity (i.e., the growth rate of

GVA). The recursive identifying scheme of the Panel VAR with the climate proxies ordered

first is along the lines of the recent works of Donadelli et al. (2021), which focus on real

economic activity effects of annual mean temperature, and of Alessandri and Mumtaz (2021),

which focus on real economic activity effects of annual temperature volatility. Moreover,

in our study, the four seasonal average temperatures are stacked into the vector of mixed-

frequency variables according to the following order: T = (Twinter, Tspring, Tsummer, Tfall).

This ordering implies that an exogenous increase in the average temperature during each

season affects only the following seasons.

3 Empirical analysis

3.1 Data

The mixed- and common-frequency Panel VARs are estimated using a proxy of temperature

levels and of real economic growth for 225 NUTS2 regions in 22 EU countries, observed over

the 1981− 2019 time span.8 In the baseline specification, we use data on GVA at constant

prices (deflated to 2015 price levels) as a measure of real economic activity, available at

an annual frequency. The data are collected from the publicly available Annual Regional

Database of the European Commission’s (ARDECO database) Directorate General for

Regional and Urban Policy, which is maintained and updated by the Joint Research

Centre.9 In further specifications, we use GVA at constant prices disaggregated into six

7The codes used in our paper are an adaptation of those provided by Beetsma et al. (2021) and available
on Haroon Mumtaz’s website .

8Although data on temperature levels and on economic activity are available up to 2021 for most of
the regions included in the sample, we prefer to exclude the COVID-19 observations and estimate the
models using data up to 2019.

9The database contains information on demographic and macroeconomic (including labour market,
capital formation and domestic product) variables for the EU27 countries plus Albania (AL), Montenegro
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NACE2 sectors: (i) agriculture, forestry and fishing, (ii) industry, excluding construction,

(iii) construction, (iv) wholesale, retail, transport, accommodation and food services,

information and communication, (v) financial and business services, and (vi) non-market

services. As a robustness check, we estimate the model using the growth rate of the GVA

per capita, computed by taking the ratio of GVA to total population (using, for the latter,

data downloaded from ARDECO).

In the present study, we measure seasonal temperature effects using the level of the monthly

average temperature registered during four seasons: winter (January, February, and March),

spring (April, May, and June), summer (July, August, and September), and fall (October,

November, and December).10 In particular, we use monthly NUTS2-level data downloaded

from the publicly-available Copernicus climate change service (C3S) operational energy

dataset. The database contains climate-relevant indicators for the energy sectors, such

as air temperature, among others, for 38 European countries from 1979 onward.11 The

historical dataset produces reference climate variables based on the European Centre for

Medium-Range Weather Forecasts (ECMWF) Reanalysis fifth generation (ERA5) and

retrieved from the Climate Data Store. Data are available both at the grid (approximately

30×30 km) and at the country (NUTS0) and regional (NUTS2) levels. Moreover, the series

are available at different frequencies, that is 1 hour, 3 hours, 6 hours, daily, monthly, and

yearly.12 In our empirical application, we use the 2 meters air temperature series, which

is defined as the ambient air temperature near to the surface (i.e., typically at a height

of 2m). We collect the monthly (averaged) series for NUTS2 regions. The regional series

are obtained by aggregating the station-level observations using both fractional land-sea

mask and latitude cosine weights. The former allow accounting for the difference between

land and sea grid points, while the latter account for the earth’s spherical curvature. The

(ME), North Macedonia (MK), Norway (NO), Serbia (RS), and Turkey (TR). Data are available for all
the levels of the Nomenclature of territorial units for statistics (NUTS), that is NUTS0 (corresponding to
the country level), NUTS1, NUTS2 and NUTS3 (i.e., the lowest level of the territorial classification). The
time series cover the period 1980− 2023, where the last four annual observations are forecasted based on
the 2017− 2019 trend. Data and technical details can be found at the ARDECO online page.

10See Colacito et al. (2019) for a similar construction of seasonal temperature proxies.
11Data are available for Albania (AL), Austria (AT), Bosnia and Herzegovina (BA), Belgium (BE),

Bulgaria (BG), Switzerland (CH), Cyprus (CY), Czech Republic (CZ), Germany (DE), Denmark (DK),
Estonia (EE), Greece (EL), Spain (ES), Finland (FI), France (FR), Croatia (HR), Hungary (HU), Ireland
(IE), Island (IS), Italy (IT), Lichtenstein (LI), Lithuania (LT), Luxembourg (LU), Latvia (LV), Montenegro
(ME), North Macedonia (MK), Malta (MT), Netherlands (NL), Norway (NO), Poland (PL), Portugal
(PT), Romania (RO), Serbia (RS), Sweden (SE), Slovenia (SI), Slovakia (SK), Turkey (TR), and United
Kingdom (UK).

12The “Climate and energy indicators for Europe from 1979 to present derived
from reanalysis” database is updated at a monthly frequency and it is available at
https://cds.climate.copernicus.eu/cdsapp!/dataset/sis-energy-derived-reanalysis?tab=overview.
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series of temperatures are measured in degrees Kelvin (K). We convert the series into

degrees Celsius (◦C). To estimate the common-frequency Panel VAR, the annual average

temperature series is obtained by averaging out the four seasonal observations in each year.

The final dataset includes regional observations of temperature levels and of real GVA

growth rate for 22 EU countries and it is constructed as follows.13 First, we exclude from

the initial sample of 33 countries (that is the maximum geographical coverage for which

information on both economic activity and temperature is available) the ones that consist

of only one NUTS2 region (i.e., no distinction between NUTS levels): Cyprus, Estonia,

Luxembourg, Latvia, Montenegro, North Macedonia, and Malta. Moreover, we exclude

Albania, Norway, Serbia, and Turkey since they are not EU members. Finally, since

data on 2m air temperature are not available for Région de Bruxelles-Capitale (BE10),

Bremen (DE50), Ciudad Autónoma de Ceuta (ES63), Ciudad Autónoma de Melilla (ES64),

Guadeloupe (FRY1), Martinique (FRY2), Guyane (FRY3), La Réunion (FRY4), Mayotte

(FRY5), and Região Autónoma dos Açores (PT20), we remove these regions from the

estimation sample.

To investigate whether the temperature levels increased in the 225 NUTS2 regions over

the 1981− 2019 period, we follow Kahn et al. (2021) and Mohaddes et al. (2022) and we

regress the temperature levels on a constant term and a deterministic linear time trend

for each NUTS2 region.14 The region-specific coefficients associated with the time trend,

which measure to what extent the temperature has increased on average per year, are

reported in Figure 1. We report the results for the seasonal temperatures as well as for the

annual (averaged) temperature. As can be seen in Figure 1, temperature levels observed

in each season increased over the 1981− 2019 time span, in almost all the NUTS2 regions.

The largest average (across NUTS2 regions) per annum increase in temperature levels has

been observed in spring (0.0522), followed by winter (0.0393), fall (0.0391), and summer

(0.0368), while the average (across NUTS2) rise in annual temperature is equal to 0.0419

13The 22 EU countries are: Austria (AT), Belgium (BE), Bulgaria (BG), Czech Republic (CZ), Germany
(DE), Denmark (DK), Greece (EL), Spain (ES), Finland (FI), France (FR), Croatia (HR), Hungary (HU),
Ireland (IE), Italy (IT), Lithuania (LT), Netherlands (NL), Poland (PL), Portugal (PT), Romania (RO),
Sweden (SE), Slovenia (SI), and Slovakia (SK). In the baseline specification, we deal with an unbalanced
panel of observations given that data availability differs both between and within countries, especially for
macroeconomic data. The largest sample is observed in 11 countries (i.e., 1981− 2019), including AT, BE,
DE, DK, ES, FI, FR, IT, NL, PT, SE, while the smallest one is reported by EL and HR (i.e., 1996− 2016).
Moreover, in Germany, 8 regions out of the 38 NUTS2 territories report data only from 1992 onward.

14As in Kahn et al. (2021) and Mohaddes et al. (2022), the region-specific regression has the following
representation: Ti,t = αi + βit+ ui,t, where Ti,t is the temperature levels observed in region i at year t,
during each of four seasons individually (winter, spring, summer, and fall) as well as over the year (annual
average), for i = 1, . . . , 225. Moreover, βi is the region-specific coefficient associated with the linear time
trend and it measures the per annum average rise in temperature levels reported by the i-th region.
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Figure 1: Estimates of the average increase in temperature levels over the 1981− 2019
time period.
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Notes. Distribution of the estimate of the coefficients associated with the deterministic time trend (βi) of
the following regression: Ti,t = αi + βit+ ui,t, where Ti,t is the temperature levels observed in each of
four seasons individually (winter, spring, summer, and fall) and the averaged yearly temperature (annual).
The third quartile for winter (0.0474), spring (0.0596), summer (0.0435), fall (0.0468), as well as for the
average annual series (0.0473) is also reported (red line).

per annum.

3.2 Aggregate GVA results

In line with Greßer et al. (2021) study based on sub-national data, results in Table 1 do

not show evidence that temperature and regional economic development across the 225

NUTS2 European regions follow an inverted U-shape. As an alternative to the non-linear

single equation model specification, we use a multiple linear equation setting with seasonal

effects captured through the Panel Mixed-Frequency VAR.
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Table 1: Non-linear effect of temperature level on real economic growth, over the
1981− 2019 period.

Annual Winter Spring Summer Fall

T 0.1453 0.0654∗∗ 0.4224∗ 0.5648 0.2553∗∗∗

(0.2562) (0.0268) (0.2347) (0.4182) (0.0610)
T 2 0.0210 0.0305∗∗∗ −0.0106 −0.0198 0.0027

(0.0137) (0.0034) (0.0083) (0.0121) (0.0046)

Notes. Estimated coefficients (in percent) associated with the
level of annual temperature (and its squared term) (column 1)
and with the level of seasonal temperatures (and their squared
term) (columns 2−5) obtained from the estimation of the following
regressions: (i) ∆yi,t = αi + βit + θTi,t + ϕT 2

i,t + ui,t, where Ti,t

is the averaged yearly temperature (annual); (ii) ∆yi,t = αi +
βit+

∑4
s=1 θsTi,s,t +

∑4
s=1 ϕsT

2
i,s,t + ui,t, where Ti,s,t is the level of

temperature observed in each season s (winter, spring, summer,
and fall). Moreover, ∆yi,t is the growth rate of real GVA and
βi is the coefficient of the region-specific linear time trend. The
estimation sample is 1981 − 2019. Standard errors clustered by
region are in parentheses. Significance at the 1% (∗∗∗), 5% (∗∗),
and 10% (∗) levels are also reported.

In this section, we discuss the empirical findings for the baseline specification (based on

the full sample observed over the period 1981−2019 for a panel of 225 NUTS2 regions). In

particular, we report the impulse response functions of the real GVA growth rate (∆GVA)

to temperature shocks (εT ) proxied by an exogenous increase in the 2m air temperature.

The impulse responses are normalised to an increase of 1◦C (on impact) both in the Panel

MF-VAR (i.e., a unitary increase in the temperature level in each of the four seasons)

and in the Panel CF-VAR, and they are computed over an 8-year forecast horizon.15

Figure 2 shows the structural impulse responses of ∆GVA to a 1◦C increase in the level of

temperature observed during each of the four seasons (i.e., winter, spring, summer, and

fall). In each chart, we report the median response (blue line) and the corresponding 68%

error bands (grey shadow area) obtained from the estimation of the Panel MF-VAR fitted

15As a robustness check, we follow Colacito et al. (2019) and we estimate the Panel MF-VAR fitted
to ∆GVA and deseasonalized temperature series. The latter is computed as follows. First, we estimate
the following panel regression: Ti,d =

∑12
m=1 γmIi,m + αi + ui,d, where Ti,d is the temperature levels in

region i and day d, Ii,m is a dummy for month m in region i, αi are region-fixed effects, and ui,d is the
error term. Then, we compute the residuals from the estimated panel regression and aggregate them at a
monthly frequency. Finally, the four seasonal deseasonalized temperature series are obtained by averaging
out the three monthly observations. The results of the Panel MF-VAR (and of the Panel CF-VAR) fitted
to ∆GVA and to the deseasonalized temperature levels are qualitatively and quantitatively similar to
those obtained by using the raw temperature levels and they are available upon request.
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Figure 2: Responses of the regional real GVA growth.
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Notes. Impulse responses of the real GVA growth rate (∆GVA) in percent, computed over an 8-year
forecast horizon, using the 1981−2019 period as estimation sample. The charts show the impulse response
profile of ∆GVA to temperature shocks occurring in winter (εTwinter), spring (εTspring), summer (εTsummer),

and fall (εTfall). Each chart displays the median response (blue line) and the corresponding 68% error
bands (grey shadow area) computed by estimating the Panel MF-VAR described in equation (1). The
size of the temperature shocks in each season is normalized to a 1◦C increase in the temperature levels.
The median response (red line with asterisk) obtained from the estimation of a Panel CF-VAR (fitted to
annual temperature and real GVA growth rate) and the corresponding 68% error bands (red dashed lines)
are also reported. For comparison, the size of the shock in the Panel CF-VAR is also normalized to a 1◦C
increase in the level of temperature.

to the four seasonal time series of temperature level and to the annual log changes of real

GVA. For comparison, in Figure 2 we also report the impulse response obtained from

the estimation of a Panel CF-VAR (median response and 68% error bands in red lines)

fitted to annual series of temperature levels and ∆GVA, where the former is obtained by

averaging out the four seasonal observations. The inefficiency factor computed over the

10000 retained draws is relatively low, suggesting evidence of convergence of the Gibbs

sampling algorithm (see Appendix B).

We can observe, from Figure 2, that the response of the annual ∆GVA to an increase

in the annual temperature levels (i.e., the response obtained from the Panel CF-VAR)
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is negative over the whole forecast horizon. On impact, we find a reduction of 0.06%

(although it is not statistically significant), while the negative response of ∆GVA reaches

its peak after a 2-year horizon (−0.22%), before dying out after 4 years. A closer in-

spection of the seasonal responses of ∆GVA to temperature shocks (i.e., the response

obtained from the Panel MF-VAR) reveals that summer (−0.08%) and, to a lesser extent,

winter (−0.04%, although with uncertainty around the median estimates) contribute the

most to the aforementioned reduction observed on impact in the annual ∆GVA, while

the response in spring and in fall is not statistically different from zero. The negative

contemporaneous impact of rising temperature in summer on economic output is in line

with the empirical evidence provided by Colacito et al. (2019) for US.16 Beyond time

zero, we observe a reduction of the economic growth in all the seasons with the only

exception of the summer where we observe a rebound effect at horizon one (0.35%).

At horizon one, the largest reduction of ∆GVA is observed in fall (−0.28%), with a

magnitude in the response that is similar to that obtained from the estimation of the

Panel CF-VAR, followed by the response in spring (−0.12%) and in winter (−0.06%).

Finally, the response of ∆GVA diminishes after a 2-year forecast horizon in all four seasons.

To assess whether the joint relationship between temperature levels and real economic

growth has changed over the estimation sample, we repeat the empirical analysis using a

more recent sub-sample of 20 years, that is 2000− 2019. Figure 3 shows the responses of

∆GVA to temperature shocks obtained from the estimation of both the Panel MF-VAR

and the Panel CF-VAR. As can be seen from Figure 3, overall, the negative effect of a 1◦C

rise in the levels of temperature on economic growth is larger (in absolute values) than

that observed over the full sample, i.e. 1981 − 2019 (see Figure 2), using both annual

(Panel CF-VAR) and seasonal (Panel MF-VAR) series of temperature. In the case of

Panel CF-VAR, we find that ∆GVA decreases by 0.61%, on impact, which is ten times

the response observed using the 1981− 2019 sample period. Likewise the results observed

using data for 1981− 2019, the peak of the negative response is reached after one year also

over the sub-sample period: −0.97% (i.e., more than four times the response estimated

over the full sample). Then, the response of the ∆GVA approaches zero over the next two

forecast horizons.

16In their study, Colacito et al. (2019) also estimate the impact of an increase in the annual (averaged)
temperature on economic activity, finding a not statistically significant effect of temperature on GDP for
the U.S. states. However, once the authors replace the annual series of temperatures with the seasonal
ones, the relationship turns out to be statistically significant pointing to the importance of using higher
frequency data in studying the macroeconomic effects of temperature shocks.
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Figure 3: Sub-sample analysis: responses of the regional real GVA growth over the
2000− 2019 period.
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Notes. Impulse responses of the real GVA growth rate (∆GVA) in percent, computed over an 8-year
forecast horizon, using the 2000−2019 period as estimation sample. The charts show the impulse response
profile of ∆GVA to temperature shocks occurring in winter (εTwinter), spring (εTspring), summer (εTsummer),

and fall (εTfall). Each chart displays the median response (blue line) and the corresponding 68% error
bands (grey shadow area) computed by estimating the Panel MF-VAR described in equation (1). The
size of the temperature shocks in each season is normalized to a 1◦C increase in the temperature levels.
The median response (red line with asterisk) obtained from the estimation of a Panel CF-VAR (fitted to
annual temperature and real GVA growth rate) and the corresponding 68% error bands (red dashed lines)
are also reported. For comparison, the size of the shock in the Panel CF-VAR is also normalized to a 1◦C
increase in the level of temperature.

The results obtained from the mixed-frequency analysis reveal interesting findings. On

impact, the responses of economic growth to temperature shocks are negative and statis-

tically significant in all seasons. Moreover, they show a large negative magnitude than

those obtained over the 1981 − 2019 estimation sample. As in the full sample analysis,

the empirical evidence suggests the largest contribution of the summer in the reduction of

annual ∆GVA (i.e., the one observed using the annual temperature series). In particular,

the response of ∆GVA to a 1◦C rise in the temperature levels observed in summer is

largest at horizon zero (−0.43%), before diminishing over the following three years. A
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relatively large (negative) response is observed also in winter (−0.18%) and, to a lesser

extent, in spring (−0.17%), while it is smaller in fall (−0.04%). The peak of the negative

response of ∆GVA at horizon one obtained from the Panel CF-VAR is explained by the

reduction of economic growth observed in winter (−0.38%) and in fall (−0.41%). Similar

to the impulse response profile of ∆GVA to annual temperature shocks, also the seasonal

responses converge to zero after three/four years.

3.3 Economic sectoral results

Figures 4-9 show the responses of ∆GVA reported for different economic sectors. On

impact, the economic sectors that contribute the most to the reduction observed in the

aggregate ∆GVA are agriculture, forestry and fishing (−1.95%), industry (−1.72%) and,

to a lesser extent, non-market services (−0.45%). These results are in line with Acevedo

et al. (2020) which find that the negative effect of rising temperature on GVA growth is not

limited to agriculture, but it is also extended to manufacturing.17 The response of the proxy

of economic activity is not statistically different from zero in construction, wholesale/retail,

transport and other services, while the financial & business sector seems to be positively

affected by an increase in the levels of temperature, at least on impact. The positive

response observed in the financial & business sector on impact is in line with the findings

discussed in Mohaddes et al. (2022), which find that positive deviations of temperature

from the moving average long-term historical mean (i.e., climate norm) positively affect

US GDP in the financial sector.18 Moreover, a mild detrimental effect of temperature

shocks on the services sector’s value added is also documented in Acevedo et al. (2020).

At horizon one (i.e., the negative peak in the response of ∆GVA to annual temperature

shocks), we find a reduction of ∆GVA in most of the economic sectors: construction

(−4.38%), wholesale/retail, transport and other services (−2.08%), industry (−1.53%),

financial & business services (−0.64%), and non-market services (−0.08%, although it is

not statistically significant). The only exception is agriculture (4.07%), where we observe

a rebound effect. The positive response of ∆GVA in agriculture is in line with Alessandri

and Mumtaz (2021) that finds positive although short-lived effects of temperature volatility

17However, it is important to note that, differently from Acevedo et al. (2020), in our empirical analysis
the industry sector includes: (i) mining and quarrying, (ii) manufacturing, (iii) electricity, gas, steam
and air conditioning supply, (iv) water supply, sewerage, waste management and remediation activities.

18The authors argue that these results might be due to an increase in the insurance premiums for
climate change.
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shocks on agricultural GVA.19

We now turn our focus to the results obtained from the Panel MF-VAR. On impact, we

find that the largest reduction in economic growth is observed in summer for most of

the economic sectors, including agriculture (−2.37%), construction (−1.59%), industry

(−0.78%), and non-market services (−0.32%). The response of ∆GVA observed in summer

is not statistically significant for wholesale/retail, transport and other services and for

financial & business services. Moreover, for agriculture, industry and non-market services,

we find a reduction in economic activity also in most of the remaining seasons. In particular,

we observe a detrimental effect in ∆GVA for agriculture (−0.44% in spring and −0.41%

in fall), for industry (−0.46% in winter, −0.49% in spring, and −0.31% in fall), and

for non-market services (−0.16% in winter and −0.11% in spring). For other economic

sectors, such as construction, wholesale/retail, transport and other services, and financial

& business services, we observe a positive and statistically significant response of economic

growth to temperature shocks. However, most of these responses become negative at

horizon one, with a cumulative response over the two-year horizon that remains negative.

For example, in the construction sector, the positive response observed in winter (0.47%)

and in spring (0.41%) is more than offset by the reduction reported after a one-year horizon,

that is −1.69% and −0.89%, respectively. Likewise, for wholesale/retail, transport and

other services, the increase in ∆GVA observed, on impact, in spring (0.23%) is followed

by a reduction of 0.57%, at horizon one. Moreover, for financial & business services,

we observe a negative cumulative effect of temperature rise on economic activity over a

two-year horizon only in summer: the increase of ∆GVA observed on impact (0.09%) is

followed by a reduction of 0.34% at horizon one. In the remaining seasons, the negative

response of GVA at horizon one is not offset by the increase observed on impact: winter

(0.26% on impact and −0.13% at horizon one), in spring (0.13% on impact and −0.09% at

horizon one), and in fall (0.65% on impact and −0.21% at horizon one).

Beyond time zero, with the only exception of agriculture, where we observe a large rebound

effect (similar to that observed from the estimation of the Panel CF-VAR), the results

show a negative impact of temperature shocks on ∆GVA. The most affected sectors are

construction (−1.69% in winter, −0.89% in spring, −0.47% in summer, and −0.98% in

fall), wholesale/retail, transport and other services (−0.55% in winter, −0.57% in spring,

−0.21% in summer, and −0.66% in fall), and industry (−0.60% in winter and −0.64% in

fall). Negative responses are also observed for financial & business services (−0.13% in

19As stated by Alessandri and Mumtaz (2021), this result could be explained by a relatively large
increase in the price of final goods.
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Figure 4: Sub-sample analysis: responses of the regional real GVA growth in agriculture
over the 2000− 2019 period.
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Notes. Impulse responses of the real GVA growth rate in agriculture, forestry and fishing (∆GVA
Agriculture) in percent, computed over a 8-year forecast horizon, using the 2000 − 2019 period as
estimation sample. The charts show the impulse response profile of ∆GVA Agriculture to temperature
shocks occurring in winter (εTwinter), spring (εTspring), summer (εTsummer), and fall (εTfall). Each chart
displays the median response (blue line) and the corresponding 68% error bands (grey shadow area)
computed by estimating the Panel MF-VAR described in equation (1). The size of the temperature shocks
in each season is normalized to a 1◦C increase in the temperature levels. The median response (red line
with asterisk) obtained from the estimation of a Panel CF-VAR (fitted to annual temperature and ∆GVA
Agriculture) and the corresponding 68% error bands (red dashed lines) are also reported. For comparison,
the size of the shock in the Panel CF-VAR is also normalized to a 1◦C increase in the level of temperature.

winter, −0.09% in spring, −0.34% in summer, and −0.21% in fall) and, to a lesser extent,

for non-market services (−0.14% in fall).
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Figure 5: Sub-sample analysis: responses of the regional real GVA growth in industry
over the 2000− 2019 period.
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Notes. Impulse responses of the real GVA growth rate in industry, excluding construction (∆GVA
Industry) in percent, computed over a 8-year forecast horizon, using the 2000− 2019 period as estimation
sample. The charts show the impulse response profile of ∆GVA Industry to temperature shocks occurring
in winter (εTwinter), spring (εTspring), summer (εTsummer), and fall (εTfall). Each chart displays the median
response (blue line) and the corresponding 68% error bands (grey shadow area) computed by estimating
the Panel MF-VAR described in equation (1). The size of the temperature shocks in each season is
normalized to a 1◦C increase in the temperature levels. The median response (red line with asterisk)
obtained from the estimation of a Panel CF-VAR (fitted to annual temperature and ∆GVA Industry) and
the corresponding 68% error bands (red dashed lines) are also reported. For comparison, the size of the
shock in the Panel CF-VAR is also normalized to a 1◦C increase in the level of temperature.

3.4 Heterogeneity

In this section, we investigate the presence of heterogeneity in the response of real economic

activity to a 1◦C increase in the temperature levels across the 225 NUTS2 regions. In

particular, we study whether the regional average responses of ∆GVA are driven by (i)

the temperature levels, (ii) the income levels, or (iii) the degree of competitiveness of the

NUTS2 regions. In particular, we follow Kahn et al. (2021) and we conduct two empirical

exercises: in a first empirical exercise, the 225 NUTS2 regions are grouped into “hot” and

“cold” regions, according to their average (2000 − 2019) temperature levels, while in a
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Figure 6: Sub-sample analysis: responses of the regional real GVA growth in construction
over the 2000− 2019 period.
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Notes. Impulse responses of the real GVA growth rate in construction (∆GVA Construction) in percent,
computed over a 8-year forecast horizon, using the 2000− 2019 period as estimation sample. The charts
show the impulse response profile of ∆GVA Construction to temperature shocks occurring in winter
(εTwinter), spring (εTspring), summer (εTsummer), and fall (εTfall). Each chart displays the median response
(blue line) and the corresponding 68% error bands (grey shadow area) computed by estimating the Panel
MF-VAR described in equation (1). The size of the temperature shocks in each season is normalized to
a 1◦C increase in the temperature levels. The median response (red line with asterisk) obtained from
the estimation of a Panel CF-VAR (fitted to annual temperature and ∆GVA Construction) and the
corresponding 68% error bands (red dashed lines) are also reported. For comparison, the size of the shock
in the Panel CF-VAR is also normalized to a 1◦C increase in the level of temperature.

second empirical exercise, we split the sample of NUTS2 regions into two sub-groups based

on the average (2000 − 2019) income levels, proxied by the GVA at purchasing power

parity (PPP) per capita, i.e., “rich” and “poor” regions. Furthermore, a third empirical

exercise is conducted by grouping the NUTS2 regions into two sub-groups, i.e., “highly”

and “low” competitive regions, on the basis of the European regional competitiveness

index (RCI) constructed by the European Commission.

To investigate whether hotter regions are affected by temperature shocks more than colder

regions, we split the sample of 225 NUTS2 regions into two sub-groups: “hot” and “cold”
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Figure 7: Sub-sample analysis: responses of the regional real GVA growth in wholesale,
retail, transport, accommodation and food services, information and communication over
the 2000− 2019 period.
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Notes. Impulse responses of the real GVA growth rate in wholesale, retail, transport, accommodation and
food services, information and communication, (∆GVA Wholesale/retail, transport and others) in percent,
computed over a 8-year forecast horizon, using the 2000− 2019 period as estimation sample. The charts
show the impulse response profile of ∆GVA Wholesale/retail, transport and others to temperature shocks
occurring in winter (εTwinter), spring (εTspring), summer (εTsummer), and fall (εTfall). Each chart displays
the median response (blue line) and the corresponding 68% error bands (grey shadow area) computed
by estimating the Panel MF-VAR described in equation (1). The size of the temperature shocks in each
season is normalized to a 1◦C increase in the temperature levels. The median response (red line with
asterisk) obtained from the estimation of a Panel CF-VAR (fitted to annual temperature and ∆GVA
Wholesale/retail, transport and others) and the corresponding 68% error bands (red dashed lines) are also
reported. For comparison, the size of the shock in the Panel CF-VAR is also normalized to a 1◦C increase
in the level of temperature.

regions. The two sub-groups are constructed as follows. For each NUTS2 region, first, we

compute the annual temperature levels by averaging out the four seasonal temperature

series. Then, for each region, we compute the mean of the annual temperature levels

over the period 2000− 2019. A region is defined as a “hot” region if its average annual

temperature level is above the median, while a region is labelled as a “cold” region if its
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Figure 8: Sub-sample analysis: responses of the regional real GVA growth in Financial
& business services over the 2000− 2019 period.
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Notes. Impulse responses of the real GVA growth rate in Financial & business services, (∆GVA Financial
& business services) in percent, computed over a 8-year forecast horizon, using the 2000− 2019 period as
estimation sample. The charts show the impulse response profile of ∆GVA Financial & business services
to temperature shocks occurring in winter (εTwinter), spring (εTspring), summer (εTsummer), and fall (εTfall).
Each chart displays the median response (blue line) and the corresponding 68% error bands (grey shadow
area) computed by estimating the Panel MF-VAR described in equation (1). The size of the temperature
shocks in each season is normalized to a 1◦C increase in the temperature levels. The median response
(red line with asterisk) obtained from the estimation of a Panel CF-VAR (fitted to annual temperature
and ∆GVA Financial & business services) and the corresponding 68% error bands (red dashed lines) are
also reported. For comparison, the size of the shock in the Panel CF-VAR is also normalized to a 1◦C
increase in the level of temperature.

average annual temperature level is below the median.20 Hot and cold regions are shown

in Figure 10. Figure 11 shows the responses of aggregate ∆GVA to temperature shocks

reported in cold (Figure 11, panel a) and hot (Figure 11, panel b) NUTS2 regions.

We first describe the results obtained from the Panel CF-VAR fitted to the annual series of

temperature levels and ∆GVA. As shown by Figure 11, both the cold and the hot regions

report a negative response in economic growth to a 1◦C increase in the level of annual

temperature. Over the whole forecast horizon, the negative response reported in cold

20The median of the average (2000-2019) annual temperature levels is equal to 10.51◦C.
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Figure 9: Sub-sample analysis: responses of the regional real GVA growth in Non-market
services over the 2000− 2019 period.
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Notes. Impulse responses of the real GVA growth rate in Non-market services, (∆GVA Non-market
services) in percent, computed over a 8-year forecast horizon, using the 2000− 2019 period as estimation
sample. The charts show the impulse response profile of ∆GVA Non-market services to temperature shocks
occurring in winter (εTwinter), spring (εTspring), summer (εTsummer), and fall (εTfall). Each chart displays
the median response (blue line) and the corresponding 68% error bands (grey shadow area) computed
by estimating the Panel MF-VAR described in equation (1). The size of the temperature shocks in each
season is normalized to a 1◦C increase in the temperature levels. The median response (red line with
asterisk) obtained from the estimation of a Panel CF-VAR (fitted to annual temperature and ∆GVA
Non-market services) and the corresponding 68% error bands (red dashed lines) are also reported. For
comparison, the size of the shock in the Panel CF-VAR is also normalized to a 1◦C increase in the level of
temperature.

regions is slightly larger, in absolute values, than that observed for hot regions (although

there is an overlap in the error bands). In particular, on impact, ∆GVA decreases by

0.65% in cold regions, while the reduction observed in the hot regions is equal to −0.57%.

At horizon one (that is the peak of the negative response), we find that an increase in

temperature levels is associated with a reduction of 0.97% in cold regions and of 0.82%

in hot regions. Notwithstanding, the results from the Panel CF-VAR suggest that colder

regions are affected more negatively than hotter regions by rising the (average) annual

temperature levels, the impulse response analysis conducted by estimating the Panel
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Figure 10: Hot and cold NUTS2 regions. Annual temperature levels over the 2000− 2019
time span.
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MF-VAR show a more heterogenous intra-year response of ∆GVA. In particular, we find

that, on impact, hotter regions are more affected by a temperature rise during summer

(−0.52%) than colder regions (−0.24%). Also in winter, an increase in temperature levels

is associated with a reduction in ∆GVA that is larger in hotter regions than in the colder

ones, both on impact (−0.22% and −0.08%, respectively) and at horizon one (−0.43%

and −0.20%, respectively). In contrast, in spring, on impact, the negative response of

∆GVA is slightly larger, in absolute values, in cold regions (−0.26%) than in hot regions

(−0.15%), while both the responses become not statistically significant beyond time zero.

Finally, in fall the negative response of ∆GVA is relatively large in cold regions (−0.14%),

on impact, while it becomes similar in the two sub-groups at horizon one (−0.48% in hot

regions and −0.41% in cold regions).

Furthermore, we repeat the empirical analysis by grouping the NUTS2 regions into

two sub-groups based on the level of income. In line with Kahn et al. (2021), the regional

income is proxied by the GVA at purchasing power parity (PPP) per capita. According to

Kahn et al. (2021), a region is defined as a poor region if its average GVA PPP per capita

(computed over the 2000− 2019 period) is below the median, while it is labelled as a rich

region if its average (over 2000− 2019) GVA PPP per capita is above the median.21 Poor

and rich regions are shown in Figure 12. Figure 13 shows the responses of aggregate ∆GVA

to an increase in temperature levels equal to 1◦C for poor (Figure 13, panel a) and rich

(Figure 13, panel b) NUTS2 regions. The results obtained from the estimation of the Panel

CF-VAR do not reveal evidence of a significant difference between poor and rich regions.

In both sub-groups, we find a reduction of ∆GVA equal to around −0.5%, on impact,

and to −0.9%, at horizon one, before reaching zero at further horizons. However, a closer

inspection of the results obtained from the estimation of the Panel MF-VAR shows a larger

reduction of economic activity in poor regions than in the rich ones, in almost all seasons.

For example, in spring, while the response of ∆GVA is not statistically different from

zero over the whole forecast horizon in rich regions, poor regions report a negative and

statistically significant reduction of economic growth at horizon zero (−0.26%). Moreover,

in winter and fall, both the two sub-groups show similar responses on impact, i.e. around

−0.15% in winter and not statistically different from 0 in fall. However, at horizon one, the

economic activity decreases more in poor regions than in rich ones: −0.41% and −0.28%,

respectively (in winter), and −0.50% and −0.30%, respectively (in fall). The exception is

the response of ∆GVA observed during summer. In particular, on impact, we find that the

21The median of the average (2000− 2019) GVA PPP per capita is equal to 20671.6 euro.
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negative response of economic growth is larger in poor regions (−0.37%) than in the rich

ones (−0.31%). However, whilst for poor regions, we observe a rebound effect at horizon

one (0.17%), the response of economic growth remains negative also beyond time zero for

rich regions.

Finally, the empirical exercise is conducted for two different sub-groups of NUTS2 regions

that are constructed on the basis of their degree of competitiveness. As a proxy of

regional competitiveness, we use the European Regional Competitiveness Index (RCI)

produced by the European Commission which provides a synthetic measure of territorial

competitiveness at a NUTS2 level. In particular, we use the 2010 version of the index

for 216 EU NUTS2 regions.22 The RCI 2010 is constructed by aggregating 11 pillars

into three groups, that is basic, efficiency, and innovation.23 This composite indicator

reflects the region’s level of development by highlighting basic issues in less developed

regions and innovative capacity in more developed regions, with a focus on issues related

both to firms and residents. The index takes values between 0 (lowest competitiveness

degree) and 100 (highest competitiveness degree). The two sub-groups (highly and low

competitive) are constructed as follows: if the assigned value of the RCI 2010 index for

a region is below the median of the RCI 2010 distribution, then this region is labelled

as highly competitive, while if the RCI 2010 index is below the median, the region is

labelled as low competitive.24 The two sub-groups are displayed in Figure 14. Figure 15

shows the responses of ∆GVA to temperature shocks (normalized to a 1◦C increase in

22The RCI 2010 is available for 234 NUTS2 regions of 26 EU countries (plus 37 UK NUTS2 regions):
Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Germany, Denmark, Estonia, Spain, Finland, France,
Greece, Hungary, Ireland, Italy, Lithuania, Luxembourg, Latvia, Malta, Netherlands, Poland, Portugal,
Romania, Sweden, Slovenia, Slovakia. To compare the results obtained from the competitiveness analysis
with those described in the rest of the paper, we first match the European Commission database with
the dataset discussed in Section 3.1 (i.e., 225 NUTS2 regions). For a number of regions, the NUTS
code reported in the RCI 2010 database is different from that displayed in the ARDECO dataset. This
is due to changes in the NUTS codes that occurred in the various NUTS version since 2010 (at the
time of writing this paper, the latest version is 2021). We replace the NUTS2 code of the RCI 2010
dataset with those reported in ARDECO when the match is possible by comparing the exact full name of
the NUTS (i.e. recoding/relabelling). In contrast, we exclude from the final dataset (i.e., 225 NUTS2)
the regions whose NUTS code does not match the one displayed in the ARDECO dataset, due to e.g.,
boundary change occurring among the administrative units. In particular, the following regions are
removed from the sample (in bracket we report the ARDECO NUTS2 code): Helsinki-Uusimaa (FI1B),
Pohjois- ja Itä-Suomi (FI1D), Northern and Western (IE04), Southern (IE05), Eastern and Midland
(IE06), Warszawski stoleczny (PL91), Mazowiecki regionalny (PL92).

23The 11 pillars that are taken into account to construct the RCI 2010 are: institutions, macroeconomic
stability, infrastructure, health, primary and secondary education, higher education, labor market efficiency,
market size, tech readiness households, business sophistication, and innovation.

24The median RCI 2010 is equal to 56.2.
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Figure 12: Poor and rich NUTS2 regions. Annual GVA PPP per capita over the
2000− 2019 time span.
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temperature levels) in both low competitive (Figure 15, panel a) and highly competitive

NUTS2 regions (Figure 15, panel b). As shown by Figure 15, the response of ∆GVA to

annual temperature shocks (i.e., the response obtained from the Panel CF-VAR) is larger

in low competitive regions than in the highly competitive ones, both on impact and at

further forecast horizons. In particular, we find that on impact, the response of ∆GVA is

equal to −0.33% in low competitive regions and to −0.18% in highly competitive regions.

At horizon one (i.e., the negative peak in the response of ∆GVA), we observe a reduction

in the proxy of economic activity of 0.84%, while economic growth decreases by 0.72%

in highly competitive regions. A closer inspection of the seasonal results reveals that

the negative response of ∆GVA in low competitive regions is larger in absolute values

than those reported by highly competitive regions. This result is particularly evident in

winter and in fall. In winter, the response of ∆GVA in low competitive regions is equal

to −0.13% (on impact) and to −0.40% (at horizon one), while the corresponding results

in highly competitive regions are 0.09% and −0.19%, respectively. In fall, we find that

the cumulative response of ∆GVA over a two-year horizon (i.e., on impact and at horizon

one) is equal to −0.47% in low competitive regions, while ∆GVA decreases by 0.28% in

highly competitive regions, over the same forecast horizon. In spring and summer, the

negative response of economic growth is larger in low competitive regions (−0.20% and

−0.24%, respectively) than that reported by highly competitive regions (−0.06% and

−0.21%, respectively). In contrast, at horizon one, we observe a rebound in the response

of ∆GVA in low competitive regions, particularly pronounced in summer (0.32%), while

the response in highly competitive regions remains negative also at horizon one (−0.11%

in spring and −0.21% in summer).

4 Robustness check

Real GVA per capita. We repeat the empirical analysis by using the log changes of

GVA per capita (∆GVA p.c.) as a proxy of real economic activity. Figures 16-17 show

the response of ∆GVA p.c. to a 1◦C rise in the temperature levels across the 225 NUTS2

regions. Figure 16 shows the response of the proxy of economic activity over the full

sample (i.e., 1981− 2019), while the responses of ∆GVA p.c. for the sub-sample period

2000−2019 are reported in Figure 17. As can be seen from the two figures, the responses of

∆GVA p.c. are qualitatively and quantitatively similar to those obtained by estimating the

models using ∆GVA, both over the full sample period (see Figure 2) and the sub-sample

2000− 2019 (see Figure 3).
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Figure 14: Highly and low competitive NUTS2 regions. European Regional Competitive-
ness Index in 2010.
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Over the full sample period, the results from the estimation of the Panel CF-VAR reveal a

reduction of ∆GVA p.c. of 0.08% (although the response is not statistically significant),

on impact. The response ∆GVA p.c. at its peak (i.e., at horizon one) is negative and

statistically significant, reporting a value of −0.22% (as in the response of ∆GVA). On

impact, similar to the results for ∆GVA, the response of ∆GVA p.c. is negative in winter

(−0.05%) and in summer (−0.04%). However, we find that only the response in winter is

statistically significant. Moreover, as in the case of ∆GVA, we observe that the response

of ∆GVA p.c. is not statistically significant in spring and in fall. At horizons greater

than zero, the impulse response profile of the ∆GVA p.c. is similar to that observed for

∆GVA. At horizon one (i.e., its peak), the response is negative in winter (−0.07%), in

spring (−0.12%), and in fall (−0.29%), while in summer we find the same rebound effect

(0.4%) observed for ∆GVA.

We now turn the focus to the results obtained from the estimation of the Panel MF- and

CF-VARs using the last 20 years of the sample (that is 2000− 2019). As can be seen in

Figure 17, the results from the Panel CF-VAR are similar to those obtained for ∆GVA. In

particular, we find a reduction of 0.66%, on impact (−0.61% is the response of ∆GVA),

and of 0.99%, at horizon one (−0.97% is the response of ∆GVA). Likewise, the response

∆GVA p.c. observed during the four seasons are similar to those described in Section 3.2.

In particular, we find that, on impact, the largest reduction of ∆GVA p.c. is observed

in summer (−0.41%). The responses in the remaining seasons are smaller than the ones

observed in summer, but qualitatively and quantitatively similar to the estimates obtained

for ∆GVA: winter (−0.18%), spring (−0.17%), and fall (−0.10%). Moreover, similar to

the responses obtained for ∆GVA, we find that winter (−0.38%) and fall (−0.42%) are

the seasons that contribute the most to the reduction of ∆GVA p.c. at horizon one (i.e.,

the peak of the response of ∆GVA p.c.).

Rolling window estimation. In Section 3.2, we discuss the impulse response profile of

economic activity to temperature shocks over the 2000− 2019 sub-sample period. We also

explore the results obtained over previous rolling sub-samples and we report the results in

Figure 18. To avoid clutter, we plot the median estimate, together with the 68% error

bands, only for horizon 0 (i.e., contemporaneous impact) and for horizon 1. As can be seen

in Figure 18, we find that the negative effect (at horizons 0 and 1) of annual temperatures

on output increases over time, reaching its peak over the last 20 years, i.e., 2000-2019

(panel a). Moreover, the mixed-frequency analysis reveals that temperature shocks in

summer and winter contribute the most to this worsening of macroeconomic conditions

(panel b).
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Figure 16: Responses of the regional real GVA per capita growth over the 1981− 2019
period.
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Notes. Impulse responses of the real GVA per capita growth rate (∆GVA p.c.) in percent, computed
over an 8-year forecast horizon, using the 1981− 2019 period as an estimation sample. The charts show
the impulse response profile of ∆GVA p.c. to temperature shocks occurring in winter (εTwinter), spring
(εTspring), summer (εTsummer), and fall (εTfall). Each chart displays the median response (blue line) and the
corresponding 68% error bands (grey shadow area) computed by estimating the Panel MF-VAR described
in equation (1). The size of the temperature shocks in each season is normalized to a 1◦C increase in
the temperature levels. The median response (red line with asterisk) obtained from the estimation of a
Panel CF-VAR (fitted to annual temperature and ∆GVA p.c.) and the corresponding 68% error bands
(red dashed lines) are also reported. For comparison, the size of the shock in the Panel CF-VAR is also
normalized to a 1◦C increase in the level of temperature.
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Figure 17: Sub-sample analysis: responses of the regional real GVA per capita growth
over the 2000− 2019 period.
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Notes. Impulse responses of the real GVA per capita growth rate (∆GVA p.c.) in percent, computed
over an 8-year forecast horizon, using the 2000− 2019 period as an estimation sample. The charts show
the impulse response profile of ∆GVA p.c. to temperature shocks occurring in winter (εTwinter), spring
(εTspring), summer (εTsummer), and fall (εTfall). Each chart displays the median response (blue line) and the
corresponding 68% error bands (grey shadow area) computed by estimating the Panel MF-VAR described
in equation (1). The size of the temperature shocks in each season is normalized to a 1◦C increase in
the temperature levels. The median response (red line with asterisk) obtained from the estimation of a
Panel CF-VAR (fitted to annual temperature and ∆GVA p.c.) and the corresponding 68% error bands
(red dashed lines) are also reported. For comparison, the size of the shock in the Panel CF-VAR is also
normalized to a 1◦C increase in the level of temperature.
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Figure 18: Impulse responses through rolling window estimation.
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Notes. Impulse responses computed by estimating a Panel CF-VAR (panel a) and a Panel MF-VAR
(panel b) over a 20-year rolling window estimation sample. Median response for horizon 0 (red line) and
for horizon 1 (blue line) with the corresponding 68% error bands are reported. First estimation sample:
1981− 2000.
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Global Financial Crisis. To check whether the results discussed in Section 3.2 are driven

by large common shocks that occurred over the observed sample periods, such as the

global financial crisis (GFC), we plot the parameters associated with the year-fixed effects

obtained from the estimation of the mixed- and common-frequency models using data both

for the 1981− 2019 (Figure 19) and the 2000− 2019 (Figure 20) sample periods. As can

be seen in Figures 19-20, the inclusion of the year-fixed effects in the model specification

allows us to filter out the role played by the GFC in driving the reduction of economic

activity in response to temperature shocks.

5 Conclusions

In this study, we examine the annual and seasonal temperature effects on growth using a

Panel Mixed-Frequency VAR fitted to 225 EU regions. The empirical evidence shows an

increase in the detrimental effect of temperature on growth, especially during the most

recent sub-sample (spanning 2000 − 2019), spreading throughout different sectors and

mostly for hot, poor, and less competitive regions. Finally, our findings show that EU

climate policy action should not consider and target mainly agriculture, forestry, and

fishing sectors, but also construction, industry, and services.
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Figure 19: Time-fixed effects over 1981− 2019.
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Notes. Time-fixed effects obtained from the estimation of the Panel CF-VAR (panel a) and of the panel
MF-VAR (panel b) using data for the 1981− 2019 time span. Median response (red line) with 68% (red
shading) error bands are reported.
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Figure 20: Time-fixed effects over 2000− 2019.
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Notes. Time-fixed effects obtained from the estimation of the Panel CF-VAR (panel a) and of the panel
MF-VAR (panel b) using data for the 2000− 2019 time span. Median response (red line) with 68% (red
shading) error bands are reported.
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Appendices

Appendix A. Bayesian estimation

The Natural conjugate prior is imposed on the VAR coefficients by augmenting the system

in equation (1) with a set of artificial dummy observations, which are specified as follows:

Yd
(Kp+m+K)×K

=



diag( δ1σ1,...,δKσK

λ
)

0K(p−1)×K

. . .

diag(σ1, . . . , σK)

. . .

0m×K


, Xd

(Kp+m+K)×(Kp+m)
=


Jp ⊗ diag(σ1,...,σK

λ
) 0Kp×m

. . . . . .

0K×Kp 0K×m

. . . . . .

0m×Kp diag(η)


(A.1)

where Jp = diag(1, . . . , p), δi, for i = 1, . . . , K, are the prior mean of the VAR parameters

associated with the lag of order one, σi, for i = 1, . . . , K, are scaling factors (i.e., accounting

for the different scales of the endogenous variables), λ controls for the overall tightness

around the prior of the VAR coefficients and η controls the prior for the m exogenous

variables included in equation (1) (that is the region- and time-fixed effects). We set the

prior means (δi) and the scaling factors (σi) equal to, respectively, the coefficient and the

residual standard deviation obtained from the OLS estimation of an AR(1) model fitted to

each endogenous variable. Moreover, λ and η are set equal to 1 and 1/10000, respectively,

to reflect a loose prior on both the slope coefficients and the exogenous variables.

After pooling the observations (i.e., the Panel MF-VAR is treated as a MF-VAR), the

model in equation (1) can be written in matrix notation as follows:

Y = XB + U (A.2)

where Y = (Y1, . . . , YT )
′ is a NT × K matrix containing the K endogenous variables,

with N being the number of NUTS2 regions. Furthermore, X = (X1, . . . , XT )
′ is the

NT × (Kp + m) matrix of lagged endogenous variables and of region- and time-fixed

effects, that is Xt = [Y ′
t−1, . . . , Y

′
t−ℓ,1i

′, d′t], B = (A1, . . . , Aℓ, αi, β)
′ and U = (u1, . . . , uT )

′,

with U ∼ N (0,Σ). As described in Bańbura et al. (2010), the Normal-inverse Wishart

distribution can be implemented by augmenting the model in equation (A.2) with the
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dummy observations Yd and Xd reported in equation (A.1):

Y ∗ = X∗B + U∗ (A.3)

where Y ∗ = (Y ′, Y ′
d)

′, X∗ = (X ′, X ′
d)

′, U∗ = (U ′, U ′
d)

′. The conditional posterior distribu-

tion for the VAR coefficients (B) and the residual covariance matrix (Σ) can be written as

follows:

vec(B)|Σ, Y ∼ N
(
vec(B∗), Σ⊗ (X∗′X∗)−1

)
(A.4)

Σ|Y ∼ IW
(
S∗, v∗

)

where B∗ = (X∗′X∗)−1X∗′Y ∗ is obtained from the OLS estimation of the augmented

regression in equation (A.3), S∗ = (Y ∗ − X∗B∗)′(Y ∗ − X∗B∗) and v∗ = NT + Td − K

are the scale matrix and the degrees of freedom of the inverse Wishart distribution. The

conditional posterior distribution is simulated using a standard Gibbs sampling algorithm,

where the number of draws is set equal to 25000, with a burn-in phase of 15000 draws.

Appendix B. Ex-post convergence

To assess the convergence of the Gibbs sampling algorithm, we compute the inefficiency

factor for the Panel MF-VAR parameters (including slope coefficients and region-year

fixed effects) and for the elements of the residual covariance matrix. In this appendix, we

report the inefficiency factor computed for the Panel MF-VAR fitted to the four seasonal

series of temperature levels and to the log changes of GVA, over the periods 1981− 2019

(Figure B.1) and 2000− 2019 (Figure B.2). To compute the inefficiency factor, we use a

lag length of the sample autocorrelation equal to 20. As can be seen from Figures B.1-B.2,

the inefficiency factor computed for the Panel MF-VAR parameters (upper panel) and for

the elements of the residual covariance matrix (lower panel) is relatively low, suggesting

convergence of the Gibbs sampling algorithm.
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Figure B.1: Inefficiency factor from the estimation of the Panel MF-VAR using data
over 1981− 2019.
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Notes. Inefficiency factor computed for the Panel MF-VAR parameters (upper panel) and the residual
covariance matrix (lower panel) over the retained 10000 draws. The parameters (slope coefficients and
region-year fixed effects) and the residual covariance matrix are obtained from the estimation of a Panel
MF-VAR fitted to the four seasonal series of temperature levels and the log changes of GVA, over the
1981−2019 time span. The inefficiency factor is computed using a lag length of the sample autocorrelation
of order 20.
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Figure B.2: Inefficiency factor from the estimation of the Panel MF-VAR using data
over the sub-sample 2000− 2019.
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Notes. Inefficiency factor computed for the Panel MF-VAR parameters (upper panel) and the residual
covariance matrix (lower panel) over the retained 10000 draws. The parameters (slope coefficients and
region-year fixed effects) and the residual covariance matrix are obtained from the estimation of a Panel
MF-VAR fitted to the four seasonal series of temperature levels and the log changes of GVA, over the
2000−2019 time span. The inefficiency factor is computed using a lag length of the sample autocorrelation
of order 20.
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