
Received 5 July 2022, accepted 3 September 2022, date of publication 16 September 2022, date of current version 26 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3207559

Learning the Quality of Machine Permutations
in Job Shop Scheduling
ANDREA CORSINI 1, SIMONE CALDERARA 2, (Member, IEEE), AND MAURO DELL’AMICO 1
1Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, 41121 Modena, Italy
2Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, 41121 Modena, Italy

Corresponding author: Andrea Corsini (andrea.corsini@unimore.it)

1

2

3

4

5

6

7

8

9

10

11

ABSTRACT In recent years, the power demonstrated by Machine Learning (ML) has increasingly attracted
the interest of the optimization community that is starting to leverage ML for enhancing and automating the
design of algorithms. One combinatorial optimization problem recently tackled with ML is the Job Shop
scheduling Problem (JSP). Most of the works on the JSP using ML focus on Deep Reinforcement Learning
(DRL), and only a few of them leverage supervised learning techniques. The recurrent reasons for avoiding
supervised learning seem to be the difficulty in casting the right learning task, i.e., what is meaningful to
predict, and how to obtain labels. Therefore, we first propose a novel supervised learning task that aims at
predicting the quality of machine permutations. Then, we design an original methodology to estimate this
quality, and we use these estimations to create an accurate sequential deep learning model (binary accuracy
above 95%). Finally, we empirically demonstrate the value of predicting the quality of machine permutations
by enhancing the performance of a simple Tabu Search algorithm inspired by the works in the literature.

12 INDEX TERMS Deep learning, job shop scheduling, metaheuristic, recurrent neural network, scheduling.

I. INTRODUCTION13

Nowadays, manufacturing and service industries are becom-14

ing larger, more interconnected, and generate every day a15

large volume of data. This increase in industrial complexity16

and the shift towards a 4.0 environment pose new challenges17

in scheduling and demands new personalized algorithms to18

maximize production while minimizing costs and processing19

times [1].20

In recent years, there has been a surge of new techniques21

that take advantage of data generated by smart devices, sen-22

sors, and industrial systems. The discipline encompassing23

much of these techniques is machine learning.Machine learn-24

ing demonstrated how data can be fruitfully used to achieve25

astonishing results in fields like computer vision and nat-26

ural language processing. Based on this premise, ML con-27

stitutes a concrete opportunity to answer the new industrial28

demands.29

However, ML is not yet mature and ubiquitous in all fields.30

One of these fields is combinatorial optimization, where31

only recent works achieve superior performance compared32

to few non-ML algorithms in problems like the travelling33

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

salesman problem [2], [3], the vehicle routing problem [4], 34

scheduling [5], [6], [7], and others [8], [9]. These pioneering 35

works demonstrated howML can be applied to combinatorial 36

problems, but, due to the limitations of these works and the 37

partial coverage of the many ML paradigms, much more has 38

to be discovered. 39

In this work, we focus on the Job Shop scheduling 40

Problem [10], a notorious NP-hard combinatorial problem 41

with many practical applications in industry. Simply put, the 42

JSP is to schedule a set of jobs onto a set of machines by 43

minimizing an objective function. The distinctive character- 44

istic of the JSP is that each job consists of a strict chain of 45

operations, each of which has to be processed on one and 46

only one machine without interruptions (see Section I-A for 47

the formal definition). 48

Mixed Integer Linear Programming (MILP) andConstraint 49

Programming are two exact optimization methods to solve 50

the JSP [11]. Although these methods are becoming every- 51

day faster, they do not scale well on medium and large 52

instances [11], and they become rapidly useless even in small 53

but complex industrial environments [1]. For these reasons, 54

approximation methods are still largely employed and con- 55

stitute an active area of research, besides being one of the 56

subjects of this work. 57

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 99541

https://orcid.org/0000-0002-2747-4244
https://orcid.org/0000-0001-9056-1538
https://orcid.org/0000-0002-3283-6131
https://orcid.org/0000-0003-0618-7454

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

Most of the recent ML-based works tackling the JSP rely58

on Deep Reinforcement Learning (DRL) techniques [5], [6],59

[7]. What makes (deep) reinforcement learning particularly60

appealing in the context of the JSP is its ability to learn from61

past decisions, without the need of labels and by correctly62

formulating the Markov Decision Process [12]. However,63

training effective DRL agents is a difficult optimization task,64

it is not easy to reproduce [13], and takes a lot of time [6],65

especially for Monte Carlo-based methods [12]. Therefore,66

we investigate herein whether it is possible to use a supervised67

learning approach to solve the JSP.68

Our work has been guided by two fundamental questions:69

(i) what type of informationmight be used or might help solve70

a JSP instance? (ii) is it possible to learn this information71

in a supervised manner? These questions arise from the fact72

that not all the solutions to a JSP instance are feasible, i.e.,73

respect the problem constraints, and for those feasible, the74

objective value (e.g., the makespan or the total tardiness) is75

not trivially derivable. For these reasons, the application of76

supervised learning to the JSP requires a learning task tightly77

related to the objective function, and that may fit in the back-78

propagation algorithm.We thus propose as a novel supervised79

learning task to learn the quality of a machine permutation,80

i.e., how good is the sequence of operations on a machine.81

Understanding whether a sequence of operations on a82

machine is of ‘‘high quality’’ is a difficult task in the JSP [10].83

Since having a method to judge machines is important, either84

for speeding up existing algorithms or even in machine-85

based decomposition, we present an original methodology to86

learn the quality of machines by means of sequential deep87

learning and aMILP solver. There already exists in literature88

approaches to evaluate a machine, most notably [14], but89

they frequently estimate the criticality of machines, a related90

but different concept. Contrary, we define the quality of a91

machine permutation as the likelihood of finding this permu-92

tation in an optimal or near-optimal solution.93

We evaluate the impact of our proposal by comparing the94

results obtained with one of the best metaheuristics for the95

JSP, namely the Tabu Search (TS), with and without these96

quality estimations. In addition, we compare the results of the97

TS with some of the DRL approaches to justify our proposal98

for enhancing existing approximation algorithms.99

Summarizing, the contributions of this work are: (i) we100

propose a novel supervised learning task for the JSP; (ii) we101

propose an original methodology to evaluate the quality of102

machine permutations by means of a MILP solver; (iii) we103

create a supervised dataset on which we train a sequential104

deep learning model; (iv) we test the advantages of our105

learning task in a Tabu Search algorithm. In the remainder106

of this work, we start by describing in Section II some of the107

start-of-the-art algorithms to solve the JSP and recent trends108

leveraging ML. In Section III, we present the mathematical109

intuition behind our learning task, the methodology to esti-110

mate the quality of machine permutations, the sequential deep111

learning model, and the Tabu Search. Finally, in Section IV112

we present the dataset, the performance of the learningmodel,113

FIGURE 1. On the left, an example of a disjunctive graph that represents
a JSP instance with 3 jobs (solid arrows) and 3 machines (dashed lines).
On the right, a feasible solution that gives the sequence of operations for
each machine.

the advantages of our proposal when used in a TS, and 114

the comparison with the DRL approaches. In Section V we 115

conclude with few considerations and future works. 116

A. JOB SHOP FORMULATION 117

The Job Shop Problem is as follows: we are given a set 118

of n jobs J = {1, . . . , n}, and a set of m machines M = 119

{1, . . . ,m}. Each job j ∈ J is composed by a sequence of 120

mj ∈ N operations Oj = (o1j , . . . , o
mj
j) that specifies in which 121

order the jobs must be processed on the machines. Thus, 122

an operation oij belongs to job j, needs to be processed on 123

machine µij ∈ M and has processing time pij ∈ R>0. In this 124

work, we consider as the objective of the JSP theminimization 125

of the makespan, that is the total length in time required 126

to complete all the jobs. Preemption is not allowed, and 127

machines can handle one operation at a time. In scheduling 128

theory, this problem is identified as Jm ||Cmax . 129

Solving a JSP instance means finding a permutation of 130

operations on each machine such that the makespan is mini- 131

mized, the precedence among the operations are respected, 132

and the operations do not overlap on each machine. Let 133

5 = {π1, . . . , πm} be a solution of a JSP instance, and πi = 134

(si1, s
i
2, . . . , s

i
ni) the permutation or sequence of the ni ∈ N 135

operations on machine i ∈ M . The permutation πi fixes the 136

order of operations on machine i, and sik , with k ∈ {1, . . . ni}, 137

gives the operation of some job j that is processed in the 138

k th position. 139

It is common to represent a JSP instance as a disjunctive 140

graph G = (V ,A,E) (see Figure 1); where V is the set 141

of operations, A is the set of arcs connecting consecutive 142

operations of the same job, and E is the set of disjunctive 143

edges connecting operations to be processed on the same 144

machine. In this representation, the problem of minimizing 145

the makespan is reduced to finding an orientation to the edges 146

in E such that the weighted longest path (a.k.a. the critical 147

path) is minimized, where weights are the processing times 148

of operations. We will refer to this set of oriented edges with 149

Ê and the corresponding digraph with Ĝ = (V ,A, Ê). Finally, 150

note there is a unique one-to-one correspondence between a 151

generic solution 5g and a digraph Ĝg (orienting the edges of 152

E is equivalent to creating permutations πi and vice versa), 153

and if this digraph is acyclic the solution is guaranteed to be 154

feasible [10]. 155

99542 VOLUME 10, 2022

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

II. RELATED WORKS156

In this section, we review two popular approximation meth-157

ods for the JSP, namelyPriority Dispatching Rules (PDR) and158

Metaheuristics, and some recent trends that leverage machine159

learning in such methods.160

A. PRIORITY DISPATCHING RULES161

A priority dispatching rule [15] is a heuristic method that162

assigns operations tomachines based on priorities. In general,163

priorities are assigned with hard-coded rules that consider the164

status of the schedule or characteristics about jobs, machines,165

and operations. Designing an effective PDR is difficult and166

requires substantial domain knowledge, especially on com-167

plex problems like the JSP. Moreover, the performance of a168

PDR often varies drastically in different instances. Therefore,169

in the last decade, many researchers tried to automate the170

design of PDRs with the help of machine learning.171

One of the first applications of ML to PDRs is presented172

in [16], where a neural network selects the most suited PDR173

among a pool of rules. The decisions of the neural network174

are based on the current system state and the training phase175

is done through simulations. In [17], an imitation learning176

method is proposed to learn PDRs by using the supervision177

of a MILP solver. This work demonstrated how learning from178

optimal solutions is not enough to produce robust PDRs.179

Most of the recent research efforts focus on adapting DRL180

to learn PDRs. After a correct formulation of the Markov181

Decision Process, a policy to schedule operations is learnt182

from the experience derived by resolving the same instances183

many times. In [5], an actor-critic architecture [18] is pro-184

posed, where the critic evaluates the value of decisions in the185

partial schedule, whereas the actor learns to make decisions186

based on the schedule and the critic estimations. In [6],187

an actor-critic is also proposed, but with a Graph Neural188

Network [19] (GNN) to construct an adaptive representation189

of the partial schedule. One interesting aspect of this work190

is that the authors underline how GNNs seem to have poor191

performance when applied to disjunctive graphs. Another192

example of an actor-critic architecture coupled with a GNN193

is in [7]. This work applies GNNs to the disjunctive graphs of194

JSP instances by specifically designing a GNN architecture195

and by using a rich set of features to describe operations.196

From these works, it is not possible to draw any conclusion197

on the benefits of applying GNNs to disjunctive graphs,198

therefore, we prefer to avoid GNNs.199

Although these promising works showed how to cre-200

ate superior PDRs, the performance of these proposals is201

still much worse than the performance of metaheuristics.202

Due to their lower performance and the lack of guaran-203

tees of producing high-quality solutions, PDRs still remain204

a valid alternative as generators of initial solutions for205

metaheuristics.206

B. METAHEURISTICS207

The general idea of a metaheuristic [20], [21] is to describe208

trajectories in the solution space starting from initial solutions209

and visiting neighbor solutions according to some criteria. 210

Each trajectory generally stops either when no improving 211

solution exists in the neighborhood, i.e., the current solution 212

is a local optimum, or when a predefined criterion is met. 213

The effectiveness of metaheuristics depends on a brittle and 214

complex balance of its elements that governs the creation of 215

successful trajectories. This balance is achieved by design- 216

ing elements like the neighborhood structure, the searching 217

procedure, and other mechanisms such that the algorithm 218

can intensify promising regions while escaping from local 219

optima. Therefore, selecting, designing, and assembling the 220

right elements is extremely important and requires domain 221

and algorithm-design expertise. 222

The breakthrough work in the field of metaheuristics for 223

the JSP is [22]. This work adapted the Simulated Annealing 224

(SA) [23] and proposed one of the most studied and effective 225

neighborhood structures for the JSP, called N1. N1 was the 226

first to show how it is possible to construct the neighbor- 227

hood of a solution without incurring in unfeasible solutions. 228

In addition, it guarantees the existence of a trajectory that 229

leads to global minima, the so-called convergence property. 230

After this work, many variations and extensions of N1were 231

proposed in [24], [25], and [26], mostly in the context of 232

a Tabu Search [27]. The most successful application of the 233

TS to the JSP is [25], where the authors proposed a reduced 234

variation of N1 in which some of the neighbor solutions were 235

removed since they cannot immediately improve the current 236

solution. In [25] is also proposed the best implementation of 237

the TS for the JSP, successively refined in [28] by incorpo- 238

rating elements of path relinking in the generator of initial 239

solutions. 240

Besides the TS and SA, there are other metaheuristics 241

proposed to tackle the JSP [29], [30], [31]. In these regards, 242

we just want to stress that regardless of the metaheuris- 243

tics, e.g., Single-Source or Population-Based [20], an ad-hoc 244

searching procedure or a local search is often required to 245

enhance performance [29], [30], [31]. 246

As reviewed in [32], ML can be fruitfully integrated in 247

the most common metaheuristics and constitutes an oppor- 248

tunity to enhance, simplify, and automate the creation of 249

effective algorithms. Some examples of how ML techniques 250

can be integrated into metaheuristics for scheduling problems 251

are [33], [34]. 252

In [33], it is proposed a DRL-based rewriting method in 253

which a region-picking policy selects regions of solutions 254

that are rewritten with rules selected by a rule-picking policy. 255

Picking the right regions and selecting the best rewriting rule 256

are non-trivial operations, and learning to perform them from 257

experience outperformed heuristic rules. In [34], a Variable 258

Neighborhood Search is enhanced with a mechanism that 259

favors the creation of solutions having promising attributes 260

during the shaking step. Although this work does not use 261

any ML techniques, learning to construct these solutions 262

might be a viable and better approach. For other examples of 263

how to combine ML with metaheuristics, we refer the reader 264

to [32]. 265

VOLUME 10, 2022 99543

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

Despite these premises, metaheuristics did not receive the266

same attention as PDRs in hybridization with ML for the JSP,267

andwe believe there is much to gain from such a combination.268

III. PROPOSED METHODOLOGY269

This section starts by outlining the proposed learning task and270

the mathematical intuition behind it. Then, we describe our271

methodology to evaluate the quality of machine permutations272

and the learning model to tackle the proposed task. Finally,273

we present the TS algorithm used to validate the advantages274

brought by our learning task.275

A. LEARNING TASK276

Our novel supervised learning task about the JSP is to predict277

the quality of machine permutations, where the quality of a278

permutation is the likelihood of finding this permutation in279

an optimal solution. We arrived at this formulation after care-280

fully reviewing the abundant literature about the JSP in search281

of an answer to the first question of Section I: what type of282

information might be used for solving the JSP. To justify why283

our learning task should help in solving the JSP, we briefly284

report the intuition behind the proof of the convergence prop-285

erty of the N1 neighborhood (see [22] for the complete proof).286

Let 51 and 5o be respectively a feasible solution and287

an optimal solution of an instance. The converge property288

implies that from any 51, it is possible to construct a trajec-289

tory of solutions through N1 that allows moving from 51 to290

an optimal solution 5o. The proof starts from the definition291

of a special set of critical arcs (remember that critical arcs are292

those arcs on the longest path in Ĝ):293

K1(5o) = {(v,w) ∈ Ê1 | (v,w) is critical ∧ (w, v) ∈ Êo}294

(1)295

that is the set of critical arcs in Ĝ1 that do not belong to the296

optimal solution Ĝo. When 51 6= 5o, this set is always297

non-empty, and it is possible to create a finite trajectory298

(51,52, . . . ,5o) that guarantees to reach an optimal solu-299

tion, where 52 is obtained from 51 by reversing an arc300

in K1. Clearly, the convergence is a desirable property for301

a neighborhood structure, but in practice, it is of no help302

because it requires to know the set of critical arcs to reverse,303

i.e., it requires K .304

Nonetheless, this proof leads us to what might be beneficial305

for solving the JSP: an information about which critical arcs306

are unlikely to be in an optimal solution. At least in the con-307

text of N1, knowing this information allows excluding those308

solutions that introduce arcs unlikely to be in Êo, resulting in309

better exploration and a faster convergence towards optima.310

However, there is a problem in learning a function that gives311

the likelihood of finding an arc in an optimal solution: the312

representation of the arc must encode enough information313

about the entire solution.314

Instead of learning this function, we propose to learn a315

function that receives in input the machine permutation asso-316

ciated with an arc and outputs the likelihood of finding this317

permutation in an optimal solution. If a machine permutation 318

resulting from the inversion of a critical arc is of higher 319

quality than the original permutation, the reversed arc has 320

a higher chance of being in Êo. Therefore, learning such a 321

function still allows to discriminate which critical arcs should 322

be reversed. In addition, it simplifies the learning task since 323

a permutation intrinsically encodes more information about 324

the entire solution than a single arc. 325

Based on this theoretical intuition, our learning task should 326

help solve the JSP in at least those approximation algorithms 327

based on N1. Note that the proposed learning task might also 328

benefit other approximation methods, for instance, machine- 329

based decomposition and ruin-and-recreate algorithms [35], 330

but proving this is outside the scope of this work. 331

B. QUALITY OF MACHINE PERMUTATIONS 332

Up to this point, we presented our novel learning task, and 333

we justified why this task should help solve the JSP. What 334

remains uncovered is how the quality yk of a machine permu- 335

tation πk can be quantified. To define the quality yk , we rely 336

on the concept of makespan, and we compute: 337

yk = 1− tanh
(
Cmax(πk)

C opt
max

− 1
)

(2) 338

where Cmax(πk) is the best makespan found by imposing πk 339

as part of the solution, C opt
max is the optimal makespan of the 340

instance, and tanh is the hyperbolic tangent function. 341

Note that Equation 2, beyond giving the mathematical 342

definition of the quality of a machine permutation, also points 343

out the methodology needed to estimate this quality. This 344

methodology includes a method to optimally solve the JSP 345

and a method to find the best solution with an imposed 346

sequence πk . With these methods, Equation 2 estimates the 347

quality yk by comparing the best makespan found with the 348

sequence πk against the optimal makespan, and it scales this 349

comparison with the tanh function. When πk is near-optimal, 350

meaning that Cmax(πk) is close to the optimal makespan, 351

yk takes a value close to 1. Contrary, when Cmax(πk) is far 352

from the optimal value, yk takes a value close to 0. Due to 353

its definition, the quality of a permutation is always a value 354

in the interval [0, 1] ⊂ R, thus, it can be interpreted as a 355

kind of probability (or a likelihood parameterized by some 356

parameters) of finding the permutation in an optimal solution. 357

As themethod to optimally solve the JSP, we propose to use 358

a MILP solver by formulating the problem as a disjunctive 359

model [11]. As pointed out in [11], today solvers can solve 360

instances with 10 jobs and 10 machines in few seconds. 361

Instead, as the method to find the best makespan Cmax(πk) 362

by imposing a sequence πk , we propose to use a modified 363

version of the standard disjunctive model, again in a MILP 364

solver. In this modified version, we introduce a set of con- 365

straints to prevent the solver from changing the order of the 366

sequence πk . Note that this modification effectively reduces 367

the solution space and speeds up the solver. The modified 368

disjunctive model is then: 369

min Cmax(πk) (3) 370

99544 VOLUME 10, 2022

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

s.t. x
ohj
j ≥ x

oh−1j
j + p

oh−1j
j ∀j ∈ J , h = 2, . . . ,mj (4)371

x ij ≥ x
i
k + p

i
k−Q z

i
jk ∀j, k ∈ J , j < k, i ∈ M (5)372

x ik ≥ x
i
j + p

i
j−Q (1− zijk) ∀j, k ∈ J , j < k, i ∈ M373

(6)374

x i
sih
≥ x i

sih−1
i ∈ M , h = 2, . . . , ni (7)375

Cmax(πk) ≥ x
o
mj
j
j + p

o
mj
j
j ∀j ∈ J (8)376

zijk ∈ {0, 1} ∀j, k ∈ J , i ∈ M (9)377

x ij ≥ 0 ∀j ∈ J , i ∈ M (10)378

The model has two decision variables: x ij gives the starting379

time of job j on machine i, and, zijk takes value 1 if job j380

precedes job k on machine i. The set of constraints (4) guar-381

antees that for each job, the start time of every operation382

must be equal to or higher than the completion time of the383

previous operation. The disjunctive constraints in sets (5)384

and (6) guarantee that the start time of an operation oij must385

be higher than the completion time of another operation oik386

when oij is scheduled before o
i
k and vice versa. Finally, the set387

of constraints (7) fixes the order of operations on machine i388

to be equal to πk = (si1, s
i
2, . . . , s

i
ni), and the set (8) computes389

the makespan. The value of Q is set to
∑

j∈J
∑

i∈M pij to390

ensure the correctness of the disjunctive constraints.391

Summarizing, the methodology to obtain the quality of a392

machine permutation πk starts by optimally solving the JSP393

instance, then the best makespan Cmax(πk) is found with the394

presented modified disjunctive model, and finally, the quality395

is computed with Equation 2.396

C. THE LEARNING MODEL397

In order to predict the quality yk of a sequence πk ,398

we designed a sequential deep learning model that is sensitive399

to the order of the input. We will refer to such a model as the400

oracle.401

As a standard in sequential deep learning, each operation402

of a sequence πk = (si1, s
i
2, . . . , s

i
ni) is described by a feature403

vector in Rg. This means that the representation Xk of a404

sequence πk is in turn a sequence of feature vectors, or alter-405

natively, a tensor Xk ∈ Rni×g, where the h ∈ {1, . . . , ni}406

element describes the operation sih. More information about407

the features describing an operation is given in Section IV-A.408

Our oracle is composed of two blocks: the first block takes409

in the representation of a sequence Xk and creates a sequence410

embedding; the second block uses this embedding to output411

the probability yk of the sequence. The entire architecture is412

depicted in Figure 2.413

The first block is realized with two layers of a Gated414

Recurrent Unit (GRU) [36]. A GRU is a type of Recurrent415

Neural Network [37] that uses a ‘‘memory structure’’ to let416

information from prior inputs influence the current output.417

This ‘‘memory structure’’ needs to be initialized to some418

initial state, and is updated at each time step by using the input419

and current state through a gating mechanism.420

Our oracle warms start the initial states with Xk , but with- 421

out considering the order. Specifically, the initial state of each 422

GRU layer is created by first projecting the feature vectors 423

describing operations in a latent space Rd with a hidden 424

layer (H0 ∈ Rg×d and H1 ∈ Rg×d in Figure 2), and then 425

by taking the mean along each of the d dimensions. This 426

allows modeling the concept of a JSP machine directly in the 427

architecture. 428

After this initialization, starts the creation of the sequence 429

embedding by considering the order of the sequence. 430

As depicted in Figure 2, the first GRU layer receives in 431

input at each step t = (1, . . . , ni) the feature vector of the 432

operation sit and produces in output the state h0t . Whereas 433

the second GRU layer receives in input at the step t the 434

state h0t and produces in output h
1
t . The final sequence embed- 435

ding is the concatenation of the last states, h0ni and h
1
ni , and is 436

therefore a vector in R2d . 437

The second block is realized with a Feedforward Neural 438

Network (FNN) [37] composed by 3 hidden layers of decreas- 439

ing size. This block takes in input the sequence embedding 440

and produces in output the probability yk . 441

D. TABU SEARCH 442

Since Tabu Search empirically demonstrated to be the best 443

metaheuristic for solving the JSP [21], we evaluate the advan- 444

tages of our novel learning task in this algorithm. To this 445

end, we design two versions of the TS: sTS is a simple TS 446

inspired by the works reviewed in Section II-B, while oTS 447

is identical to sTS but uses the oracle. We borrow part of 448

the structure of sTS and oTS from the TS proposed in [25]. 449

Since our algorithms are almost identical, they differ only in 450

the procedure to select the next solution, we first describe 451

the structure of sTS and afterwards the modification to the 452

searching procedure. 453

The most important blocks of sTS are: (i) the genera- 454

tor of the initial solution, (ii) the neighborhood structure, 455

(iii) the tabu list for avoiding revisiting recent solutions, 456

(iv) the neighborhood searching procedure to select the next 457

solution, and (v) the restart list used to intensify promising 458

regions of the solution space. 459

sTS begins by generating a random solution that constitutes 460

both the starting point of the exploration and the initial best 461

solution. This solution is generated with a random PDR that 462

gives priority to jobs by sampling from a uniform distribution. 463

We decided to use a random starting point to test the capabil- 464

ity of our algorithms to converge to global optima in different 465

runs of the same instance. This allows a better comparison 466

between the algorithms. 467

After this initialization, sTS enters the cyclic phase where 468

the following steps are repeated: 469

Step 1: Create the neighborhood of the current solution. 470

Step 2: Select the new current solution through the neighbor- 471

hood searching procedure. 472

Step 3: Update the best solution if the new solution improves 473

the best one. 474

VOLUME 10, 2022 99545

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

FIGURE 2. The architecture of the oracle. In the left, the 2-dimensional representation Xk of a sequence is
transformed into a sequence embedding through the first block. In the right, the sequence embedding is fed into
the second block to compute the quality yk .

Step 4: Save a restart point in the restart list if the region is475

promising.476

Step 5: Go to Step 1: if the iteration condition is met.477

Step 6: Restart from the latest promising region and go to478

Step 1: if the restart condition is met.479

At each iteration, the algorithm selects from the N1 neigh-480

borhood [22] the solution with the minimum makespan that481

is not forbidden by the tabu list (Step 2:). Once sTS finds482

a solution that improves the best one (Step 3:), it records483

this point in the restart list (Step 4:). Based on [25], [28], a484

promising region of the JSP solution space is a point in which485

there is an update of the best solution, and such regions must486

be intensified by trying to explore the entire neighborhood.487

This cyclic exploration is repeated until a maximum num-488

ber of non-improving iterations is reached (iteration con-489

dition of Step 5:), where a non-improving iteration is an490

iteration that does not improve the best solution. If the itera-491

tion condition is not met, the algorithm tries to resume the492

exploration from the last promising region inserted in the493

restart list. The restart condition of Step 6: simply checks494

that the restart list is not empty. If this condition is not met,495

the algorithm stops. The pseudo-code of the neighborhood496

searching procedure, the tabu list, and the restart list can be497

found in [25]498

oTS is identical to sTS, but it uses the oracle to fur-499

ther reduce the N1 neighborhood by excluding solutions500

that lower the quality of machine permutations. This aligns501

with the discussion of Section III-A. Our oracle predicts the502

likelihood that a sequence (a permutation on some machine503

i ∈ M) has of belonging to an optimal solution. In N1,504

a neighbor solution 5n differs from the current solution 5c505

in only one permutation on a machine. Therefore, we use the506

oracle to remove all the neighbor solutions that introduce a507

sequence with a lower likelihood of belonging to an optimal508

solution. More in detail, if the permutation of5n on machine509

i has a higher likelihood of belonging to an optimal solution510

than 5c, we accept this solution in the neighborhood, in the511

opposite case, we remove 5n from the neighborhood. The 512

searching procedure for selecting a new solution from this 513

reduced neighborhood remains the same of sTS, that in turn is 514

the same of [25]. There might be situations in which all the 515

neighbor solutions are removed, in these cases, we undo the 516

reduction and use the normal N1 neighborhood. Finally, this 517

reduction is applied only for the first quarter of the maximum 518

number of non-improving iterations (Step 1-5), and in the 519

same way after every restart. 520

IV. EXPERIMENTAL RESULTS 521

In this section, we present the dataset used to train and 522

test the neural network oracle of Section III-C, the results 523

of the oracle on the test set, and the results of our algorithms 524

on 200 JSP instances. 525

A. THE DATASET 526

We created a dataset of sequences from a set of 200 JSP 527

instances with 8 jobs (ni = 8,∀i ∈ M) and 8 machines 528

(mj = 8,∀j ∈ J). The set of instances has been generated 529

following the guidelines of [38]. 530

Then, for each instance, we generated 136 sequences 531

for each machine, and we computed the quality of these 532

sequences with the methodology introduced in Section III-B. 533

This results for a single instance q ∈ {1, . . . , 200} in a total 534

of 1088 observations of the form (Xqk , y
q
k), where X

q
k ∈ Rni×g 535

is the representation of a machine sequence πk , and y
q
k is its 536

quality. To ease the notation, in the remainder of this work 537

we omit the index of the instance q; nonetheless, remember 538

that each observation of our dataset refers to one and only one 539

instance. 540

The 136 sequences for each machine have been generated 541

as follows: 542

• 128 random sequences by trying to place each operation 543

in all positions of a machine (the pseudocode for gener- 544

ating such sequences is given in Appendix A.). 545

• 1 optimal sequence taken from the optimal solution of 546

the instance. 547

99546 VOLUME 10, 2022

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

• 7 suboptimal sequences obtained from the optimal548

sequence by swapping consecutive operations (we did549

not swap the first and last operations).550

The rationale behind these different sequences is that we551

tried to uniformly sample the characteristics of a machine552

in an instance. The 128 random sequences should reflect553

the ‘‘unbiased’’ impact of the machine on the instance, the554

optimal sequence is introduced to model the optimality for a555

machine, and the suboptimal sequences are used to model the556

neighborhood of an optimal sequence, and hopefully the Big557

Valley phenomenon [28].558

Regarding the representation Xk of a sequence πk ,559

we defined a set of 18 features to describe operations.560

Our set of features has been constructed by selecting some561

of the best features from [39] and from the graph the-562

ory. The features selected from [39] describe characteris-563

tics about single operations and jobs, some examples are:564

the processing time of operations and the mean processing565

time of jobs. The graph theory features are extracted from566

the disjunctive graph and they express relationships among567

operations, some examples are: the eigenvector centrality568

and the closeness centrality. These features depend only569

on information about the instance, therefore, in our exper-570

iments, we computed the feature vector for each operation571

once and we dynamically concatenated the feature vectors572

in the order given by πk to form Xk (Xk ∈ R8×18 in573

this work). We report in Appendix C the complete set of574

features.575

This dataset has been used to train and validate the neural576

network introduced in Section III-C.577

B. LEARNING MODEL PERFORMANCE578

We evaluate the performance of the oracle on two different579

aspects: (i) we quantify the error in the predictions by mea-580

suring how much they differ from labels, (ii) we quantify the581

performance of the oracle in a binary classification problem.582

The results of this section refer to a test set composed of583

54400 sequences (25% of the dataset) randomly selected by584

ensuring that the test distribution is similar to the one of the585

entire dataset, see Figure 3.586

Due to the nature of our labels yk ∈ [0, 1], we trained587

our oracle to approximate the distribution of the training588

set by using the Kullback–Leibler Divergence as the loss589

function. Using this loss allows to train the model without590

transforming the problem into a binary classification, and591

this brings several advantages: (i) our labels have a larger592

semantic compared to binary ones, giving more freedom593

in the application of the oracle; (ii) it is not clear which594

threshold should be set on the continuous labels to transform595

them into binary ones; (iii) casting the problem as a binary596

classification brings imbalance issues [40]. The whole set597

of hyperparameters and additional training details are given598

in Appendix B.599

To quantify the errors of the oracle, we compare its predic-600

tions against the labels of the test set by defining the Within601

FIGURE 3. The discretized distributions of the dataset (blue), test set
(green), and oracle predictions (red).

TABLE 1. The errors and WTA for different quality intervals.

Tolerance Accuracy (WTA) in Equation 11: 602

WTA(tol) =
1
t

t∑
k=0

I(|yk − ŷk | < tol) (11) 603

where ŷk is the predicted quality of a sequence πk , yk is 604

the true quality, tol is the error tolerance, I() is the indica- 605

tor function (it returns 1 when the difference is within the 606

tolerance), and t is the dimension of the test set. As it is 607

clear from the distributions in Figure 3, the predictions of 608

the oracle approximate well the distribution of the test set, 609

with some mistakes in the region around the quality 0.90. 610

This is even more clear from Table 1 which quantifies the 611

errors between true and predicted values in different portions 612

of the test distribution. This table divides the sequences in 613

intervals based on the true quality. The first column points 614

out the quality intervals, the second column gives the number 615

of occurrences in each interval, the third and fourth columns 616

give some statistics about the absolute error between labels 617

and predictions, and the last two columns give the WTA for 618

different tolerances. The last row gives theWTA for the entire 619

test set. 620

Note how theWTA is almost perfect for a tolerance of 0.07, 621

and still very good for a tighter tolerance of 0.05. As noted 622

above, we can appreciate an increment in the errors in the 623

interval [0.7, 0.9). We believe that this increment is jointly 624

caused by the lower number of training sequences in this 625

VOLUME 10, 2022 99547

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

TABLE 2. The results on 5 binary classification problems obtained by setting 5 different thresholds on the labels of the test set.

interval and by the fact that these sequences are more difficult626

to discriminate from optimal ones because they are mostly627

suboptimal, i.e., they only differ from optima only in one628

consecutive pair of operations.629

To better understand the quality of the oracle, we also630

report in Table 2 its performance in a binary classification631

task. In this evaluation, the true quality yk are transformed632

into binary labels by setting a threshold and marking with633

a 1 (positive) all the sequences having a quality higher than634

the threshold, and with a 0 (negative) all the remaining635

sequences. The class predicted by the oracle is given by636

the argmax function. We report the results for 5 different637

thresholds, each producing a binary test set with a different638

imbalance ratio. Despite these different imbalance ratios,639

the performance of the oracle on standard imbalanced met-640

rics [40] remains good in all cases. This is possible because641

we trained the model to match the quality of the training642

sequences.643

With these evaluations, we want to stress how the oracle644

can be effectively used either for predicting or classifying645

sequences, allowing great flexibility in its usage within our646

TS and potentially in other approximation methods. In addi-647

tion, the results of this section suggest that with our dataset,648

and hence with the methodology of Section III-B, it is pos-649

sible to learn which sequences are likely to be in an optimal650

solution.651

C. TABU SEARCH PERFORMANCE652

We analyze the impact of the proposed learning task by com-653

paring the results of the TS described in Section III-D with654

(oTS) and without (sTS) the oracle. This comparison is done655

on the 200 instances used to create our dataset, where for each656

instance we repeated the execution of the algorithms 5 times,657

from the same 5 initial solutions (this is done by seeding658

the random PDR with 5 different seeds). The results of the659

algorithms are compared in terms of the number of optimal660

solutions, the average optimality gap of suboptimal solutions661

(gap = (Cmax/C
opt
max) − 1), and the average execution time.662

Note that comparing the results of the algorithms on the same663

instances of our dataset is fair since the sequences visited by664

sTS and oTS are independent from those used to train the665

oracle.666

Both the algorithms have been written in C++, com-667

piled with g++ 9.3.0, and executed on an Ubuntu machine668

equipped with an Intel Core i9-11900K and a NVIDIA669

GeForce RTX 3090. Our oracle has been ported from Python 670

by using the tracing functionality of PyTorch [41], and it has 671

been integrated in the oTS with LibTorch on the GPU. 672

In Table 3, we report the results of the algorithms for dif- 673

ferent configurations of parameters. In these configurations, 674

we omit the length of the tabu list that is always set to 10. 675

The first column of the table assigns an identifier to every 676

configuration. The second and third column specifies respec- 677

tively the maximum number of non-improving iterations and 678

the length of the restart list. The ‘‘Num opt’’ and the ‘‘Avg 679

opt gap’’ columns compare the number of optimal solutions 680

and the average optimality gap of each algorithm. Whereas 681

the ‘‘Worse’’ (‘‘Better’’) columns compare respectively the 682

number of solutions and the average scaled difference 683

(diff = (CoTS
max − CsTS

max)/C
opt
max) in which oTS worsens 684

(improves) with respects to sTS. The last two columns give 685

the average execution time of each algorithm. 686

First, we want to underline that oTS finds a higher number 687

of optimal solutions than sTS regardless of the parameter 688

configurations. This is important for empirically confirming 689

that the proposed learning task, our methodology, and the 690

learning model indeed enhance the performance of the TS. 691

This increment in performance is also supported by the 692

lower average optimality gaps obtained by oTS in suboptimal 693

solutions (‘‘Avg opt gap’’ columns). For all the tested con- 694

figurations, we only see one case, row with ID 7, in which 695

oTS does slightly worse than sTS in terms of optimality gap. 696

However, note how in this case the overall performance of 697

both the algorithms is almost perfect, and how oTS is still 698

able to find a larger number of optimal solutions. 699

Regarding the ‘‘Worse’’ and the ‘‘Better’’ columns, we just 700

highlight how the number of solutions in which oTS does 701

better than sTS is almost twice the number of solutions in 702

which it does worse. 703

Finally, as it is obvious from the average times, using a 704

deep learning model will likely increase the running time. 705

This trend has already been observed for instance in [6], 706

where the execution of their DRL proposal takes 2x up to 707

5x the time of traditional PDRs. A similar increment is also 708

observed in [5]. In line with these works, we observe a 709

comparable increment between sTS and oTS. However, our 710

algorithms have been written by keeping the implementation 711

as simple as possible. Therefore, there is space for engineer- 712

ing the code and producing better average execution times, 713

especially in the case of the oTS. For instance, it is possible 714

to reduce the calls to the oracle by batching or keeping a 715

99548 VOLUME 10, 2022

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

TABLE 3. The results of the two TS algorithms for different configurations of parameters.

TABLE 4. The comparison between oTS and the DRL approaches on benchmark instances.

memory of past predictions, and it is possible to reduce the716

execution time of the oracle by using faster architectures like717

Transformers [42] and Convolutional Neural Network [37].718

Concluding, this comparative analysis shows that it is pos-719

sible to find better solutions by using the quality predictions720

in a TS as described in Section III-D. This empirically high-721

lights how the proposed learning task seems to be valuable in722

the context of the JSP.723

D. COMPARISON WITH REINFORCEMENT LEARNING724

In this section, we compare the performance of oTS with725

the proposals relying on DRL. The objective is to justify726

our efforts by demonstrating the superiority of metaheuris-727

tics enhanced with machine learning and the importance of728

further investigating these hybrid approaches.729

For this comparison, we selected instances from the works730

discussed in Section II-A. Specifically, we selected the731

instances Orb01-09 [43] and the instances Ta01-10 [38].732

We report in Table 4 the instance name, the optimal733

TABLE 5. Hyperparameters.

makespan, and the results in terms of makespan and 734

optimality gap (in round brackets) for the Shortest Processing 735

VOLUME 10, 2022 99549

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

TABLE 6. The set of features describing an operation and its relations with others in the JSP instance.

99550 VOLUME 10, 2022

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

Time (SPT), the proposal of [5], the proposal of [6], and oTS.736

Based on Table 3, we decided to use 2 parameter configura-737

tions for oTS: 2 restarts and 700 iterations for oTS-1, and 2738

restarts and 800 iterations for oTS-2.739

From Table 4, it is immediately clear that oTS outperforms740

the DRL proposals. This is also true if we qualitatively com-741

pare the results of oTS with those reported in [7]. By looking742

at the average percentage gap reported for Orb01-10 and743

Ta01-80, we can see that the gap of this other DRL proposal744

is around 20%, ten times the gap obtained by oTS.745

This comparison demonstrates thatmetaheuristics enhanced746

with machine learning guarantee to find better solutions.747

We believe that further research in hybrid approaches as our748

may give life to simpler and better metaheuristics capable of749

producing near-optimal solutions in a shorter amount of time.750

V. CONCLUSION751

In this work, we proposed a novel supervised learning task752

for the JSP that aims at predicting the quality of machine per-753

mutations. We designed an original methodology to estimate754

this quality by means of a MILP solver. Then, we constructed755

a dataset with this methodology, and we demonstrated that756

is possible to learn a flexible and accurate sequential deep757

learning model to predict the quality of machine permuta-758

tions. Finally, we justified both theoretically and empirically759

the benefits of using the proposed learning task in the context760

of metaheuristics for the JSP.761

Our aimwas to propose a simple and reasonable methodol-762

ogy that allows evaluating the benefits of applying supervised763

learning to the JSP. Although DRL seems a more natural764

and established ML paradigm for this problem, our analysis765

suggests that also supervised learning is a valuable and viable766

paradigm, especially if used in tandem with existing approx-767

imation methods.768

In future works, we will address the main limitation of769

our hybrid metaheuristic: the increase in the execution time770

of the algorithm. We will investigate whether our learning771

task could benefit other methods for solving the JSP, like772

machine-based decomposition and ruin-and-recreate algo-773

rithms, and whether it is possible to develop new ad-hoc774

methods. In addition, we believe there is a need to extensively775

compare the benefits and drawbacks of the new ML-based776

proposals with a wide spectrum of well-established777

algorithms.778

APPENDIX A779

SEQUENCE GENERATOR780

The sequence generator procedure takes in a sequence of781

operations on some machine i ∈ M and generates s random782

sequences. This procedure is applied on each machine of783

an instance, and it tries to place each operation in all the784

ni positions of a permutation. Note that this procedure may785

generate repeated sequences. Such repeated sequences must786

be removed, and the procedure must be called again to ensure787

that s different sequences are generated. The symbol ⊕ indi-788

cates that an item is appended to a partial sequence.789

function SequenceGenerator((si1, . . . , s
i
ni), s) 790

seq← Generate s empty sequences 791

w← (si1, . . . , s
i
ni) 792

for all pos ∈ {1, . . . , ni} do 793

idx = 0 794

for all k ∈ {0, . . . , s− 1} do 795

while widx in seqk do 796

idx = (idx + 1)mod |w| 797

end while 798

seqk ← seqk ⊕ widx 799

idx = (idx + 1)mod |w| 800

end for 801

w← w⊕ (si1, . . . , s
i
n) F Increase w’s period. 802

w← shuffle(w) 803

end for 804

return seq 805

end function 806

APPENDIX B 807

HYPERPARAMETERS AND TRAINING DETAILS 808

Table 5 reports the hyperparameter of the sequential deep 809

learning model of Section III-C. This model has been trained 810

with the adam optimizer [44], with a batch size of 128, and 811

for a total of 100 epochs divided as follows: 812

1) 40 epochs with learning rate 0.005. 813

2) 30 epochs with learning rate 0.002. 814

3) 20 epochs with learning rate 0.001. 815

4) 10 epochs with learning rate 0.0005. 816

APPENDIX C 817

FEATURES 818

Table 6 reports the set of 18 features used to describe oper- 819

ations in this work. The first column gives to each feature a 820

unique identifier (in accordance with Figure 2), the second 821

column points out the feature name, the third the equation, 822

and the last column a brief description about the feature. The 823

graph theory features (from row f8 to row f17) have been 824

computed with the NetworkX package. 825

REFERENCES 826

[1] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, ‘‘Review of job shop 827

scheduling research and its new perspectives under industry 4.0,’’ J. Intell. 828

Manuf., vol. 30, no. 4, pp. 1809–1830, Apr. 2019. 829

[2] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combina- 830

torial optimization with reinforcement learning,’’ in Proc. Int. Conf. Learn. 831

Represent., 2017, pp. 1–15. 832

[3] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, ‘‘Learning combi- 833

natorial optimization algorithms over graphs,’’ in Proc. Adv. Neural Inf. 834

Process. Syst., vol. 30, 2017, pp. 1–11. 835

[4] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, ‘‘Reinforcement learn- 836

ing for solving the vehicle routing problem,’’ in Proc. Adv. Neural Inf. 837

Process. Syst., vol. 31, 2018, pp. 1–11. 838

[5] C.-L. Liu, C.-C. Chang, and C.-J. Tseng, ‘‘Actor-critic deep reinforcement 839

learning for solving job shop scheduling problems,’’ IEEE Access, vol. 8, 840

pp. 71752–71762, 2020. 841

[6] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, ‘‘Learning 842

to dispatch for job shop scheduling via deep reinforcement learning,’’ in 843

Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 1621–1632. 844

[7] J. Park, J. Chun, S. Kim, Y. Kim, and J. Park, ‘‘Learning to schedule 845

job-shop problems: Representation and policy learning using graph neural 846

network and reinforcement learning,’’ Int. J. Prod. Res., vol. 59, pp. 1–18, 847

Jan. 2021. 848

VOLUME 10, 2022 99551

A. Corsini et al.: Learning the Quality of Machine Permutations in Job Shop Scheduling

[8] Y. Bengio, A. Lodi, and A. Prouvost, ‘‘Machine learning for combinato-849

rial optimization: A methodological tour d’horizon,’’ Eur. J. Oper. Res.,850

vol. 290, no. 2, pp. 405–421, Apr. 2021.851

[9] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, ‘‘Reinforcement852

learning for combinatorial optimization: A survey,’’ Comput. Oper. Res.,853

vol. 134, Oct. 2021, Art. no. 105400.854

[10] M. L. Pinedo, Scheduling, vol. 29. New York, NY, USA: Springer, 2012.855

[11] W.-Y. Ku and J. C. Beck, ‘‘Mixed integer programming models for job856

shop scheduling: A computational analysis,’’ Comput. Oper. Res., vol. 73,857

pp. 165–173, Sep. 2016.858

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.859

Cambridge, MA, USA: MIT Press, 2018.860

[13] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,861

‘‘Deep reinforcement learning that matters,’’ in Proc. AAAI Conf. Artif.862

Intell., Apr. 2018, vol. 32, no. 1, pp. 1–8.863

[14] J. Adams, E. Balas, and D. Zawack, ‘‘The shifting bottleneck procedure for864

job shop scheduling,’’Manage. Sci., vol. 34, no. 3, pp. 391–401,Mar. 1988.865

[15] R. Haupt, ‘‘A survey of priority rule-based scheduling,’’ Oper. Res. Spek-866

trum, vol. 11, no. 1, pp. 3–16, Mar. 1989.867

[16] W. Mouelhi-Chibani and H. Pierreval, ‘‘Training a neural network to868

select dispatching rules in real time,’’ Comput. Ind. Eng., vol. 58, no. 2,869

pp. 249–256, Mar. 2010.870

[17] H. Ingimundardottir and T. P. Runarsson, ‘‘Discovering dispatching rules871

from data using imitation learning: A case study for the job-shop problem,’’872

J. Scheduling, vol. 21, no. 4, pp. 413–428, Aug. 2018.873

[18] V. Konda and J. Tsitsiklis, ‘‘Actor-critic algorithms,’’ in Proc. Adv. Neural874

Inf. Process. Syst., vol. 12, 1999, pp. 1–7.875

[19] Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, ‘‘A comprehensive876

survey on graph neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst.,877

vol. 32, no. 1, pp. 4–24, Jan. 2021.878

[20] E.-G. Talbi, Metaheuristics: From Design to Implementation, vol. 74.879

Hoboken, NJ, USA: Wiley, 2009.880

[21] E. H. L. Aarts, P. J. M. van Laarhoven, J. K. Lenstra, and N. L. J. Ulder,881

‘‘A computational study of local search algorithms for job shop schedul-882

ing,’’ ORSA J. Comput., vol. 6, no. 2, pp. 118–125, May 1994.883

[22] P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, ‘‘Job884

shop scheduling by simulated annealing,’’ Oper. Res., vol. 40, no. 1,885

pp. 113–125, Feb. 1992.886

[23] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated887

annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.888

[24] M. Dell’Amico and M. Trubian, ‘‘Applying Tabu search to the job-889

shop scheduling problem,’’ Ann. Oper. Res., vol. 41, no. 3, pp. 231–252,890

Sep. 1993.891

[25] E. Nowicki and C. Smutnicki, ‘‘A fast taboo search algorithm for the job892

shop problem,’’ Manag. Sci., vol. 42, no. 6, pp. 797–813, Jun. 1996.893

[26] C. Zhang, P. Li, Z. Guan, and Y. Rao, ‘‘A Tabu search algorithm with a new894

neighborhood structure for the job shop scheduling problem,’’ Comput.895

Oper. Res., vol. 34, no. 11, pp. 3229–3242, Nov. 2007.896

[27] F. Glover andM. Laguna, Tabu Search. Boston, MA, USA: Springer, 1998,897

pp. 2093–2229.898

[28] E. Nowicki and C. Smutnicki, ‘‘An advanced Tabu search algorithm for the899

job shop problem,’’ J. Scheduling, vol. 8, no. 2, pp. 145–159, Apr. 2005.900

[29] K.-L. Huang and C.-J. Liao, ‘‘Ant colony optimization combined with901

taboo search for the job shop scheduling problem,’’ Comput. Oper. Res.,902

vol. 35, no. 4, pp. 1030–1046, Apr. 2008.903

[30] D. Y. Sha and C.-Y. Hsu, ‘‘A hybrid particle swarm optimization for job904

shop scheduling problem,’’ Comput. Ind. Eng., vol. 51, no. 4, pp. 791–808,905

Dec. 2006.906

[31] R. Cheng, M. Gen, and Y. Tsujimura, ‘‘A tutorial survey of job-shop907

scheduling problems using genetic algorithms. Part II: Hybrid genetic908

search strategies,’’ Comput. Ind. Eng., vol. 36, no. 2, pp. 343–364,909

Apr. 1999.910

[32] E.-G. Talbi, ‘‘Machine learning into metaheuristics: A survey and taxon-911

omy,’’ ACM Comput. Surv., vol. 54, no. 6, pp. 1–32, Jul. 2022.912

[33] X. Chen and Y. Tian, ‘‘Learning to perform local rewriting for combinato-913

rial optimization,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,914

pp. 1–12.915

[34] S. Thevenin and N. Zufferey, ‘‘Learning variable neighborhood search for916

a scheduling problem with time windows and rejections,’’ Discrete Appl.917

Math., vol. 261, pp. 344–353, May 2019.918

[35] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck, ‘‘Record919

breaking optimization results using the ruin and recreate principle,’’920

J. Comput. Phys., vol. 159, no. 2, pp. 139–171, Apr. 2000.921

[36] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evaluation of 922

gated recurrent neural networks on sequence modeling,’’ in Proc. NIPS 923

Deep Learn. Represent. Learn. Workshop, Dec. 2014. 924

[37] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. 925

Cambridge, MA, USA: MIT Press, 2016. [Online]. Available: 926

http://www.deeplearningbook.org 927

[38] E. Taillard, ‘‘Benchmarks for basic scheduling problems,’’ Eur. J. Oper. 928

Res., vol. 64, no. 2, pp. 278–285, 1993. 929

[39] S. Mirshekarian and D. N. Šormaz, ‘‘Correlation of job-shop scheduling 930

problem features with scheduling efficiency,’’ Expert Syst. Appl., vol. 62, 931

pp. 131–147, Nov. 2016. 932

[40] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans. 933

Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009. 934

[41] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep 935

learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32. Red 936

Hook, NY, USA: Curran Associates, 2019, pp. 8024–8035. 937

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, 938

Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv. 939

Neural Inf. Process. Syst., vol. 30. RedHook, NY,USA: CurranAssociates, 940

2017, pp. 1–11. 941

[43] D. Applegate and W. Cook, ‘‘A computational study of the job-shop 942

scheduling problem,’’ ORSA J. Comput., vol. 3, pp. 149–156, May 1991. 943

[44] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in 944

Proc. Int. Conf. Learn. Represent., Dec. 2014, pp. 1–15. 945

ANDREA CORSINI received the B.S. and M.S. 946

degrees in computer engineering from the Univer- 947

sity of Modena and Reggio Emilia, Modena, Italy, 948

in 2018 and 2020, respectively. He is currently 949

pursuing the Ph.D. degree in industrial innova- 950

tion engineering with the University of Modena 951

and Reggio Emilia. His current research interests 952

include operations research and machine learn- 953

ing, with a particular focus on how to apply deep 954

learning for solving combinatorial optimization 955

problems. 956

SIMONE CALDERARA (Member, IEEE) received 957

the master’s degree in computer engineering and 958

the Ph.D. degree from the University of Modena 959

and Reggio Emilia, Modena, Italy, in 2005 and 960

2009, respectively. He is currently an Assistant 961

Professor with the Imagelab Group, University of 962

Modena and Reggio Emilia. His current research 963

interests include computer vision and machine 964

learning applied to human behavior analysis, 965

visual tracking in crowded scenarios, and time 966

series analysis for forensic applications. 967

MAURO DELL’AMICO is currently a Full Profes- 968

sor of operational research with the University of 969

Modena and Reggio Emilia. He has almost three 970

decades of academic experience in combinatorial 971

optimization and operations research, primarily 972

applied to mobility, logistics, transportation, sup- 973

ply chain management, production scheduling and 974

planning, and network planning. He has partici- 975

pated as a principal investigator in many EU and 976

Italian funded research projects in optimization, 977

logistics, ICT, transportation, and scheduling. He combines the academic 978

activities with consultancy on optimization for private and public companies. 979

He is a member of the scientific board of several conferences and journals in 980

operations research. 981

982

Open Access funding provided by ‘Università degli Studi di Modena e Reggio Emilia’ within the CRUI CARE Agreement 983

99552 VOLUME 10, 2022

