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Abstract

Small scale VAR models are subject to two major issues: first, the information set might
be too narrow; second, many macroeconomic variables are measured with error. The two
features produce distorted estimates of the impulse response functions. We propose a
new procedure, called Common Components Structural VARs (CC-SVAR), which solves
both problems. It consists in (a) treating the variables, prior to estimation, in order to
extract their common components; this eliminates measurement errors; (b) estimating a
VAR with m > q common components, that is a singular VAR, where q is the number
of shocks driving the economy; this solves the fundamentalness problem. SVARs and
CC-SVARs are compared in the empirical analysis of monetary policy and technology
shocks. The results obtained by SVARs are not robust, in that they strongly depend
on the choice and the treatment of the variables considered. On the contrary, using CC-
SVARs (i) contractionary monetary shocks produce a decrease of prices independently of
the variables included in the model, (ii) irrespective of whether hours worked enter the
model in log-levels or growth rates, technology improvements produce an increase in hours
worked.
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1 Introduction

Since the seminal paper by Sims (1980), Structural Vector Autoregressive (SVAR) models
have become the main tool for applied macroeconomic analysis. In the SVAR approach, the
macroeconomic variables in the vector Xt are driven by the q-dimensional vector of structural
shocks ut, and react to these shocks according to linear impulse-response functions (IRF).
The structural shocks are obtained as linear combinations of the VAR residuals by imposing
suitable identifying restrictions derived from economic theory.

However, it is well known by now that the vector of structural shocks not always can be
represented as a linear transformation of the vector of innovations. When this is the case,
ut is non-fundamental for Xt, and SVAR analysis fails. Non-fundamentalness occurs, in the
usual interpretation, when the information set available to the agents is larger than the linear
space spanned by current and past values of Xt.1 An obvious example is that in which the
number of variables is smaller than the number of shocks. But even when the number of shocks
and variables coincide, which is the standard assumption in SVAR analysis, the information
contained in the history of Xt can be deficient. Early papers containing examples of non-
fundamental economic models are Hansen and Sargent (1991) and Lippi and Reichlin (1993).
More recent works are Fernández-Villaverde et al. (2007), Alessi et al. (2011), Sims (2012),
Leeper et al. (2013), Forni and Gambetti (2014), Forni et al. (2019).2

A second problem with SVAR analysis is represented by the presence of measurement
errors in macroeconomic variables. The fact that many macroeconomic aggregates are affected
by measurement error is indisputable. Still, the problem has been largely neglected in the
literature. There is an implicit widespread belief that the consequences on SVAR analysis are
not serious. However, Giannone et al. (2006) and Lippi (2020) show that this view is wrong
(see also the simulations in the present paper). Indeed, even small measurement errors can
generate substantial distortions in the estimates of the impulse response functions, yielding
misleading results.3

The difficulties caused by non-fundamentalness and measurement errors might be used
to recommend not to use SVAR models for macroeconomic analysis, an additional argument
for authors who argue that Dynamic Stochastic General Equilibrium (DSGE) models should
become the standard tool in empirical macroeconomics, see in particular Chari et al. (2008).

The opposite view is upheld in the present paper. We show that the two problems can be
satisfactorily solved within the SVAR approach and that the advantages of VAR techniques,
simplicity and data-driven estimation of the dynamic relationships in particular, can be carried
out provided that the data Xt is replaced by a vector of common components estimated by
means of High-Dimensional Dynamic Factor techniques.

1An interesting case of non-fundamentalness not arising from superior information of economic agents is
that of ‘noise’ shocks (Forni et al. (2017a,b) ). We do not deal with this case in the present paper.

2Whether the problem of non-fundamentalness is empirically important or not has been a matter of debate
in recent years. Some authors claim that non-fundamentalness has not necessarily dramatic consequences
(Sims and Zha (2006), Sims (2012), Beaudry et al. (2019)). On the other hand, Forni et al. (2014) find that
narrow information sets distort the estimated effects of news shocks, while several papers, see in particular
Bernanke et al. (2005), Forni and Gambetti (2010) and Miranda-Agrippino and Ricco (forthcoming), insist on
the importance of large information sets for the estimation of monetary policy shocks.

3Lippi (2020) shows that if the variables contain meaurement errors the shocks obtained by standard
identifying restrictions contain dynamic mixtures of the structural shocks and measurement errors. These
dynamic contamination effects of measurement errors are special cases of the dynamic contamination effects
of aggregation, as analyzed in Forni and Lippi (1997) and Forni and Lippi (1999).
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The starting point of our analysis is the assumption that Xt is part of an n-dimensional
dataset xt, with n large, which follows the Structural Dynamic Factor Model (SDFM) in-
troduced in Stock and Watson (2005) and Forni et al. (2009).4 In this model each variable
in the dataset is the sum of an idiosyncratic and a common component.5 The idiosyncratic
components are either non-correlated or weakly correlated to each other and have a natural in-
terpretation as causes of variation of the x’s that are specific to one or just a few variables, like
regional or sectoral shocks and measurement errors. In particular, for the big aggregates like
income, consumption, investment, or general stock price indexes, in which all local or sectoral
shocks should have been already averaged out, the idiosyncratic component can be interpreted
as only containing measurement errors or variable-specific high-frequency fluctuations of no
interest for macroeconomic analysis. The common components on the contrary account for
the commonality among the variables of the dataset. This is because they are different linear
combinations of the same r common factors, with r small as compared to n. The dynamics
of the model is given by the fact that the common factors are a (possibly infinite) Moving
Average of q common shocks. An important feature of the model is that the vector of the
factors is singular, i.e. its dimension r is larger than the number of driving shocks q. As the
common shocks affect pervasively the common components and the variables in xt, they can
be interpreted as structural macroeconomic shocks.

The SDFM can be easily related to a DSGE model linearized around the steady state
and written in state-space form. The variables in the DSGE correspond to a selection of the
common components and the states correspond to the factors (up to suitable transformations).
Notice that in the DSGE we typically have singularity, in that the number of states r is larger
than the number of shocks q, as in the SDFM.

The main contribution of the present paper is a new general method for estimation and
identification of structural macroeconomic shocks and the corresponding IRFs; we call it Com-
mon Component Structural VAR (CC-SVAR). Its main features are:
(a) High-Dimensional Dynamic Factor Model techniques are employed to estimate the common
components.
(b) The SVAR analysis is applied to an m-dimensional vector of common components, call it
Yt, which includes the variables of interest, with m > q. Thus we use a singular stochastic
vector for our analysis.

With respect to the SVAR, advantages of the CC-SVAR are:
(i) The dynamic contamination produced by measurement errors disappears or becomes neg-
ligible using the common components.
(ii) By a key result in the theory of singular stochastic vectors, the q-dimensional vector of
structural shocks is generically fundamental for the m-dimensional vector Yt. That is, the
fundamentalness problem is solved once Xt has been replaced by Yt.
(iii) The number of series to include in the CC-SVAR varies from the minimum m = q + 1,
sufficient to obtain singularity and therefore fundamentalness, and the maximum m = r. We
argue that m = r is the best choice. By contrast, in standard SVAR analysis the choice of the
number of variables is left to the judgment of the researcher, with the risk of mis-specification.
(iv) With the CC-SVAR, the results are much less sensitive to the choice of the variables to
include in the model.

4See also Stock and Watson (2016).
5The representation of the x’s as common plus idiosyncratic components is the basic feature of the High-

Dimensional Dynamic Factor Model introduced in Forni et al. (2000), Stock and Watson (2002b,a), Bai and
Ng (2002).
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Point (iv) needs clarification. We show that, when using the CC-SVAR, different sets
of common components yield similar results, since the models are asymptotically equivalent.
Moreover, with m = r, the results are identical even for finite samples. This is in sharp con-
trast with standard SVARs, where changing a single series may change dramatically the size
and even the sign of the estimated impulse-response functions, as documented in Section 5.
The intuition is that if the structural shocks are fundamental for the m-dimensional vectors
of common components, different vectors yield analogue information and results. By contrast,
when information is deficient (because of non-fundamentalness) and, in addition, is contami-
nated by measurement errors, changing a single variable may produce large effects, depending
on the quality of the information conveyed by this variable about the shocks of interest.

While the theoretical assumptions underlying the CC-SVAR and the SDFM are the same—
a large dataset, common and idiosyncratic components, common factors driven by the struc-
tural shocks—the estimation procedures are different. Estimation of SDFMs, as proposed in
the previous literature6 consists of two steps: (1) estimating a singular VAR for the r factors,
(2) inserting that VAR in the relationship between the variables of interest and the factors.
We refer to that method as the Standard Procedure. With respect to it, advantages of the
CC-SVAR are:
(I) Our method estimates directly a SVAR, i.e. the structural shocks and IRFs, for a vec-
tor including the relevant variables jointly with any other variable the researcher may be
interested in, a decisive gain in clarity with respect to the Standard Procedure.
(II) We propose a procedure to set the value of r which is more robust to possible mis-
specification.
(III) The CC-SVAR, unlike the Standard Procedure, does not require estimation of q. We
show by simulations that this does not affect estimation accuracy, while avoiding large errors
implied by a possible mis-specification.

The CC-SVAR is also related to the FAVAR model introduced in Bernanke and Boivin
(2003), Bernanke et al. (2005). The basic advantage of CC-SVARs is that, unlike FAVARs,
they only include common components, not the variables, which are as a rule contaminated
by measurement errors.

In the empirical part of the paper, we apply the CC-SVAR method to the study of two
highly debated problems in macroeconometrics: (1) the effects of monetary policy shocks on
the main macroeconomic variables, (2) the effect of technology shocks on hours worked. In
both cases we show that the results of SVAR analysis are not robust. In particular, the sign of
the effect of a contractionary policy shock on prices is sensitive to the variables included in the
model, and the sign of the effect of a positive technology shock on hours worked depends on
whether hours are taken in differences or in log-levels. These puzzling phenomena disappear
with CC-SVARs. Contractionary monetary policy shocks reduce prices independently of the
variables included. Positive technology shocks produce an increase in hours worked, regardless
of whether the specification in log-levels or in differences is used, solving the old-standing
controversy about the effects of technology shocks on hours worked.7

The paper is organized as follows. In Section 2 the effects of non-fundamentalness and
measurement errors on SVAR analysis are illustrated by means of the simple model studied
in Leeper et al. (2013). In Section 3 we provide a short presentation of the SDFM, discuss
fundamentalness in the light of singular vector time series theory and explain in detail the

6See again Stock and Watson (2005), Forni et al. (2009), Stock and Watson (2016).
7See Galí (1999a) and Christiano et al. (2003b).
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CC-SVAR procedure. In Section 4 we present some simulation exercises comparing the CC-
SVAR with the SVAR, the Standard Procedure SDFM and the FAVAR. Section 5 presents
the empirical applications mentioned above. Section 6 concludes.

2 Non-Fundamentalness and Measurement Errors in a Simple
Model

The model discussed in Leeper et al. (2013) is employed here as a laboratory to discuss the
consequences of narrow information sets (non-fundamentalness) and measurement errors. The
model is a simple Real Business Cycle (RBC) model with log preferences, inelastic labor supply
and two shocks: ua,t, a technology shock, and uτ,t, a tax shock. A nonstandard feature of the
model is the fact that the tax shock has a delayed effect on taxes, the so-called fiscal foresight.
The equilibrium capital accumulation is

kt = αkt−1 + at − κ
∞∑
i=0

θiEtτt+i+1 (1)

where 0 < α < 1, |θ| < 1, κ = (1 − θ)τ/(1− τ), τ being the steady state tax rate, and at,
kt and τt are the log deviations from the steady state of technology, capital and the tax rate,
respectively. Technology and taxes are assumed, for simplicity, to be i.i.d processes,

at = ua,t

τt = uτ,t−2,

where uτ,t and ua,t are i.i.d. shocks that economic agents can observe. The second equa-
tion implies a delay of two periods. Solving for kt we obtain the following equilibrium MA
representation: atkt

τt

 =


0 1

−κ(L+ θ)
1− αL

1
1− αL

L2 0

(uτ,tua,t

)
= B(L)ut. (2)

2.1 Full versus Narrow Information Sets

In the standard approach to the estimation of the impulse-response functions, as the variables
are driven by two shocks we should estimate a SVAR including two of the three variables in
the system. However, the vector ut = (uτ,t ua,t)

′ is non-fundamental for all pairs of variables.
Indeed, considering the square subsystem given by the first two variables (technology and
capital), the determinant κ(z + θ)/(1 − αz) vanishes for z = −θ, which is less than unity in
modulus. The determinant of the submatrix corresponding to technology and capital vanishes
at z = 0, and so does the one corresponding to capital and taxes. This implies that standard
SVAR techniques are unlikely to correctly estimate the dynamic effect of the fiscal shock.

A quantitative assessment of the distortion caused by non-fundamentalness in the two-
dimensional SVARs within system (2) is obtained here by a simulation exercise. We generate
1000 different dataset with 200 time observations from the model (2) using the parameteriza-
tion in Leeper et al. (2013): α = 0.36, θ = 0.2673 and τ = 0.25 and ut ∼ N(0, I). For each of
the datasets we estimate a VAR(4) including taxes and capital and we identify the tax shock
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by imposing that it is the only one driving cumulated taxes in the long run, a restriction that
is clearly satisfied in the model. Panel (a) of Figure 1 plots the estimated impulse-response
functions for a tax shock. The red dashed lines are the theoretical impulse response functions.
The solid lines represent the mean (across datasets) of the point estimates. The grey areas
represent the 16th and 84th percentiles of the point estimate distribution. As the red lines lie
outside the bands, the true effects are very badly estimated. The responses obtained by the
SVAR neatly anticipate the peak response in the true impulse response functions. Both taxes
and capital react immediately and then the effects vanish.

Thus when only part of the information is used, current and past values of taxes and
capital, the estimates of the impulse-response functions can be substantially distorted.

However, the information contained in current and past values of technology, capital and
taxes is sufficient to recover the vector ut. Indeed, the matrix B(L) in (2) can be inverted, in
the sense that there exists a stable 3×3 finite polynomial matrix D(L) such that D(L)B(L) =
B(0), so that we have the VAR(3) representation with 3 lags

1 0 0

(θ − L)L

θ2
(1− αL)(θ2 − θL+ L2)

θ2
κL
θ2

−L2

κθ
(1− αL)L2

κθ
1− L

θ


atkt
τt

 =

 0 1
−κθ 1

0 0

(uτ,t
ua,t

)
. (3)

To verify stability, observe that the determinant of D(L) is (1−αL)/θ and recall that |α| < 1.
Note that singularity of the vector (at kt τt)

′ implies that its 3 × 3 spectral density is
singular at all frequencies. However, the covariance matrix which is necessary to estimate a
VAR is not singular. Therefore, using the same data as in the previous exercise, we estimate
a VAR(3) for the full vector (at kt τt)

′.8

We identify the tax shock by assuming that it is the only one affecting cumulated taxes
in the long run, thus a Blanchard and Quah (1989) identification scheme withe the tax shock
ordered first. The results are displayed in Panel (b) of Figure 1. Using the full information
set, the impulse response functions are estimated extremely well, the red dashed and solid
black lines perfectly overlapping.

It is important to note that this result, that a correct estimation of the impulse-response
functions is obtained by enlarging the information available to the econometrician, crucially
depends in our simple model on the fact that an additional variable is added without increasing
the sources of uncertainty, that is without adding additional shocks, which is tantamount to
the fact that the enlarged vector of available variables is singular.

2.2 Measurement Errors

Typically, many of the macroeconomic variables used in SVAR models are affected by mea-
surement error. To understand the implications of this we use another simulation exercise.
We augment the three variables in model (2) with i.i.d measurement errors:atkt

τt

 = B(L)ut +

ξatξkt
ξτt

 ,

8Almost identical results are obtained with a VAR with four lags (not shown here).
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with the assumption that the ξ’s are orthogonal to the shocks ua,t and uτ,t at all leads and
lags. The data are generated using the same parameterization of the previous section, with
ξτt = ξkt = 0 and ξat accounting for 5% of the variance of the series at. Using the full vector we
estimate again a VAR(3) with the same identification scheme.9 Panel (c) of Figure 1 reports
the estimated impulse-response functions. Surprisingly, with a measurement error as small as
that used in the generation of the data, and affecting only one of the variables, the effects
of the tax shock are very badly estimated. Thus, even when information seems sufficient
to correctly recover the impulse-response functions, a small measurement error may cause
substantial distortion in the estimates. The reason for this will be made clear in Section 3.4.

3 Common Factors, Common Components, CC-SVAR

First, we give a short, formal presentation of the SDFM. Then we discuss the fundamentalness
issue in the light of singular vector time series theory. Next we introduce and discuss in detail
the CC-SVAR estimation procedure. Finally, we compare the CC-SVAR with the estimation
procedure proposed in previous literature, see Stock and Watson (2005), Forni et al. (2009) in
particular, and the Factor Augmented VARs, see Bernanke et al. (2005).

3.1 Structural Dynamic Factor Models

Let xt be a dataset of n macroeconomic variables. We assume that xt is weakly stationary,
possibly after detrending. A rigorous definition of the SDFM requires that the vector xt is
part of an infinite-dimensional vector, so that we can make assumptions by letting n tend to
infinity, see Forni et al. (2000), Stock and Watson (2002b,a), Bai and Ng (2002).

We assume that the variables xit can be represented as

xit = χit + ξit, i = 1, . . . , n, (4)

where the following conditions are fulfilled.

(SDFM1) The variables ξit, called idiosyncratic components, are weakly correlated across dif-
ferent i’s. The formal condition is asymptotic: the eigenvalues of the variance-covariance
matrix of the ξ’s are bounded as n tends to infinity. This entails, for example, that the mean
of the ξ’s tends to zero as n tends to infinity:

lim
n→∞

E

[
1

n

n∑
i=1

ξit

]2
= 0,

which is obviously true if the ξ’s are mutually orthogonal with an upper bound for the variance
of ξit, but is also true if some “local” non-zero covariance among the ξ’s is allowed.

(SDFM2) The variables χit are called the common components. Given t, the χ’s, for i ∈ N,
span a finite-dimensional space, call r such dimension. This implies that there exists an
r-dimensional vector Ft, weakly stationary, such that

χit = Ai1F1t + · · ·+AirFrt = AiFt or χt = AFt, (5)
9Augmenting the number of lags does not improve estimates (not shown here).
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where χt is the n-dimensional vector of the χ’s and A, the factor loading matrix, is n × r.
The coordinates of Ft are called the static factors and (5) the static representation of the
common components. Moreover, the factors Ft are pervasive, in that all of them affect, with
a few possible exceptions, all the variables xit. And they are non-redundant. For example, if
χit = AiF1t+AiF2t, then we would have only the factor F1t+F2t. Again, the formal condition
is asymptotic: as n tends to infinity, the r-th eigenvalue of the variance-covariance matrix of
the χ’s diverges.

(SDFM3) The idiosyncratic components are orthogonal to the factors at all leads and lags.
Thus ξit is orthogonal to χjs for all i, j, t and s.

(SDFM4) The r-dimensional vector Ft has the VARMA representation

H(L)Ft = K(L)ut, (6)

where (i) ut is the q-dimensional orthonormal vector of the structural common shocks, (ii)H(L)
is a stable r × r matrix polynomial with H(0) = I, (iii) K(L) is an r × q polynomial matrix.

A crucial observation is that usually the static representation (5) is a convenient transfor-
mation of a deeper dynamic set of relationships. Consider the following simple example:

χit = ai0ut + ai1ut−1, (7)

where ut is a scalar white noise. In this case, to obtain (5) we define F1t = ut, F2t = ut−1, so
that r = 2 and χit = Ai1F1t +Ai2F2t, with Ai1 = ai0, Ai2 = ai1. In this case the VARMA for
Ft is (

F1t

F2t

)
=

(
1
L

)
ut or, equivalently,

(
1 0
−L 1

)(
F1t

F2t

)
=

(
1
0

)
ut. (8)

We see that Ft is singular, i.e. it has dimension r = 2 but is driven by the 1-dimensional white
noise ut. This example and its obvious generalization, r > q, are consistent with empirical
evidence, see, e.g., Giannone et al. (2005), Amengual and Watson (2007), Forni and Gambetti
(2010), Luciani (2015) for US macroeconomic databases, Barigozzi et al. (2014) for the euro
area. Therefore we assume throughout

(SDFM5) r > q, i.e. the stochastic vector Ft, the VARMA (6), is singular.
Using (6) and the resulting MA representation

Ft =
[
H(L)−1K(L)

]
ut = BF (L)ut, (9)

we obtain an MA representation for the n-dimensional vector χt:

χt = [ABF (L)]ut = Bχ(L)ut. (10)

As n > r > q the vector χt is singular. Lastly, define

χψt = ψ

(
χt
Ft

)
,

where ψ is a m × (n + r) matrix of ones and zeros selecting m variables among the χ’s and
the factors. We have

χψt = ψ

(
χt
Ft

)
= ψ

(
Bχ(L)
BF (L)

)
ut = Bψ(L)ut. (11)
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Notice that, by equations (9) and (10), Bψ(L) is a matrix of rational functions in L, i.e. χψt
has a VARMA representation. If m > q, χψt is a singular stochastic vector. Moreover, as the
coordinates of the vector χt are linear combination of the r coordinates of Ft, if m > r, χψt
has a singular variance-covariance matrix. We assume:

(SDFM6) If m ≤ r the variance-covariance matrix of χψt is non singular for all choice vectors
ψ.

3.2 Singularity and the Fundamentalness of the Structural Shocks

At the end of the present section we make one further assumption on the SDFM, namely that
if m > q the structural shocks ut are fundamental for χψt . We start with an illustration of
our point by means of a simple example. Consider the 2-dimensional vector χψt = (χ1t χ2t)

′,
where

χ1t = ut + b1ut−1

χ2t = ut + b2ut−1,
(12)

ut being a scalar white noise. The vector χψt is dynamically singular, since it has two entries
(m = 2) driven by just one shock (q = 1).

If b1 6= b2 we have

ut =
b2χ1t − b1χ2t

b2 − b1
.

This can be used to replace ut−1 in (12), obtaining

χ1t =
b1

b2 − b1
(b2χ1,t−1 − b1χ2,t−1) + ut

χ2t =
b2

b2 − b1
(b2χ1,t−1 − b1χ2,t−1) + ut,

which is a finite autoregressive representation for the singular MA(1) vector χψt . Thus ut
belongs to the space spanned by current and past values of χψt . We conclude that the white
noise ut in (12) is fundamental and that χψt has a finite autoregressive representation for all
values of the parameters b1 and b2, with the exception of the line b1 = b2, thus generically if
(b1 b2) belongs to an open subset of R2.

Note that ut is fundamental for χψt even if it is not fundamental for χ1t nor for χ2t. For
instance, if b1 = 2 and b2 = 3, ut cannot be recovered by any univariate autoregression, even
if it were possible to use an infinite number of lags; despite this, it can be recovered by a
bivariate singular VAR with just one lag.

Model (12) provides an elementary example of a general result proved in Anderson and
Deistler (2008a,b), referred to as AD in the sequel. Let zt = G(L)wt, where zt is r-dimensional
and wt is q-dimensional with r > q. Moreover assume that the entries of G(L) are rational
functions of L:

gij,0 + · · ·+ gij,s1L
s1

1− g̃ij,1L− · · · − g̃ij,s2Ls2
. (13)

AD prove the following:
(AD1) If the matrix G(L) is zeroless, i.e. G(z) has rank q for all complex numbers z, then there
exists a finite r × r stable matrix polynomial C(L) such that C(L)G(L) = G(0) (we say that
C(L) is a left inverse of G(L)), so that zt has the finite VAR representation C(L)zt = G(0)wt.
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As G(0) has maximum rank (because G(L) is zeroless), wt lies in the space spanned by current
and past values of zt, i.e. wt is fundamental for zt.
(AD2) Suppose that the vector of the d = (s1 + 1)s2rq coefficients of the entries (13) varies
in an open set G ⊆ Rd. Then the subset of G where B(L) is not zeroless has dimension
lower than d. We say that generically the matrix G(L) is zeroless. In other words, if the d
coefficients gij,k, g̃ij,h are free to vary independently of one another (G is an open set), then
the non-zeroless matrices G(L) lie in a lower dimensional, negligible set.

Going back to our vector χψt , if Bψ(L) is zeroless, by AD1 we have

Dψ(L)χψt = vψt = Bψ(0)ut (14)

where Dψ(L) is a finite matrix polynomial and ut is fundamental for χψt .
However, it easy to see that when the matrix polynomials Bψ(L) are obtained within a

theory-based macroeconomic model, we cannot apply straightforwardly AD2 to conclude that
generically Bψ(L) is zeroless, so that by AD1 (14) holds. Indeed, the coefficients of the entries
of Bψ(L) depend on a vector of ‘deep’ parameters, like in the example of equation (2), so that
they do not vary independently of one another. In the Appendix, Section A, we discuss this
difficulty and its solution in detail. We conclude that, although the independence assumption
in AD2 does not hold, it is reasonable to assume that Bψ(L) is generically zeroless:

(SDFM7) If r ≥ m > q, then generically Bψ(L) is zeroless.

Thus, if m > q, then generically:
(i) ut is fundamental for all m-dimensional vectors χψt .
(ii) χψt has the finite VAR representation (14).
(iii) Moreover, suppose that Ft has another MA representation with an orthonormal funda-
mental white noise wt. In view of the orthonormality assumpion in (SDFM4), a standard
result is that wt = ρut, where ρ is a q × q orthogonal matrix (see Rozanov (1967), pp. 56-7;
see also Section 3.2 in Forni et al. (2009)).

3.3 CC-SVAR Analysis

The procedure for the estimation of a SDFM in Stock and Watson (2005), Forni et al. (2009),
the Standard Procedure, is the following:
(i) Estimation of the number of factors r and commmon shocks q. This is done by means of
existing information criteria, see Section 3.6 for details.
(ii) Estimation of the factors Ft, the factor loadings A and the common components χt = AFt
in equation (5). The factors are estimated by the ordinary principal components of the large
data set. The factor loadings are estimated by the eigenvectors corresponding to the largest
r eigenvalues of the variance-covariance matrix of the x’s.
(iii) Estimation of a standard VAR for the estimated factors F̂t to get an estimate of the Wold
representation

F̂t = B̂(L)v̂t. (15)

(iv) Rank reduction. The estimated factors F̂t contain a residual of the idiosyncratic compo-
nents, which completely disappears only asymptotically and are therefore not exactly singular.
As a consequence, the vector v̂t has rank r, not q, although the last r − q eigenvalues of its
variance-covariance matrix are close to zero. In the Standard Procedure singularity is forced on
v̂t by means of rank-reduction techniques described in detail in Stock and Watson (2005), Forni
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et al. (2009). For example, in Forni et al. (2009) the vector v̂t is replaced by the q̂-dimensional
vector Cv̂t, where C is the q× r matrix whose rows are the eigenvectors corresponding to the
first q̂ eigenvalues of the variance-covariance matrix of v̂t.
(v) Identification of the structural shocks and impulse-response functions by SVAR techniques,
to get an estimate of the structural shocks ut and the corresponding impulse response matrices
BF (L) in (9). The impulse response functions of the χ’s are obtained according to (10) as
B̂χ(L) = ÂB̂F (L).

The CC-SVAR is the alternative estimation procedure summarily described below and
discussed in detail in the next subsections.
(I) We estimate r, Ft and χt as above.
(II) We select an m dimensional vector χψt containing the common components of Xt, the
variables of interest, plus other common components or factors, so that with r ≥ m > q.
Step (iii) of the Standard Procedure is replaced by the estimation of a VAR for χψt . We do
not apply any rank-reduction technique, see Section 3.7.
(III) The identification restrictions are applied directly to the VAR estimated in (II).

3.4 CC-SVAR, the choice of m

As observed in the previous subsection the estimated factors and vectors χ̂ψt are not exactly
singular. In particular, the singular VAR in (14) is estimated by means of a non-singular
VAR. In Appendix B we provide a short discussion about consistency of such VAR estimates.

The fact that χ̂ψt is not exactly singular may produce serious consequences: if Bψ(L) is
close to the non-zeroless region, it is possible that ut can be recovered using χψt , but not using
χ̂ψt . To see this, consider the following example:

χ1t = ut−1

χ2t = a2ut + ut−1.
(16)

Here Bψ(L) is zeroless unless a2 = 0. If a2 6= 0,

1

a2
(χ2t − χ1t) = ut,

so that ut lies in the econometrician’s information set. Now suppose that χ̂2t = χ2t + εt, εt
being a small residual idiosyncratic term. For simplicity, assume that χ̂1t is estimated without
error, i.e. χ̂1t = χ1t. The above expression becomes

1

a2
(χ̂2t − χ̂1t) = ut +

1

a2
εt.

Now if |a2| is large, we can still get ut with a good approximation; but as |a2| approaches 0 (i.e.
the non-zeroless region), the error grows without bound. For instance, if ut is unit variance
and εt has standard deviation 0.01, with a2 = 1 the error is negligible, but with a2 = 0.01 the
error has the same size as ut.

The above example and discussion sheds some light on the fact, observed in Section 2.2,
that a small measurement error may have effects as large as those shown in Figure 1, Panel
(c). Our simulation exercises in Section 4 suggest that, with m = q + 1, cases like the one of
the example above may occur.
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Clearly, the larger is m, the more unlikely they are. For instance, in the above example,
if we have a third common component χ3t = a3ut + ut−1, the non-zeroless region is defined
by a2 = a3 = 0, so that we only have problems when both |a2| and |a3| are close to 0. In our
simulations, problematic cases no longer occur when m is larger than q + 1.

3.5 CC-SVAR, again on m and the choice of ψ

The previous subsection provides a first important motivation for setting m larger than q+ 1.
Indeed, we recommend setting m equal to its largest possible value, i.e. m = r. Additional
arguments in favor of this choice are the following.

Firstly, in empirical situations, q is unknown and has to be determined by existing infor-
mation criteria. Such criteria, albeit consistent, may deliver wrong results in small samples,
as shown by the fact that often different criteria give different results. Therefore if we set
m = q̂+j, with, say, j = 1 or 2, we cannot be sure that our m is greater than the true q. Thus
setting m = r is the safest choice. As we choose the maximum value r̂ for m and because
we do not apply rank-reduction techniques, see Section 3.6, estimation of q in a CC-SVAR
is not strictly necessary. On the other hand, checking that r̂ is actually greater than q̂ is
recommended.

A second motivation in favor ofm = r̂ is that, ifm = r̂, the estimated shocks of interest and
the corresponding estimated IRFs are the same, irrespective of the choice of ψ —an equality
that holds only asymptotically in the case q̂ < m < r̂. The intuition is simple: since the
entries of χ̂ψt are linear combinations of the estimated factors in F̂t (i.e. the first m principal
components of our large data set), when χ̂ψt is m-dimensional it spans the same linear space
as F̂t, for any ψ. A formal proof is provided in Appendix C.

This fact has two important consequences. The first is that selecting the variables to be
included in the CC-SVAR is not an issue. The natural choice is the set of variables which
are needed for identification and, if required to complete the information set, factors, or the
common components of other variables of interest. The second is that, if we are interested
in the IRFs of some variables which have not been included in the CC-SVAR, we can simply
estimate another CC-SVAR including these variables. This practice, which is common in
empirical work, is questionable within the standard SVAR framework, since, as confirmed by
the simulations and the empirical applications in Sections 4 and 5, changing the variables may
change dramatically the information set and therefore the estimated shock of interest. By
contrast, it is perfectly justified within the CC-SVAR approach, when setting m = r.

Our third motivation is parsimony. Intuition suggests that, as m increases, the number of
lags which are needed in the singular VAR decreases, implying a representation with a smaller
number of parameters to estimate. In Appendix D we provide an illustrative example. Our
intuition is also confirmed by our first simulation exercise in Section 4.

Lastly, the observations above about estimating q obviously apply to r as well, with many
consistent criteria providing different estimates in small samples. In Section 4 we see that if
r̂ increases from values below r, the true value, to values above r, the IRFs change from bad
to good estimates, as r̂ reaches r, and get stable for values greater than r, see Section 4.2.

This finding is used in empirical applications, where r is not known, see step (E5) of the
estimation procedure in Section 3.6 and Section 5. We use the estimate r̂ as the baseline
specification and estimate the IRFs. Then we assess the robustness of the results by using
a range of values for r̂ around the baseline. We choose the final value of r̂ as that at which
stabilization of the IRFs occurs.
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3.6 CC-SVAR, the estimation procedure in detail

The estimation procedure outlined at the end of Section 3.3, with the CC-SVAR replacing the
VAR for the factors, is now pursued.
(E0) Select a large data set with n series and T observations for each series. Transform the
series to get stationarity and standardize them.
(E1) Estimate r. Out of the vast literature, beginning with Bai and Ng (2002), proposing
consistent estimates r̂, in the empirical applications in Section 5 we use Alessi et al. (2010).
To check that r̂ > q̂, our choice for the estimation of q is Hallin and Liška (2007).
(E2) Given r̂, estimate the factors Ft, the factor loadings A and the common components χt =
AFt in equation (5). The estimate of the factors, F̂t, is given by the first r̂ ordinary principal
components of our data set. The factor loading estimator Â is given by the eigenvectors
corresponding to the largest r̂ eigenvalues of the variance-covariance matrix of the x’s. The
estimated common component vector χ̂t is given by ÂF̂t. Finally de-standardize the common
component by multiplying each one of them by the standard deviation of the corresponding
series.
(E3) Choose an r × n matrix ψ selecting the variables or the factors which are necessary for
identification, along with other variables of interest. Estimate a VAR for χ̂ψt = ψ

(
χ̂′t F̂ ′t

)′,
to get an estimate of the matrix Dψ(L) and the VAR innovations vψt (see equation (14).
Forni et al. (2009) show, under suitable assumptions, that the resulting estimates of the raw
impulse-response functions D̂−1ψ (L) converge in probability to their population counterpart

with rate max
(

1/
√
n, 1/

√
T
)
.

(E4) Identify the structural shocks and the IRFs by SVAR techniques applied to D̂−1ψ (L) and
vψt . Let us recall that we do not impose any rank reduction.
(E5) The steps (E2), (E3) and E4) are repeated for several values of r in an interval [r1, r2]
around the baseline value r̂ estimated in (E1). Starting with r1, we choose the final value of
r as that for which the IRFs become stable.
(E6, optional) Estimate the whole panel of impulse response functions as ÂÂ−1ψ B̂ψ(L), where
Âψ = ψÂ. Alternatively, repeat steps (E3) and (E4) with a different ψ, selecting the additional
variables of interest.

The estimation procedure above refers to datasets that are either stationary or are made
stationary by the common-practice replacement of trending series by the first differences of the
logs. On the other hand VAR in differences are misspecified if the variables are cointegrated.
Here we adopt the simplest solution to this difficulty, namely the specification of non-stationary
variables in log levels rather than growth rates. This requires the estimation of the common
components of the levels (see Barigozzi et al. (forthcoming) for a thorough discussion of
non-stationary dynamic factor models). The following procedure is recommended here:
(E0′) Starting from the original data set, not treated to reach stationarity, take the first
difference (or the first difference of the logs) of all series (included the ones that are already
stationary). Standardize the resulting series.
(E1′) Same as (E1).
(E2′) Follow (E2). Then take the cumulated sum of all common component to get the common
components of the variables in levels.
(E3′) Same as (E3). If we want to get the same results irrespective of ψ we have to include
a linear trend in the VAR. This is because different sets of cumulated common component
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series span linear spaces differing by a deterministic linear trend.
(E4′ and E5′) Same as (E4) and (E5) respectively.

3.7 CC-SVARs, SVARs, the Standard-Procedure SDFMs and FAVARs

The advantages of CC-SVARs over SVARs, regarding fundamentalness and measurement er-
rors, have been discussed in detail in the Introduction and Section 2, see also Sections 4 and
5.

Compared to the Standard Procedure SDFM, an important advantage of the CC-SVAR
is that the common components of the variables of interest appear directly in the estimation
step. Thus a natural and transparent procedure.

Secondly, uncertainty in the estimate r̂ is explicitly taken into account. We start the
estimation procedure with r̂ determined by one of the available criteria, but then, see step
(E5) in the estimation procedure, repeat the steps (E2), (E3) and (E4) for increasing values
of r in an interval [r1, r2] around r̂, until stability of the IRFs is achieved. This “correction”
of r is sensible and produces better IRFs, as compared to the Standard Procedure, in which
only the IRFs corresponding to the baseline r̂ are estimated, see Section 4.

Thirdly, in the Standard Procedure SDFM the identification techniques are applied to
the residuals of the VAR estimated for Ft after rank reduction. Thus the residuals of the
VAR are linearly combined two times, firstly for rank reduction, secondly for identification.
On the other hand, in the CC-SVAR the identification techniques are applied to the (non-
exactly-singular) residuals of the estimated VAR without reducing the rank, see step (E4).
The simulations in Section 4 show that when m = r in the CC-SVAR and q̂ is not less than
the true q in the Standard Procedure, the IRFs estimated by the two procedures are very
similar. However, if q̂ underestimates q, the Standard Procedure performs badly, this strongly
suggesting that imposing the identification restrictions also takes care of the rank reduction.
In conclusion, the estimation of q and the rank reduction are not necessary and a potential
source of error.

FAVAR models, as introduced and studied in Bernanke and Boivin (2003) and Bernanke
et al. (2005), estimate a SVAR for a vector including the observable variables of interest and
the principal components of a large macroeconomic data set (the estimated factors). They
are close to CC-SVARs in that they include the factors, which provide information free of
measurement errors. On the other hand, with a few exceptions, the observable variables
contain measurement errors, with negative consequences on the estimates. We see this in a
simulation exercise in Section 4.3, where the CC-SVAR and the FAVAR performances are
compared. Empirical situations in which the inclusion of some observable variables in a CC-
SVAR is recommended are discussed in Appendix E.

4 Simulations

The procedure described in Section 3.6 is now applied to simulated data sets based on the
model discussed in Section 2. Firstly we rewrite model (2) in static-factor form. Let

Ft = (kt ua,t uτ,t uτ,t−1 uτ,t−2)
′.
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The 5-dimensional vector Ft has the following singular VAR(1) representation:
kt
ua,t
uτ,t
uτ,t−1
uτ,t−2

 =


α 0 −κ 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0



kt−1
ua,t−1
uτ,t−1
uτ,t−2
uτ,t−3

+


1 −κθ
1 0
0 1
0 0
0 0


(
ua,t
uτ,t

)
. (17)

Defining Zt = (at kt τt)
′, we have

Zt = AZFt + ξZt (18)

where

AZ =

0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

 .

we generate a vector zt including 100 additional time series (T = 200) as

zt = AzFt + ξzt (19)

where Az is the 100 × 5 matrix matrix of the loadings. The entries of Az are generated
independently from a standardized normal distribution. We define xt = (Z ′t z

′
t)
′ and ξt =

(ξZt
′
ξzt
′)′. We generate the measurement errors ξ assuming that ξit ∼ N(0, σξi ) where σξi

is uniformly distributed in the interval (0, 0.5), so that different variables have measurement
errors of different size (on average, the idiosyncratic components account for about 11% of
total variance).

4.1 Changing m and ψ

In our first exercise, Simulation 1, we assess the performance of the CC-SVAR for different
values of m. We estimate the common components using the true number of factors, i.e.
r = 5. We run: (a) a VAR(4) with the common components of capital and taxes and the
first principal component (m = 3); (b) a VAR(1) with the common components of capital and
taxes and the first two principal components (m = 4); (c) a VAR(2) with the same variables
(again m = 4); (d) a VAR(1) with the common components of capital and taxes and the first
three principal components (m = 5). As above, we identify the tax shock by imposing that
it is the only one affecting cumulated taxes in the long run. We repeat the exercise for 1000
data sets.

Figure 2 reports the results. The red dashed lines are the theoretical impulse response
functions. The solid lines are the mean point estimates (mean over the different datasets) and
the grey areas represent the 16th and 84th percentile of the point-estimate distribution. The
results for specification (a) are reported in Panel (a). We see that there is a sizable bias and
a large variability of the results, especially for taxes. This disappointing result is discussed
below. Here we only observe that the number of lags included in the VAR is not responsible
for it. Indeed, a similar result (not shown) is obtained with 8 lags instead of 4.

Panel (b) and (c) show results for specifications (b) and (c), respectively. The difference is
the number of lags included: just one lag in Panel (b) and two lags in Panel (c). Comparing
the two panels, it is seen that when m = 4 we need two lags in the VAR to get good esti-
mates of the impulse response functions. Panel (d) confirms that, with m = 5, just one lag is
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enough, consistently with equation (17). In both Panels (c) and (d), the dynamics are esti-
mated extremely well, with the mean impulse response functions almost overlapping with the
theoretical ones. Notice that, with the more parsimonious model in (d), the variability of the
estimates is somewhat smaller at large lags. In the present case the advantage of specification
(d) is modest, since T is relatively large and the number of parameters to estimate is small
even for specification (c). But for shorter data sets or data sets requiring a larger number of
parameters, like the ones of the empirical applications in Section 5, the advantage of a more
parsimonious specification is somewhat greater.

To shed some light on the disappointing result obtained with m = 3, we run a second
simulation exercise, Simulation 2, analyzing what happens when changing ψ, i.e. the variables
included in the CC-SVAR, for different values of m. For this exercise, we generate just one
data set. As above, we use five principal components to estimate the common components.

To begin, we set m = 3. Then we estimate one hundred of different CC-SVAR(4) specifi-
cations, including the common components of capital and taxes, plus the common component
of the 3 + i-th variable, i = 1, ..., 100.

The result is reported in Figure 3, Panel (a). The red lines are the 100 estimated impulse
response functions, the black lines are the true impulse response functions. We see that there
are several specifications which produce bad estimates, despite the fact that we havem = q+1.
We repeat the exercise by using the true common components in place of the estimated ones.
The result is reported in Panel (b). With the true common components the results are good,
consistently with the zeroless assumption (SDFM7). Hence the bad results of Panel (a) are
due to the fact that the estimated common components are close to singular, though not
exactly singular. When ψ is such that Bψ(L) is close to the non-zeroless region, the small
idiosyncratic residual, which is still present in the estimated common components, produces
large estimation errors.

Panels (c) and (d) show results for m = 4 and m = 5, respectively. We use four lags as
before. In Panel (c) we include the same (estimated) common components of Panel (a), plus
the first principal component as the fourth variable, equal for all specifications. We see that
in this case the problem arising with m = 3 is solved. This is because matrices Bψ(L) very
close to the non-zeroless region are much more unlikely, and actually never occur for this data
set.10

Finally, in Panel (d) we have m = 5: the common components of capital and taxes,
the third common component, changing across specifications, plus the first two principal
components, which are kept fixed for all ψ. Consistently with the analysis in Section 3.5, all
specifications produce exactly the same result, so that they produce a single line.

4.2 Changing r

In Simulation 3 we suppose that r is not known and use the criterion (E5), see Section 3.6,
to determine the final value of r̂. We try some values of r̂ between 2 and 7. In all cases we
set m = r̂. For m = r̂ = 2 we estimate a CC-SVAR(2) including the common components
of capital and taxes. For m = r̂ = 3 we estimate a CC-SVAR(2) including the common
components of capital and taxes and the first principal component. For m = r̂ = 7 we
estimate a CC-SVAR(2) including the common components of capital and taxes and the first
five principal components. As usual, we repeat the exercise for 1000 data sets.

10Indeed, we did not find bad specifications for m = 4 even for several other data sets, not shown here.
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Figure 4 shows the results. In panels (a) and (b), corresponding to m = r̂ = 2 and m =
r̂ = 3 respectively, the impulse response functions are badly estimated, whereas for m = r̂ = 7
the results are pretty good, and very similar to those already obtained for m = r̂ = 5. Thus,
with our simulated data, the criterion (E5) to determine the final value of r̂ produces the
correct result.

4.3 Standard-Procedure SDFM, CC-SVAR and FAVAR

In Simulation 4 we compare the CC-SVAR with the Standard Procedure for the SDFM and the
FAVAR. Firstly, we estimate: (a) a SDFM with a too small number of common shocks, i.e. q̂ =
1, and (b) a SDFM with the correct number of shocks, i.e q̂ = 2. In both cases r̂ is, correctly,
equal to 5. Secondly, we estimate (c) a CC-SVAR with m = r̂ = 5. Finally, we estimate (d) a
FAVAR including capital, taxes, technology and the first two principal components. In all
cases we use two lags in the estimation. Again, we perform 1000 replications.

The results are reported in Figure 5. Panel (a) shows the results for the mis-specified
SDFM (a). Not surprisingly, with this data generating process, where q = 2, setting q̂ = 1 has
dramatic consequences on the estimates of the impulse response functions. With a different
DGP and a larger q we can expect a smaller bias. However, the point is that, in real data
applications, q can be underestimated, leading to sizable estimation errors.

Panels (b) and (c) refer to the correctly specified SDFM (b) and the CC-VAR (c), respec-
tively. It is hard to see any difference between the two figures. This suggests that the rank
reduction step typical of the factor model can be ignored with no consequences on the quality
of the estimates. Moreover, as argued above, with the CC-SVAR (with m = r) we do not
need an estimate of q, which is safer, in view of the results of Panel (a).

Finally, panel (d) reports the results for the FAVAR model. Owing to measurement errors,
the estimates are clearly worse than those in panels (b) and (c).

Simulation 5 deals again with the choice of the specification of the variables included in
the model. Like in Simulation 2, we use just one data set, but, unlike in Simulation 2, here we
compare the SVAR, the FAVAR and the CC-SVAR. Regarding the SVAR model, we estimate
one hundred of three-variable VAR(2) specifications, including capital, taxes, and the 3 + i-th
variable, i = 1, ..., 100. The results are reported in Figure 6, Panel (a). The figure shows that
the choice of the third variable produces huge differences in the estimated impulse response
functions, both because of the information delivered by the common component of the third
variable and the extent of the contamination induced by the measurement error. Panel (b)
refers to FAVAR models including capital, taxes, the 3 + i-th variable, i = 1 : 100, plus the
first two principal components. Again we use two lags. Here the estimated IRFs are much
closer to each other, since information is not deficient. However, there is still some variability
due to the size of the measurement error included in the third variable. Panel (c) refers to the
CC-VAR, where, as already seen above, all lines are identical.

5 Applications

We illustrate the advantages of CC-SVAR analysis, as an alternative to SVAR, by means of
two applications, the first on monetary policy shocks, the second on technology shocks. Our
main results are: (I) as a consequence of non-fundamentalness and measurement errors the
results of the SVAR analysis are quite unstable, depending on which variables are included
in the vector. Thus the conclusions on the effects of structural shocks on macroeconomic
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variables are not robust, (II) some improvement in robustness is obtained with FAVAR models,
although the effects of measurement errors are still evident, (III) with CC-SVAR instability
completely disappears and robust conclusions can be drawn. Independently of variables used,
contractionary monetary policy shocks reduce prices, and positive technology shocks increase
hours worked.

5.1 Number of factors in McCraken and Ng dataset

In our applications we use both the monthly and quarterly dataset of McCracken and Ng
(2016).11 We exclude a few variables to obtain balanced panels and we end up with a monthly
and quarterly dataset with 122 and 215 variables respectively. We transform each series to
reach stationarity. We apply the criterion proposed by Alessi et al. (2010) and find a number
of static factors r̂ = 8 for the monthly dataset and r̂ = 10 for the quarterly dataset. Thus
we use, as baseline specification, r̂ = 8 and r̂ = 10 in the monthly and quarterly dataset
respectively.

5.2 Monetary policy shocks

In the first application we use the monthly dataset to study the effects of monetary policy
shocks. We start with the following exercise. We consider 118 different VAR specifications
characterized by different vectors Xj

t , j = 1, ..., 118. Each of them includes five variables. Four
of them are common to all vectors: the unemployment rate, industrial production growth,
inflation and a policy rate. Each model includes an additional variable of the panel which
differs across models.

For each of the 118 specifications, we identify the shock using three different identification
schemes. Firstly, a Cholesky scheme. In this case the time span is 1966:M1-2008:M12, since we
exclude the ZLB period. The ordering of the five variables is the following: the unemployment
rate, industrial production growth, inflation, the federal funds rate and the fifth additional
variable. The monetary policy shock is the fourth one.

The second and the third schemes are based on the proxy SVAR method (Mertens and
Ravn (2013) and Stock and Watson (2018). In the first we use the Gertler and Karadi (2015)
instrument (GK henceforth). In the second the Miranda-Agrippino and Ricco (forthcoming)
instrument (MAR henceforth). For the last two identification schemes the span is 1991:M2-
2008:M12. The common component are still computed using the sample 1966:M1-2008:M12.
The policy rate in this case is the 1-year bond, to be consistent with the specifications used
in both the above mentioned papers.

The first column of Figures 7-9 reports the estimated IRFs. Each red solid line represents
the impulse response function of a particular specification, so that each box contains 118
different lines. The most striking result is the high degree of heterogeneity in the estimated
responses, despite the fact that specifications differ only for the fifth variable. The result
resembles the one of the simulation exercise of Figure 6. With all identifications schemes, there
are specifications for which prices increase and specifications for which they decrease. The
effects on unemployment and industrial production estimated using the external instrument
approach are highly heterogeneous in term of magnitude. When using the GK instrument the
effects of a contractionary shock appear to be expansionary for real economic activity variables
for most of the specifications. All in all, the results suggest that drawing robust conclusions

11The data set is available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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about the propagation mechanisms of monetary policy shocks is very hard. Indeed, the effects
differ substantially across specifications both qualitatively and quantitatively.

To understand the effects of enlarging the information set, we augment each 5-variable
specification with the 8 principal components. We then run a FAVAR with 13 variables and
apply the three identifications schemes. In this case information is complete but still the
model can suffer the problem arising from the presence of measurement error.

The results are reported in the second column of Figures 7-9. Completing information
seems to have important consequences for all three identification schemes. Firstly, the price
puzzle is greatly reduced with the Cholesky identification scheme, as observed in Bernanke
et al. (2005), and disappears with the two proxy SVAR schemes. Secondly, the effects are quite
consistent across specifications in terms of sign. Thirdly, the effects are much more similar in
terms of magnitude.

To understand the implications of measurement errors we repeat the same exercise as be-
fore but replacing the variables with their common components. So, we estimate 118 different
CC-VAR specifications which include the common components of the interest rate, indus-
trial production growth, inflation and unemployment, plus a fifth common component which
changes for each specification and three principal components. These models should be free
of measurement error and include all the relevant information. We use the first 3 principal
components (but using three common component of any triple of variables would yield the
same results). The results are reported in the third column of Figures 7-9. The impulse
response functions overlap for all of the 118 different specifications and the effects are in line
with common wisdom about the effects of a contractionary monetary policy shock. The price
puzzle does not occur, even using the standard Cholesky scheme.

In the specifications above the I(1) are taken in log-differences. We also perform the SVAR,
the FAVAR and the CC-SVAR using the levels of all variables. For the CC-SVAR we follow
the procedure (E0′)-(E5′) at the end of Section 3.6. Figure 10 displays the results for the MAR
proxy SVAR identification scheme. The first three columns correspond to the three columns
of the previous figures. The fourth column is the CC-SVAR for the common components
augmented with a deterministic linear trend, see (E3′) in Section 3.6.

Overall, the results obtained with the CC-SVAR for the three identification schemes are
qualitatively very similar. In particular, the sign of the responses are the same: a contrac-
tionary monetary policy shock leads to a short-run reduction in real activity and a reduction
in prices. The effects of the two proxy CC-SVARs are also quantitatively similar, while this is
not the case, in general, when using a SVAR with five variables. Relative to those estimated
with external instruments, the effects on real economic activity and prices estimated with a
Cholesky scheme are slightly smaller.

To assess the robustness of the results, we repeat the CC-SVAR analysis using m =
r̂ = 6, 8, 10 common components. When r̂ = 10 we include in the VAR the five common
components plus the first five principal components. When r̂ = 6 we include in the VAR the
five common components plus the first principal components. The results are displayed in
Figure 11. The result with r̂ = 10 are very similar to those obtained with r̂ = 8. On the
contrary when r̂ = 6 a few differences emerge, which is likely the consequence of incomplete
information, r̂ being too small.

In conclusion, using the SVAR analysis, the results obtained with the three identification
schemes, including the external instrument approach, crucially depend on the specification of
the model, more precisely on the choice of the variables. For some specifications the IRFs are
plausible, others produce puzzling results.

18



On the other hand, the IRFs of the CC-SVAR analysis, with the three identification pro-
cedures, apart from minor quantitative differences, are very similar, a result that runs counter
the growing consensus that high frequency identification with external instruments is a better
approach to identify monetary policy shocks, in comparison to the Choleski scheme. More-
over, the IRFs are in line with the standard view of the transmission mechanism of monetary
policy shocks, in which contractionary policy shocks reduce prices and slow down economic
activity in the short run.

5.3 Technology shocks and hours worked

In the second application we study the effects of technology shocks on hours worked. The
empirical result has relevant implications for economic theory.

According to the existing SVAR literature, the effect of technology shocks depends crucially
on the treatment applied to the time series of hours worked, see in particular Galí (1999b)
and Christiano et al. (2003a)). In a bivariate SVAR with labor productivity and hours, the
sign of the response of hours depends on whether hours are entered in log-levels or growth
rates. In the first case hours increase, while in the second hours fall.

Here we show that, when information is properly taken into account, hours increase, inde-
pendently of the data treatment chosen.

We consider the quarterly dataset, which includes 225 variables. We estimate 223 three-
variable SVAR specifications. All specifications include the growth rate of labor productivity
and the growth rate of per-capita hours. The third variable differs across specifications (we
use all of the remaining 223 series). We identify the technology shock following Galí (1999b),
assuming that it is the only shock affecting labor productivity in the long run. Panel (a) of
Figure 12 reports the estimated impulse response functions. The response of hours is negative
in most specifications. However, in a few of them hours increase in a hump-shaped manner.
So a decrease in hours worked after a positive technology shock is not a fully robust finding.

Column 1 of Panel (b) in Figure 12 reports the response of labor productivity and hours
when hours enter in log-levels. Again there are 223 specification differing in the third variable
included in the model. In this case the response of hours is positive in most of the specifications,
but not in all. In a few specification indeed hours decrease, either on impact or in the long-
run. As previously, an increase in hours after a positive technology shocks is not a fully robust
finding.

Column 2 of panels (a) and (b) report the response of labor productivity and hours worked
estimated in a FAVAR including labor productivity and hours (in growth rates panel (a), in
levels panel (b)), a third variable again, and 10 principal components, the number of static
factors determined in Section 5.1. In all these specifications information is complete. A very
important result is that the responses of hours corresponding to the two treatments (panels
(a) and (b) respectively) are qualitatively similar.

The third column reports the responses obtained when instead of the three variables one
uses their common components together with the first seven principal components in a CC-
SVAR. As expected, for each treatment of the hours, the responses are identical across spec-
ifications. Moreover, enhancing the result obtained with the FAVAR, the responses are very
similar across treatments: hours are nearly zero on impact and then increase, reaching their
maximum after around two years.

As in the previous application in Section 5.2, we repeat the CC-SVAR analysis using
m = r̂ = 8, 10, 12 common components. The results are displayed in Figure 11. The result
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with r̂ = 12 are very similar to those obtained with r̂ = 10. On the contrary when r̂ = 8 a
few differences emerge, which is likely the consequence of incomplete information, r̂ being too
small.

The most important result of the CC-SVAR analysis is that, as we have seen, the response
of hours does not depend on whether hours worked are taken in first differences or in levels.
Apart from a minor difference in the sign of the first impact, in both cases a small impact effect
is followed by a significant positive hump-shaped increase. Thus we contribute to solving, or
at least substantially smoothing, the old-standing controversy about the effects of technology
shocks on hours worked, see Galí (1999a) and Christiano et al. (2003b): Hours, in line with
Christiano et al. (2003b), do increase following a positive technology shock.

Another remarkable difference of CC-SVAR with respect to SVAR results is that labor
productivity, and thus output, increases very slowly in the CC-SVAR with both treatments
of hours, which is not the case with the SVAR using first differences. This, together with a
slow increase of hours, is consistent with the view of technology as a news shock. With this
interpretation of technology, the response of hours estimated in the CC-SVAR is fully in line
with both New-Keynesian models with nominal wage and price rigidities, see e.g. Barsky and
Sims (2009), Christiano et al. (2010), Barsky et al. (2015)), and with RBC models featuring
frictions like habit formation in consumption, adjustment costs of investment, or with the
assumption on preferences in Jaimovich and Rebelo (2009) (see also Schmitt-Grohé and Uribe
(2012)).

6 Conclusion

CC-SVARs apply SVAR techniques to singular vectors including the common components
of the variables of interest. We claim that CC-SVARs provide a solution to the difficulties
arising with possible non-fundamentalness of the structural shocks and measurement errors in
macroeconomic variables. In two applications to relevant empirical problems the CC-SVAR
produces results that, unlike those obtained with SVAR analysis, are both sensible and robust
with respect to changes in specification.

Although we have introduced and discussed the CC-SVAR technique with reference to the
DFM model described in Section 3.1, a similar method applies in the General Dynamic Factor
Model, that is when the assumption of a finite number of static factors does not necessarily
hold and χψt is estimated by frequency-domain methods, see Forni et al. (2015, 2017). This
however is left to future research.
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Figures

Panel (a)

Panel (b)

Panel (c)

Figure 1: Simulation: Non-fundamentalness and measurement errors.
Estimated IRFs for the tax shock. The red dashed lines are the theoretical IRFs. The solid lines
represent the mean (across 1000 simulated datasets) of the point estimates. The grey areas represent
the 16th and 84th percentiles of the point estimate distribution. Panel (a): SVAR(4) with Capital and
Taxes. Panel (b): SVAR(3) with Capital, Taxes and Technology. Panel (c): SVAR(3) with Capital,
Taxes and Technology when Technology is measured with a 5% error.
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Panel (a)

Panel (b)

Panel (c)

Panel (d)

Figure 2: Simulation 1: The choice of m.
Estimated IRFs for the tax shock. The red dashed lines are the theoretical IRFs. The solid lines
represent the mean (across 1000 simulated datasets) of the point estimates. The grey areas represent
the 16th and 84th percentiles of the point estimate distribution. Panel (a): CC-SVAR(4) with Capital,
Taxes and the first principal component (m = 3). Panel (b): CC-SVAR(1) with Capital, Taxes and
the first 2 principal components (m = 4). Panel (c): CC-SVAR(2) with Capital, Taxes and the first 2
principal components (m = 4). Panel (d): CC-SVAR(1) with Capital, Taxes and the first 3 principal
components (m = 5).
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Panel (a)

Panel (b)

Panel (c)

Panel (d)

Figure 3: Simulation 2: the choice of ψ with m < r and m = r.
Estimated IRFs for the tax shock, for a single simulated data set. The black lines are the theoretical
IRFs. The red lines are the CC-SVAR estimates obtained with different variable specifications. Panel
(a): CC-SVAR(4) with Capital, Taxes and a third variable, changing across specifications (m = 3).
Panel (b): same as Panel (a) with the true common components in place of the estimated ones.
Panel (c): CC-SVAR(4) with Capital, Taxes the changing variable and the first principal component
(m = 4). Panel (d): CC-SVAR(4) with Capital, Taxes, the changing variable and the first 2 principal
components (m = 5).
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Panel (a)

Panel (b)

Panel (c)

Figure 4: Simulation 3: The choice of r̂. Results for m = r̂ < r and m = r̂ > r.
Estimated IRFs for the tax shock. The red dashed lines are the theoretical IRFs. The solid lines
represent the mean (across 1000 simulated datasets) of the point estimates. The grey areas represent
the 16th and 84th percentiles of the point estimate distribution. Panel (a): CC-SVAR(2) with r̂ =
m = 2 (Capital and Taxes). Panel (b): CC-SVAR(2) with r̂ = m = 3 (Capital, Taxes and the
first principal component). Panel (c): CC-SVAR(2) with r̂ = m = 7 (Capital, Taxes and the first 5
principal components).
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Panel (a)

Panel (b)

Panel (c)

Panel (d)

Figure 5: Simulation 4: Standard DFM, CC-SVAR, FAVAR
Estimated IRFs for the tax shock. The red dashed lines are the theoretical IRFs. The solid lines
represent the mean (across 1000 simulated datasets) of the point estimates. The grey areas represent
the 16th and 84th percentiles of the point estimate distribution. Panel (a): DFM(2) with q̂ = 1 < q
(r̂ = r = 5). Panel (b): DFM(2) with q̂ = q = 2 (r̂ = r = 5). Panel (c): CC-SVAR(2) with Capital,
Taxes and the first 3 principal components (m = r̂ = 5). Panel (d): FAVAR(2) with Capital, Taxes
and the first 3 principal components.
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Panel (a)

Panel (b)

Panel (c)

Figure 6: Simulation 5: Different variable specifications for a deficient VAR,
the FAVAR and the CC-SVAR.
Estimated IRFs for the tax shock, for a single simulated data set. The black lines are the theoretical
IRFs. The red lines are the CC-SVAR estimates obtained with different variable specifications. Panel
(a): SVAR(2) with Capital, Taxes and a third variable, changing across specifications. Panel (b):
FAVAR(2) with Capital, Taxes, a third variable, changing across specifications, and the first two
principal components. Panel (c): CC-SVAR(2) with Capital, Taxes, a third variable, changing across
specifications, and the first two principal components.
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Figure 7: US monthly data. The IRFs of a monetary policy shock. Cholesky
identification.
The red lines are the CC-SVAR estimates obtained with different variable specifications. First column:
SVAR(6) for 118 five-variable specifications, differing for the fifth variable. Second column: FAVAR(6)
the variables in the first column are augmented with the first 8 principal components. Third column:
CC-SVAR(6): the variables in the first column are replaced with their common components; in addi-
tion, we include the first 3 principal components (r̂ = 8).
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Figure 8: US monthly data. The IRFs of a monetary policy shock. Proxy MAR
identification.
The red lines are the CC-SVAR estimates obtained with different variable specifications. First column:
SVAR(6) for 118 five-variable specifications, differing for the fifth variable. Second column: FAVAR(6)
the variables in the first column are augmented with the first 8 principal components. Third column:
CC-SVAR(6): the variables in the first column are replaced with their common components; in addi-
tion, we include the first 3 principal components (r̂ = 8).
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Figure 9: US monthly data. The IRFs of a monetary policy shock. Proxy GK
identification.
The red lines are the CC-SVAR estimates obtained with different variable specifications. First column:
SVAR(6) for 118 five-variable specifications, differing for the fifth variable. Second column: FAVAR(6)
the variables in the first column are augmented with the first 8 principal components. Third column:
CC-SVAR(6): the variables in the first column are replaced with their common components; in addi-
tion, we include the first 3 principal components (r̂ = 8).
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Figure 10: US monthly data in levels. The IRFs of a monetary policy shock.
Proxy MAR identification.
The red lines are the CC-SVAR estimates obtained with different variable specifications. First column:
SVAR(6) for 118 five-variable specifications, differing for the fifth variable. Second column: FAVAR(6).
The variables in the first column are augmented with the first 8 principal components. Third column:
CC-SVAR(6). The variables in the first column are replaced with their common components; in
addition, the first 3 principal components are included (r̂ = 8). Fourth column: CC-SVAR(6), linear
trend. As in the third column, but with a linear trend.
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Figure 11: US monthly data. The IRFs of a monetary policy shock.
CC-SVAR(6) with m = r, using different values of r. Black dotted line: r = 6. Blue dashed line:
r = 8. Red solid line: r = 10.
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Panel (a)

Panel (b)

Figure 12: US quarterly data. The IRFs of a productivity shock. Galí (1999b)
long-run identification.
The red lines are the CC-SVAR estimates obtained with different variable specifications. Panel (a):
Hours in first differences. Panel (b): Hours in levels. First column: SVAR(6) for 118 five-variable
specifications, differing for the fifth variable. Second column: FAVAR(6) the variables in the first
column are augmented with the first seven principal components. Third column: CC-SVAR(6): the
variables in the first column are replaced with their common components; in addition, we include the
first seven principal components (r̂ = 8).
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Figure 13: US monthly data. The IRFs of a technology shock.
CC-SVAR(6) with m = r̂, using different values of r̂. Black dotted line: r̂ = 8. Blue dashed line:
r̂ = 10. Red solid line: r̂ = 12.
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Appendix

A ‘Deep’ Parameters and the Alternative Principle

Consider firstly the model studied in Section 2, which is reported here for convenience:

atkt
τt

 =


0 1

−κ(L+ θ)
1− αL

1
1− αL

L2 0

(uτ,tua,t

)
= B(L)ut. (2)

The matrix B(L) depends on the 3-dimensional parameter vector Π = (κ θ α). It is zeroless
unless κ = 0 or θ = 0, thus generically zeroless if Π varies in an open set C ⊆ R3. We
see here that the assumption of AD2, in this case that the coefficients of the entries of the
matrix Bψ(L) vary independently of one another, is sufficient but not necessary for generic
zerolessness of Bψ(L).

Secondly, consider a generalization of model (12). Let(
χ1

χ2

)
=

(
a1 + b1L
a2 + b2L

)
ut = B(L)ut, (20)

We see that B(L) is zeroless unless

a1b2 − a2b1 = 0. (21)

Now suppose that all the 4 coefficients ai and bi are structural polynomial functions of the
scalar parameter Π ∈ C, where C is an open subset of R. Equation (21) becomes

a1(Π)b2(Π)− a2(Π)b1(Π) = p(Π) = 0. (22)

As p(Π) is a polynomial function then the following alternative principle holds: Either p(Π)
vanishes for a finite number of points, a lower-dimensional set, or it vanishes identically.
Equivalently, either generically B(L) is zeroless or it is not zeroless for all Π ∈ C. Now, the
functions ai and bi are structurally determined in a way that bears no relationship to equation
(21). It is therefore reasonable to assume that they do not fulfill the restriction (22) for all
Π ∈ C, so that, by the alternative principle, B(L) is generically zeroless, like in model (2).

The same argument can be applied in general. Let the entries of Bψ(L) be

bij,0 + · · ·+ bij,s1L
s1

1− b̃ij,1L− · · · − b̃ij,s2Ls2
.

and assume that the coefficients bij,k and b̃ij,h are polynomial functions of a vector of structural
parameters Π which varies in an open set C ⊆ Rν . The condition for non-zerolessness of Bφ(L)
is a set of polynomial equations, among the coefficients bij,k and αij,h of the entries of Bψ(L):

p1(b) = 0, . . . , pK(b) = 0, (21′)

where b is the vector gathering all the b’s and b̃’s. Using the polynomial dependence of b on
Π we generalize (22):

p1(b(Π)) = 0, . . . , pK(b(Π)) = 0. (22′)
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Then either (22′) holds for a lower dimensional subset of C or for all C, this is the alternative
principle in its general form. Again, the function b bears no relationship to equations (21′).
Thus we believe that it is reasonable to assume that for at least one value of Π ∈ C the
matrix Bψ(L) is zeroless, so that, by the general version of the alternative principle, Bψ(L) is
generically zeroless.

B A Singular VAR Approximated by a Non-Singular VAR

Firstly note that non-singularity of χ̂ψt is only caused by the finiteness of n. Thus, for simplicity,
assume that T has already reached infinity. Our estimate, given n, is

χ̂ψt = χψt + ζt,

where ζt, the idiosyncratic residual, tends to 0 as n tends to infinity. Again, for simplicity
assume that ζt is a non-singular m-dimensional white noise orthogonal to ut at any lead and
lag. Using χψt = Dψ(L)−1Bψ(0)ut, we obtain

Dψ(L)χ̂ψt = Bψ(0)ut +Dψ(L)ζt = Bψ,ζ(L)wψ,ζt ,

so that χ̂ψt has a non-singular VARMA structure (a consequence of the non-singularity of ζt).
Suppose that we estimate a VAR

D̂ψ,ζ(L)χ̂ψt = ŵψ,ζt , (23)

where the length of D̂ψ,ζ(L) is greater or equal to the length of Dψ(L) (as should be suggested
by the BIC criterion for example). As n tends to infinity, χ̂ψt and its autocovariance function
converge to χψt and its autocovariance function respectively. It is easy to show that: (i) D̂ψ,ζ(L)

converges to Dψ(L), (ii) ŵψ,ζt , the non-singular residual of the (finite) orthogonal projection
in (23), collapses in the limit into the singular residual of the (finite) orthogonal projection in
(14), that is Bψ(0)ut (note that both the residuals ŵψ,ζt and Bψ(0)ut are uniquely determined,
whereas ut and Bψ(L) are not).

C Equivalence of a VAR with F̂t and a VAR with χ̂ψt when m = r

Consider the population VAR(p) of equation (14), along with its sample OLS counterpart

χ̂ψt = µ̂ψ − D̂ψ,1χ̂
ψ
t−1 − · · · − D̂ψ,pχ̂

ψ
t−p + v̂ψt , t = p+ 1, . . . , T, (24)

Moreover, consider the corresponding OLS equation for F̂t, i.e.

F̂t = µ̂F − D̂F,1F̂t−1 − · · · − D̂F,pF̂t−p + v̂Ft , t = p+ 1, . . . , T. (25)

Let Yk =
(
χ̂ψp+1−k χ̂ψp+2−k . . . χ̂ψT−k

)
, Zk =

(
F̂p+1−k F̂p+2−k . . . F̂T−k

)
, ι =

(
1 1 . . . 1

)
,

Vψ =
(
vψp+1 vψp+2 . . . vψT

)
, VF =

(
vFp+1 vFp+2 . . . vFT

)
. With this notation, equations

(24) can be re-written as

Y0 = µ̂ψι− D̂ψ,1Y1 − · · · − YpD̂ψ,p + Vψ,
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where Vψ fulfills the OLS orthogonality properties Vψι′ = VψY
′
k = 0, k = 1, . . . , p. Now we

have χ̂ψt = ÂψF̂t, where Âψ is r × r. If the entries of χ̂ψt are not collinear (in which case the
VAR cannot be estimated), then Âψ is invertible and Â−1ψ Yk = Zk. Pre-multiplying the above
equation by Â−1ψ , and replacing Yk with ÂψZk, we get

Z0 = Â−1ψ µ̂ψι− Â−1ψ D̂ψ,1ÂψZk − · · · − Â−1ψ D̂ψ,pÂψZk + Â−1ψ Vψ.

Now, the orthogonality properties of Vψ imply Â−1ψ Vψι = 0 and Â−1ψ VψZ
′
k = Â−1ψ VψYkÂ

−1
ψ =

0. By uniqueness of the orthogonal projection, we then have Â−1ψ Vψ = VF . Hence the r–
dimensional subspace of RT−p spanned by VF is the same as the one spanned by Vψ, for
any ψ, so that, by imposing the same identification conditions, we get the same estimated
structural shocks.

As for the impulse response functions, we have Â−1ψ µ̂ψ = µ̂F and Â−1ψ D̂ψ,pÂψ = D̂F,k, so
that D̂F (L) = Â−1ψ D̂ψ(L)Âψ. By inverting the VAR filter for F̂t we get the estimated Wold
IRFs D̂−1F (L) = Â−1ψ D̂−1ψ (L)Âψ. The corresponding IRFs for χ̂ψt = ÂψF̂t are ÂψD̂−1F (L) =

D̂−1ψ (L)Âψ, i.e linear combinations of the IRFs D̂−1ψ (L) obtained with χ̂ψt . Again, identification
conditions take care of producing identical results, for any ψ.

D Lags in Singular VARs: An Example

The simple example below illustrates the point about parsimony made at the end of Section
3.3, point (A). Let

St =

ftgt
ht

 = P0ηt + P1ηt−1 + P2ηt−2 = P0ηt +
(
P1 P2

)(ηt−1
ηt−2

)
, (26)

where ηt is scalar white noise and the matrices Pj are 3 × 1, so that St has dimension 3 and
dynamic rank 1. Suppose that P2 6= 0 and that Q1 and Q2 are two linearly independent 3× 1
vectors orthogonal to P2. We have:

Q′1St−1 = Q′1P0ηt−1 +Q′1P1ηt−2

Q′2St−1 = Q′2P0ηt−1 +Q′2P1ηt−2

so that (
ηt−1
ηt−2

)
=

(
Q′1P0 Q′1P1

Q′2P0 Q′1P1

)−1(
Q′1
Q′2

)
St−1 = RSt−1.

Replacing in (26) we obtain

St =
[(
P1 P2

)
R
]
St−1 + P0ηt = U1St−1 + P0ηt. (27)

Thus the MA(2) in (26) has a VAR(1) representation.
Consider now the 2–dimensional vector

S̃t =

(
ft
gt

)
= P̃0ut + P̃1ηt−1 + P̃2ηt−2. (28)
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Let Q̃ be a 2× 1 vector orthogonal to P̃2. We have:

Q̃′S̃t−1 = Q̃′P̃0ηt−1 + Q̃′P̃1ηt−2,

so that
ηt−2 =

1

Q̃′P̃1

[
Q̃′S̃t−1 − Q̃′P̃0ηt−1

]
.

Replacing in (27) we obtain

S̃t −
1

Q̃′P̃1

P̃2Q̃
′S̃t−1 = P̃0ηt +

[
P̃1 −

1

Q̃′P̃1

P̃2Q̃
′P̃0

]
ηt−1 = P̃0ηt + P ∗ηt−1.

Repeating the same procedure we remove ηt−1 and obtain the VAR(2) representation

S̃t = Ũ1S̃t−1 + Ũ2S̃t−2 + Ã0ηt. (29)

Each equation of the 3-dimensional VAR(1) in (27) has 4 parameters (3 for St−1 plus 1 for the
coordinate of P0), an advantage with respect to (29), where the parameters in each equation
are 5.

E Variables which should be included in the CC-SVAR without
treatment

While macroeconomic variables often contain large measurement errors, it is also true that
the estimated common components inevitably contain an estimation error. Therefore, using
the estimated common components instead of the variables themselves has advantages and
disadvantages. We argue in the main text that, as a general rule, using the estimated common
components is the better choice. But there are two relevant exceptions. The first is when a
variable has no measurement error. The second when a variable has a common component
which is very poorly estimated. Let us briefly discuss these two cases in turn.

Firstly, there are variables with a small measurement error. For example, it can be argued
that many financial variables are observed without error or with negligible error. Such variables
coincide with their common components. If we have well-founded a priori reasons to believe
that a variable is free of measurement error we should include it in the CC-SVAR without the
treatment in (E2).

Second, it should be observed that, for a given observable variable, a good estimation of
its common component crucially depends on the composition of the dataset. Large macroe-
conomic datasets usually include many prices and many interest rates but few stock market
indexes, few public-spending or tax-revenue variables, few variables related to total factor
productivity. If a particular aspect of the macroeconomic system is poorly represented in the
dataset, the common components of the related series might be poorly estimated. We can get
an indication of how serious is this issue for a particular series by computing the percentage of
the variance explained by the estimated common component. If it is around 90%, the residual
is likely a measurement error. If it is, say, 70%, the residual is likely to contain relevant infor-
mation. In this case, by replacing the variable with the estimated common component, the
researcher risks throwing the baby out with the bath water. Building an ad hoc dataset, which
best represents the phenomena to be studied, is the main way to solve the problem. However,
this is not always possible, as the necessary information may not be available. Hence, despite
the measurement error, the lesser evil can be to include the variable in the CC-SVAR without
the treatment in (E2).
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