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Abstract

The paper studies convex radiant sets (i.e. containing the origin) of a
linear normed space X and their representation by means of a gauge. By
gauge of a convex radiant set C' C X we mean a sublinear function p : X — R
such that C' = [p < 1]. Besides the most important instance, namely the
Minkowski gauge puc(z) = inf{A > 0: = € AC}, the set C' may have other
gauges, which are necessarily lower than puc. We characterize the class of
convex radiant sets which admit a gauge different from pe in two different
way: they are contained in a translate of their recession cone or, equivalently,
they are costarshaped, that is complement of a starshaped set. We prove that
the family of all sublinear gauges of a convex radiant set admits a least element
and characterize its support set in terms of polar sets. The key concept for this
study is the outer kernel of C, that is the kernel (in the sense of Starshaped
Analysis) of the complement of C. We also devote some attention to the
relation between costarshaped and hyperbolic convex sets.
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1 Introduction

The main aim of this study is to understand how a closed, convex, radiant set C' of a
normed real vector space X can be described as a sublevel set [p < 1] of a sublinear
function p : X — R, which we call gauge of C. Thus we only deal with well-known topics
in Convex Analysis. Nevertheless the origin and motivation of this study stem from an



important topic in Starshaped Analysis, namely the (nonlinear) separation of a point from
a radiant or a coradiant set. Moreover, as we will see, a relevant part of the answer is
based upon some notions which are typical of Starshaped Analysis (see [22], and references
therein).

Our starting point is a separation result, proved in [24], which essentially says that
convex coradiant sets can be used to separate points from a radiant set and convex radiant
sets can be used to separate points from a coradiant set. By a radiant set (i.e. starshaped
at the origin) we mean a set A such that the closed segment [0,z] is contained in A
whenever « € A, and we call a set B coradiant if its complement B¢ = X \B is radiant.
We can reformulate with a similar language the classical (linear) separation results, by
saying that coradiant (resp. radiant) halfspaces can be used to separate points from a
convex radiant (resp. convex coradiant) set.

As the separation by means of halfspaces can be given an analytic description by means
of linear functionals, more precisely by means of lower and upper 1-level sets of linear
functionals, the nonlinear separation outlined above would be more efficiently described
in analytical terms. Our idea is that a closed, convex, radiant separating set C' should
be described as the lower level set [p < 1] for some continuous and sublinear function
p: X — R, while a closed, convex and coradiant separating set G should be described
as G = [¢ > 1] for some continuous and superlinear function ¢ : X — R. But, while for
any closed halfspace H, for which the origin is not a boundary point, there exists exactly
one linear and continuous functional ¢ € X* such that either H = {z € X : (z,{) < 1}
or H={x e X : (x,0) > 1}, so that the functional description of linear separation is a
strightforward consequence of the geometric one, a similar result does not hold, in general,
for convex radiant and convex coradiant sets. So the question arises of finding a functional
description of such sets which is at the same time simple and general in some way.

We studied in [25] the possibility to represent a convex coradiant separating set G by
means of a continuous superlinear function ¢ (we call it a cogauge) such that G = [¢ > 1],
and we found some interesting results, among which a necessary and sufficient condition
for G to admit a continuous superlinear cogauge and a dual characterization of the greatest
superlinear cogauge.

For the case of a convex radiant separating set the question of existence does not pose
problems: a closed, convex, radiant set C, can be represented in analytical terms through
its Minkowski gauge uc(x) = inf{A > 0: 2 € AC}, which is a sublinear functional from
X to [0, 400] with C = [uc < 1]. Moreover p¢ is continuous on X if and only if 0 € int C.

However the Minkowski gauge suffers from an important drawback. While it is possible
to associate to a convex coradiant set G a particular cogauge g in a way that ¢ is linear
(rather than superlinear) when G is a halfspace, this does not happen with the Minkowski
gauge pc: it is easy to note that, since pc is always nonnegative on X, it can never turn
into a linear function, even if C' is a (proper) halfspace.

Thus we study in this paper the possibility to give a different gauge description of



a convex radiant set. We say that the positively homogeneous function p : X — R is
a gauge of the radiant set A C X if it holds A = [p < 1] but, though this concept is
well suited to deal with radiant sets in general (see [21] for details), our attention goes
to convex radiant sets C' C X, and on sublinear gauges, uniquely. Our results show that
the Minkowski gauge is always the greatest gauge of C' and we study the conditions under
which pe is also minimal, that is its unique sublinear gauge. This happens, for instance,
if C' is bounded, but also for many unbounded sets.

We actually concentrate on the class of sets which admit gauges lower than uc. Since
pe(z) > 0 implies po(x) = p(z) for any other gauge p of C' and the equality puc(z) =0
holds if and only if & belongs to the recession cone of C, the set C' admits a gauge lower
than pce if and only if it admits a gauge which takes negative values (we call it a ‘negative
gauge’ for short), at some points of the recession cone of C.

The necessary and sufficient condition we are looking for is that there exists a point
z € X such that C' C z + RecC and this turns out to be equivalent to saying that C' is
costarshaped (we follow the terminology of Rubinov [22]), that is the complement of a
starshaped set. In this case C admits infinitely many sublinear gauges and this family,
beside the greatest element uc, also admits a least element, denoted m¢, which is closely
analogous to the greatest cogauge g of a convex coradiant set G C X, as studied in
[25]. In particular we show that their support sets (the subdifferential at the origin for
mc and the superdifferential at the origin for v¢) are both defined in terms of the same
‘ingredients’, the outer kernel of the set C' (see Definition 2.2) and the polar and reverse
polar of C' and of its outer kernel. Moreover m¢ reduces to a continuous linear functional
when C'is a closed radiant halfspace.

Further results concerns the relation between hyperbolic and costarshaped convex
sets, with particular attention to the case where the origin is an interior point of C,
an assumption which is always satisfied in the separation theorem. Indeed a necessary
condition for C' to admit a negative sublinear gauge is that the barrier cone of C' is closed
and this is true whenever C is hyperbolic, that is C has a bounded excess over its recession
cone. These sets were originally studied in comparison to the so called parabolic sets,
for which the distance from the recession cone becomes (in some sense) infinitely large.
Hyperbolic and parabolic convex sets are important (and somehow opposite) families in the
class of unbounded convex sets. The latter coincides in R™ with the so called continuous
convex sets, i.e. those for which the support function is continuous on X\{0} (see e.g.
[10, 1, 7, 9]).

The paper is organized as follows: Section 2 presents some preliminary concepts of
Starshaped Analysis and some results on kernels which do not concern directly the problem
of representing a convex radiant set, but are important in subsequent sections and relevant
in themselves. In Section 3 we study sublinear gauge and characterize convex cones as
those convex radiant sets which admit improper gauges. Moreover we describe in dual
terms the sublinear gauges of C. In Section 4 we concentrate on the conditions under



which the Minkowski gauge is not minimal and prove that C' admits a gauge lower than
ue if and only if its outer kernel is nonempty, that is when C' is costarshaped. And this
happens if and only if C is included in some translation of its recession cone. In Section 5
we prove the existence of the least sublinear gauge for all convex radiant sets and describe
its support set by means of polarity relations in a way that makes easier to compute
the least gauge in concrete examples. In Section 6 we deal with the relations between
hyperbolic and costarshaped convex radiant sets. Among other results we prove that, if
the origin belongs to the interior of C', then C'is costarshaped if and only if it is hyperbolic
and its recession cone has nonempty interior. When X is a reflexive Banach space this is
also equivalent to the requirement that the barrier cone to C has a closed, bounded base.

The proof of the above result can be modified to deal with sets whose recession cone
has nonempty relative interior. Since this is always true in finite dimensional spaces, we
obtain that a necessary and sufficient condition for a set C' C R™ to be costarshaped is
that C C K — K, where K = RecC and C C Rec C'+eB. We show with an example that
the same conditions fails to holds in infinite dimensional spaces.

We consider a normed real vector space X, in which the closed ball of radius ¢ centered
in z is denoted by Bs(x) = B(z,0), with B = B(0, 1), while Us denotes the open ball, and S
denotes the unit sphere; the closure, interior and boundary of some set S C X are denoted
by cl S, int S and bd S respectively; the convex hull and the conic hull of S are denoted,
respectively, as conv.S and cone S = {y = Az : © € S, A\ > 0}. Let X* be the topological
dual space of X endowed with the weak* topology and denote by (x,¢) or equivalently
¢(c) the usual bilinear pairing between z € X and ¢ € X*. For the closed and the open
ball in X* we will use the notation B* and U*. For a function f : X — R = [~o0, +00]
and k € R we denote by [f < k| the weak lower level set {x € X : f(x) < k} and by
[f > k] the weak upper level set.

2 Preliminaries on radiant and coradiant sets

We begin this section with some preliminary concepts, as the ones of radiant and coradiant
sets, and some known results about polarity relations.

Definition 2.1 The set A C X is called radiant if x € A, t € [0,1] imply that tx € A.
The set B C X is called coradiant if its complement B¢ = X\B is radiant, that is if
either B=X or0¢ B and x € B, t > 1 imply that tx € B.

We deduce that the empty set () and the set X are both radiant and coradiant. We
underline that the terms radiant and coradiant have been used previously with a slightly
different meaning. Rubinov [22] uses t € (0, 1] in the definition of a radiant set, so that
the origin can either belong or not belong to a radiant or to a coradiant set. Penot [16]
includes convexity in his use of the term radiant.
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As the intersection of any family of radiant sets gives a radiant set, we can speak of
the radiant hull, rad A, of any set A C X. Similarly we will consider the set

shwA={y=Xz:ze€ A, \>1},

called the shadow of A (we should say shadow from the origin, as in [19, p.22], but we will
omit to do so, as no confusion will arise), which is the smallest coradiant set containing
A whenever 0 ¢ A. If otherwise 0 € A, the smallest coradiant set containing A coincides
with X.

In the analysis of radiant and coradiant sets the two following concepts have great
relevance.

Definition 2.2 The kernel of a set A C X is the set of points
kerA={zeX:z+tlx—z2) €A VoeeAVte(01]}

The outer kernel of a set A C X, oker A, is the kernel of its complement A, that is the
set
okerA={zeX:z+t(xr—2z2)¢ A Ve ¢ A, Vte (0,1]}.

It is obvious that a set A C X including the origin is radiant if and only if 0 € ker A
and that a proper set A excluding the origin is coradiant if and only if 0 € oker A. It is
easy to see that both the kernel and the outer kernel of a set A C X are convex sets (if
nonempty).

Following Rubinov, we say that a set A is starshaped if ker # (), while A is costarshaped
if oker # (). Thus, roughly speaking, a set is starshaped (resp. costarshaped) if it is the
translation of a radiant (resp. coradiant) set. More precisely we say that A is starshaped
at the point zg if zg € ker A, and that B C X is costarshaped at zg if zg € oker B.
Consequently A is starshaped at zg if and only if it the set (A — zo) U {0} is radiant.
Likewise B is costarshaped at xg if and only if the set (B — )\{0} is coradiant.

We can relate these concepts to the one of penumbra introduced by Rockafellar [19].
Let

shw (y,2) = {z +t(y — 2), t > 1}

be the shadow of y from z and

shw (B, z) = U shw (y, 2)
yeB
be the shadow of B from z. The penumbra of B from the set S is the set

P(B,S)=|J | shw(y,2) = | shw(B,2).

zeS yeB zeS



It is easy to see that, if B is costarshaped at z, then B = shw (B, z) and oker B is the
largest set S such that P(B,S) = B.

Of particular importance are those radiant or coradiant sets which are also convex. It
is easy to see that a set C is convex if and only if C' C ker C' and that a convex set is
radiant if and only if it contains the origin. As in this paper unbounded convex sets have
great relevance, it is important to underline the relation between the assumption that the
convex set C is radiant and various notions of recession cones to C.

As radial properties are especially meaningful for us, we consider the cone

C*®:={reX: R, CCY},

with R, = {y = tz, t > 0} for x # 0 and Ry = {0}, which contains all rays issuing from
the origin and contained in C. For a nonempty convex set C', it is common to consider
the recession cone

RecC={deX:z+tde C, Ve e C,Vt>0}.
The recession cone of a closed set C is closed and satisfies (see [19])
RecC ={d € X : 3z € C, such that x +td € C, Vt > 0}. (1)

The latter condition immediately shows that C"° = RecC' whenever C' is convex,
closed and radiant. Actually the inclusion RecC C C is a different characterization of
those closed convex sets which are radiant (see [15]). On the other hand a nonempty
closed convex set C'is coradiant if and only if 0 ¢ C' and C C RecC.

The four classes of sets that we have introduced (radiant/coradiant, with or without
convexity), are very closely related in pairs. Such relations can be cast in the form of
separation results as follows.

Proposition 2.3 [2/] The set A C X s closed and radiant if and only if for every point
x ¢ A there exists an open convex coradiant set G such that x € G and ANG = 0. The
set B C X is closed and coradiant if and only if for every point x ¢ B there exists an open
convez radiant set C such that x € C and ANC = 0.

To every set C' C X it is possible to associate its polar set
C°={leX": (c,l) <1, VeceC}.

The set C° is closed, convex and radiant in X*. We can also consider the bipolar (C°)° =
C°° C X, which satisfies C' C C°° for all sets C, while equality holds if and only if C' is
closed, convex and radiant. If C'is a cone, then C° = C~ :={f € X*: (¢,l) <0, Ve € C},
the polar cone of C.



For the description of convex coradiant sets a different notion of polarity is needed
(see for instance [13, 14, 25] and the further references contained in the latter). Given a
nonempty set C' C X we call reverse polar of C' the set

C®={tecX*: (c,l) >1,Vce C}.

We adopt the convention that C% = X* if C = (). It is easy to see that C? is always
closed, convex and coradiant in X*. Moreover C is closed, convex and coradiant if and
only if C' = 99,

For any set B C X*, the support function of B is the function o : X — R given by

op(z) = sup{(z,l), |l € B}.

It is a lower semicontinuous sublinear function, whose support set (the subdifferential at
the origin) is given by
Oop = clconv B.

Likewise we can define the support function op : X* — R of a set D € X. In this case we
call barrier cone of D the effective domain of op, that is the set

b(D) ={le X*: sup(d,l) < +o0} = cone D°.
deD
We end this section by proving some results about the outer kernel of closed convex
radiant sets which will be useful below.
For the first one convexity is not actually needed.

Proposition 2.4 Let the proper set A C X be radiant. Then 0 € oker A if and only if A
1S a cone.

Proof: Let 0 € oker A and a € A. Then Aa € A for all A € [0,1] since A is radiant and

Aa € A for all @ > 1 since 0 € oker A. Thus Aa € A for all A > 0 and A is a cone. If

conversely A is a cone, take z =0, a € A and A > 1 to obtain Aa € A and z = 0 € oker A.

O

The following result gives an interesting characterization of the outer kernel of any
closed convex set.

Proposition 2.5 Let C C X be convex and closed. Then

okerC = ﬂ (¢ — RecC).
ceC



Proof: We prove first the inclusion oker C' C () co(c — RecC). If oker C' = (), then the
result is trivial. Thus suppose that y € oker C. Then 0 € oker (C' — y). This means that
the set C' — y is either a cone (if 0 € C' — y) or a coradiant set (if 0 ¢ C' — y). If the
former holds, then RecC' = C — y and, equivalently, y + RecC' = C, and the inclusion
y € c—Rec C for all ¢ € C follows immediately. If C'—y is coradiant we can apply Theorem
4.4 in [25] to the set B = C —y. It follows that

oker B = ﬂ (b—K),

where K = clcone B. Moreover for a closed coradiant set it holds clcone B = Rec B and
the equality Rec (B + y) = Rec B holds for every convex set B and any point y € X.
Hence we have the following relations

0 € oker B = ﬂ(b—RecB): ﬂ(b—ReCC): ﬂ(c—y—RecC),
beB beB ceC

whence

yE€ m(c—ReCC’). (2)
ceC

Let conversely y € () .cc(c—RecC). Then c—y € RecC for allc € C'and C—y C RecC
which implies that C' — y is coradiant or a cone. In both cases we have 0 € oker (C' — y)
and y € oker C.

O

Remark 2.6 1. It follows from Proposition 2.5 that the outer kernel of a closed, con-
vex set is closed, besides being convex (if nonempty).

2. Relation (2) can be described in terms of *-difference of sets, as described for instance
in [8]. Given the subsets A, B C X let

AiB:{xeX:x—l—BgA}.

*
It is easy to see that A — B is convex if both A and B are convex.

Relation (2) can be reformulated as

z € oker C' z€c—RecC, VeeC
c—z€RecC, VeeC
C —zCRecC

—z € RecC : C

[

so that .
—okerC = RecC — C.



3.

Notice that the inequality (k,#¢) < 0 holds for all £ € C° and all £k € RecC and
hence £(z) > £(c) holds for all z € oker C', ¢ € C and ¢ € C°.

The last preliminary result shows that the outer kernel of a convex radiant set C' is a
coradiant set.

Proposition 2.7 Let the set C C X be closed, conver and radiant. Then

a) okerC is a cone if and only if C is a cone; in this case it holds okerC = —C

b) okerC is coradiant, provided C' is not a cone. In this case it holds Rec(okerC) =

Proof:

a)

—RecC.

As oker C' is a closed set, if it is a cone, then it includes the origin, hence C'is a cone
by Proposition 2.4. If C is a cone, then C' = Rec C' and

oker C' = ﬂ ¢c—RecC=0—-RecC =-C
ceC

by Proposition 2.5.

Let z € oker C' and a > 1. We have to prove that az € oker C. Since C' is radiant it
holds RecC' C C. Since 0 € C we have from Proposition 2.5 that z € —Rec C and
this yields (w — 1)z € —Rec C. For all ¢ € C it holds

az=z+(a—1)z€c—RecC —RecC = c— RecC,

whence
az € ﬂ ¢ — RecC = oker C.
ceC

To show that Rec (oker C') = —RecC' it is enough to note that the relations z €
¢—Rec C, which holds for every ¢ € C, and k € RecC, imply z—k € c—k—RecC =
¢ — RecC', whence

oker C' — Rec C' C ﬂ c— RecC = oker C,
ceC

which yields —Rec C' C Rec (oker C). Moreover 0 € C' implies oker C C —Rec C,
and then Rec (oker C') C Rec (—Rec C') = —Rec C, so that equality holds.

g



3 The gauges of convex radiant sets

To obtain an analytic version of the convex separation for radiant and coradiant sets, given
by Proposition 2.3, we need to describe the separating sets by means of some functional
forms. We call gauge of a closed radiant set A a positively homogeneous functionp : X — R
such that A = [p < 1]. The function p : X — R is positively homogeneous if p(ax) = af(z)
for all x € X and all a > 0.

The main example of a gauge for a radiant set A is its Minkowski gauge, that is the
function p4 : X — R given by

pa(x) =1inf{A > 0: z € A\A}.

For a detailed study of the properties of the Minkowski gauge of a radiant set, see
[20, 22].

The following proposition gives an elementary result about gauges. Its proof is trivial
and hence omitted.

Proposition 3.1 Given a closed and radiant set A C X, and a gauge p: X — R of A,
we have the following relations:

i) p(x) = 400 if and only if the open ray R, = {ax : a > 0} does not intersects A;

it) p(x) = a € (0,400) if and only if x € aA for all « > & and x ¢ aA for all
a€ (0,a);

iii) p(x) <0 if and only if Ry C A, that is x € A™.
Thus for all gauges p of A it holds

p(x) = pa(x), Vo ¢ A™,

while
p(z) <0 =pa(z) Vo e A,

Thus we see that the Minkowski gauge is the greatest among all possible gauges of A.

For some set A, u4 is also the least possible gauge, i.e. it is the only gauge. This is
true for instance for all bounded sets, and more generally for all sets for which cone A*
reduces to the origin. If A% is nonempty there are also gauges with negative values, which
are lower than piy4.

If we consider a convex set C' C X and we look for its sublinear gauges (as we shall
restrict to do in the sequel), the question is less trivial, as we are about to see, and the
condition C'*° # () does not imply the existence of a negative gauge, as shown by Example
6.4 below.
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To visualize a simple example for which a negative sublinear gauge exists, consider the
set C'= (—o0, 1] C R. All the functions

T x>0
ax <0

Pa(®) = {

with a > 0, are p.h. gauges of C. For o € [0, 1], po is sublinear. The two extreme cases
are pg, which coincides with puc, and pp, which is the least sublinear gauge of C' and is
linear, rather than sublinear (while p¢ is not).

Thus our first goal is to see to what extent this situation applies to the class of convex
radiant sets.

We observe that the condition 0 € int C' is essential in order to obtain a sublinear
continuous gauge. On the other hand such condition is always verified by the separating
set C' in Proposition 2.3.

For the sets which admit a sublinear gauge lower than uc (with some abuse of termi-
nology we will call them at times ‘negative gauges’) a further distinction is found between
the cases in which the least gauge exists and those in which it does not exists, or more
precisely those which admit a least gauge which is improper. Let’s discuss this exceptional
situation first, in order to get rid of it.

Let C be a closed, convex cone. In this case every gauge p of C' satisfies p(z) = 400
for all z ¢ C. For the rest p can take any nonpositive value at all points x € C' N § (§ is
the unit sphere), which are uniquely extended to all C' by positive homogeneity, to obtain
a gauge p which is positively homogeneous and lower than pc. The least gauge of C' is
the function

p(x>:{—oo rzeC

+o0 x¢C

which is a l.s.c. sublinear gauge of C, as its epigraph is a closed convex cone in X x R,
though not a proper one.

For the improper subsets of X (namely () and X) we have the following results: if
C = (), then uc = +oo is the only gauge. If C = X, then uc = 0 and p(z) = —oc is an
improper sublinear gauge.

We can also see that no closed, convex radiant sets C' other than cones, admit an
improper l.s.c. sublinear gauge.

Proposition 3.2 Let C' C X be a closed, convex radiant set, which is not a cone, and let
p: X — R be als.c. sublinear gauge of C'. Then p is proper.

Proof: Since C' is not a cone, there exists at least one ray R, such that R, is neither
included in C, nor disjoint from it. Hence p is positive and real valued on R,. It is well
known (see e.g. [26]) that a l.s.c. convex function which is not identically +o0, is either
finite valued on its effective domain, or it always takes value —oo. Thus p is proper.

11



Our next result is a dual characterization of the gauges of a convex radiant set.

Theorem 3.3 Let C C X be closed, convexr and radiant. Then p: X — R is a sublinear
gauge of C if and only if
clraddp = C°.

Proof: By standard results about support functions we know that, given two closed convex
sets D and E and their closed convex hull F' = clconv {D U E}, it holds

op(z) =max{op(z),op(z)}.
Moreover it is straightforward to verify that, for a convex set D C X it hold

rad D = conv {D U {0}}.

Now consider the Minkowski gauge puc. For any other gauge p of C, it must hold p(x) =
pue(z) for all x ¢ Rec C and p(z) < 0 for all z € Rec C, hence

pe(z) = max{p(x),0}

and
C° = Ouc = clconv (Op U {0}) = clrad (Op).

O
The case when C' is a closed, convex cone can be commented in the light of Theorem
3.3. Indeed, in this case, we have

C°=C"={leX*: lz)<0,VzeC

the negative polar cone of C. Taken any ¢ € C and fixed M = {¢{ € C° : {(¢c) < —1}, we
have that
cone M ={l e C™ : {4(c) <0}

and
clconeM ={leC™ : l(c) <0} =C",

whence
clrad M =clconeM =C~ = C°.

Thus we see that p = ojs is a gauge of C. Since M can be taken as small as we wish
(taking a¢, with o > 1), the least gauge does not exists, or at least not one which is
proper.

We will see in Section 5 that, for all sets which are not cones, it is possible to find the
least sublinear gauge.
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4 Convex radiant sets with a negative sublinear
gauge

In the light of Theorem 3.3 it is not difficult to give a necessary and sufficient dual condition
in order that the set C' admits a gauge with negative values.

Theorem 4.1 Let C' C X be closed, conver and radiant in X. Then C' admits a sublinear
gauge with negative values if and only if there exists some closed, convex set H C X*, with
0 ¢ H such that

clrad(C°NH) = C". (3)

Proof: Let D = C° N H and p(x) = op(x). Then p is a gauge of C, by Theorem 3.3,
and p takes negative values because 0 ¢ D. On the other hand, if p is a gauge of C with
negative values, then 0 ¢ dp and (3) holds with H = dp.

O

Remark 4.2 The closure in (3) becomes useless if 0 € int C. Indeed in this case C° is
bounded, hence w*-compact, and it is easy to show that the radiant hull is closed in this
case. It becomes essential if 0 ¢ int C' as shown by the set

C ={(x1,20) €ER?: 1 > —1, x5 = 0},
whose polar set is given by
C° = {(y1,y2) e R?: —1 <y <0}

It is easy to see that C has a negative gauge but, for any closed, convex set M with 0 ¢ M,
the set rad (C° N M) is not closed and properly contained in C°.

Although Theorem 4.1 gives a necessary and sufficient condition for C' to admit a nega-
tive gauge, the result is not completely satisfactory, as it is not easy to decide whether some
specific set C satisfies condition (3) or not. We will see in the next result that a condition
which is equivalent to (3), but expressed in primal terms, is that C' be costarshaped.

Theorem 4.3 Let C C X be closed, convexr and radiant in X. Then the following are
equivalent:

a) C admits a negative gauge;
b) okerC # 0;

c) there exists z € X such that C C z 4+ RecC.

13



Proof: (a) = (b). Let p: X — R be a ls.c. sublinear gauge of C' and let p(x) < 0
for some x € X. Then p(2’) < —1 for some 2’ € R,. We will show that —a’ € oker C'.
In view of a contradiction, suppose that —2’ ¢ oker C. Then, by Proposition 2.5, there
exists ¢ € C such that —2’ ¢ ¢ — RecC. Hence ¢ + 2’ ¢ RecC and p(¢ + z’) > 0. Using
subadditivity of p, we obtain

0<ple+a")<peE)+p@a)<1-1=0,

which is not possible.

(b) = (¢). Using again Proposition 2.5, if z € oker C, then z € ¢ —RecC for all ¢ € C.
Hence c € 2+ RecC for all c € C'and C C z + RecC.

(¢) = (a). We will use Theorem 4.3 with H = H = {{: (2,f) > 1}. We can always
suppose that z # 0. Indeed if z = 0 in (c¢), then C is a cone (it follows from the relations
RecC C C C 0+RecC) and a negative gauge always exists. Setting H; = {¢: (z,¢) <1}
and H}! = {¢: (z,£) = 1}, we have that

(RecC)° N H} C (RecC)° N H, = (2 4+ RecC)° C C°. (4)
As H! is a closed hyperplane in X*, it is easy to see that
(Rec C)° = clcone (HZ1 N (RecC)°) .
The inclusion
clrad (C°NH}) C C°

is immediate, as C° N H} C C° and C° is closed and radiant.

For the opposite inclusion take ¢ € C° and consider 6 = (z,¢). If § > 1, then ¢ € H
and we are done. If 0 < § < 1, then take o = 1/§ > 0 so that f = af € H! N (RecC)°. It
follows from (4) that f € C°. Since f € H} we have that

(=6f €rad (C°N H}) Crad (C° N H)).

If finally (z,¢) = 0, we can take a net {{;};c; such that (z,¢;) > 0 for all i € I. Hence
¢; € rad (C° N HY) as in the previous steps, and ¢ € clrad (C° N H) as desired.
U

5 The least sublinear gauge

We are now ready to prove our main result, namely that the family of all continuous
sublinear gauges of C' admits a least element. We also characterize its support set in
terms of polar sets. For a given closed, convex, radiant set C' C X, let m¢c : X — R be
defined as

me(z) = sup {(z,€) : £ € C°N (oker C)*}.
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Proposition 5.1 Let C be a proper, closed, conver and radiant set in X and let
Q = C° N (oker0)®.
The following holds:
a) if okerC =0, then Q@ = C° and m¢ = pc;
b) if 0 € okerC, then Q =0 and m¢ is not defined;
c) if okerC # 0 and 0 ¢ okerC, then Q # 0, and 0 ¢ Q, so that m¢ # pc.

Proof: The proof is trivial if one recalls that (§)® = X* and S = () when 0 € S.
O

Theorem 5.2 Let C C X be a proper closed, conver and radiant set, with 0 ¢ okerC'.
Then

a) me is a l.s.c. sublinear gauge of C;
b) me <pifp: X — R is a sublinear gauge of C;

c) me is linear if C is a radiant halfpace, with 0 € intC.

Proof: (a) Being the support function of a nonempty, closed, convex set, m¢ is lower
semicontinuos and sublinear. We have to prove that [m¢ < 1] = C. It holds

me(z) = og(x) < oce(x) = pe(x)
for all x € X and therefore x € C implies
me(z) < pe(z) <1

and C C [m¢g < 1].
To prove the opposite inclusion take x ¢ C. There exists £ € C° such that (x,¢) > 1.
We have to analyse various instances. Let

§d =o0c(l) =sup{(c,?): ce C},

which satisfies 1 > § > 0, since 0 € C and ¢ € C°. Suppose that § = o¢(¢) > 0 and let
(=ol witha=6"1>1.
It holds
sup(c, ) =1
ceC
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and hence ¢ € C°. Moreover

(2, 0) > (x,0) > 1.

To obtain a contradiction we need to show that £ € Q, i.e. £ € (oker C)®, that is

(y,0) > 1 Yy € oker C.

If there exists § € oker C' such that (y,€) < 1, then we can choose some positive ¢ such
that (,¢) < 1—e. Since supc(c,£) = 1, there exists ¢ € C such that (¢, £) > 1—¢, whence
(¢,0) > (y,¢). However this is a contradiction to Proposition 2.5, as shown in Remark 2.6
(3).

We obtained the first part of the proof by showing that o¢(¢) > 0 implies that the ray
Ry, which is included in (Rec C')~, satisfies

Ry N C° N (oker C)% # 0, (5)

so that some translate of £ stays in Q.

Now suppose that oc(¢) = 0. We have two more cases to deal with, according to
the intersection Z, = Ry N (oker C')® being empty or not. If =, # (), then any functional
al € Zy will also satisfy (5), as oc(al) = 0 and af € C° for all a > 0.

To conclude the proof, suppose that o¢(¢) = 0 and Z; = (). In this case we have that
the ray Ry, which is contained in (Rec C)~, is disjoint from cone (oker C')®. On the other
hand, since (oker C')? is a closed, convex, coradiant set in X*, it holds

cone (oker C)® C (RecC')~ = cl cone (oker C)® (6)

and hence / is the limit of a net {¢,}, a € I, with £, € cone (oker C)®. That is (z, /) =
lim, (z, l,) for all z € X.

Fix a weak® neighbourhood N of ¢ such that (z,l) > 1 for all [ € N ().

Moreover it holds ¢ (¢) = 0 so that ¢ € b(C') = cone C°. Recalling (6) and the equality
clb(C) = (Rec C)~, which holds for every convex set C, we have that

(RecC)~ = cl (cone C° N cone (oker C)?)

so we can actually choose the net ¢, to belong to both cone (oker C')® and to cone (C°).

For any « € I such that ¢, € N(¢), reasoning as in the first part of the proof, we
can find £ = t¢ for some ¢t > 1 such that £ € C° N (oker C)® with (z,¢) > 1. This
show that mc(x) > 1, and hence, starting from the assumption x ¢ C, we obtained that
x ¢ [me <1].

(b)  Let p be Ls.c. sublinear, with C' = [p < 1]. We need to show that m¢ < p, which
is equivalent to

C° N (oker C)% C Op.
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Take g ¢ Op. Hence there exists Z € X such that
(T,q) > o= p(T). (7)
Consider three cases depending on the sign of a.
a > 0. It holds
q(z/a) > 1 =p(T/a)
hence z/a € C' (because p is a gauge of C') and ¢ ¢ C°.

a = 0. It holds
q(z) >0 =p(z).
Since ¢(z) > 0, then for some 7 > 0 we have ¢(rz) > 1. Since p(rz) = 0 for all
r >0, and rz € C for all r > 0, we have z € RecC' C C and hence ¢ ¢ C°.

a < 0. It follows that p(Z) = o < 0, whence p(Z/ — ) = —1 and § = /o € okerC.
Moreover 0 ¢ oker C implies that (oker C)¥ # () and ¢(y) = ¢(Z/a) < 1, which
yields ¢ ¢ (oker C)®.

In all cases we have ¢ ¢ C° N (oker C')® and the thesis is proved.
(¢) If C is a radiant halfspace, with 0 € int C, one can always find some ¢ € X*,
£ #£ 0, such that

H={zeX: (z,0) <1}
and we have the following: Rec H = {zx € X : (x,{) <0}, oker H = {z € X : (x,{) > 1},
with H° = {af, 0 < o < 1} and (oker H)® = {3¢, 3 > 1}, so that

H° N (oker H)% =

—~

(3

and m¢ = /£ is linear.

Remark 5.3

1. It is an immediate consequence of Theorem 5.2 that pc is minimal if and only if
oker C' = ().

2. The description of the least sublinear gauge m¢ of a convex radiant set is perfectly
symmetrical to the one of the greatest superlinear cogauge g of a convex coradiant
set, as it was developed in [25]. We showed there that a closed, convex, coradiant
set G C X admits a continuous superlinear cogauge ¢ : X — R if and only if it
holds 0 € int oker G. Moreover we found out that the family of all continuous and
superlinear cogauges of G admits a greatest element =g, where

ve(z) = inf{{x, £), £ € G¥ N (oker G)°}.
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3. In [5] the authors study the existence of a minimal sublinear gauge for a convex
radiant set C C R™ and show that the minimal gauge is the support function of the
set A ={l € C°: (c,f) =1, for some ¢ € C}, that is the set of support points of
the set C°, with supporting functional in C.

The importance of weak*-support points of the polar in order to characterize the
least gauge was already noticed in [25] for convex coradiant sets and in [6] for
convex radiant sets. In the latter case the result was described with the language
of illuminated points. Observe that the results proved here extend the one in [5]
under several aspects. We work in infinite dimensional normed spaces and do not
always assume that C includes the origin as an interior point. Moreover we give
a clear specifications of the class of sets for which the least gauge is different from
the Minkowski gauge and characterize its support set in terms of kernels and polar
sets, so that well known calculus rules (see, for instance, [22] for kernels and [14] for
polar sets) can be used to find the least gauge in specific cases.

To finish this section, we give one further result which clarifies the relations between
the outer kernel of C' and the sublevel set [p < —1], when p is a gauge of C.

Proposition 5.4 Let C C X be closed, conver and radiant. The following holds
a) If p: X — R is a gauge of C, then [p < —1] C —okerC;
b) [p < —1] = —okerC if and only if p = mc.

Proof: The first statement is actually proved in the first few lines of the proof of Theorem
4.3. To prove the second, let p = m¢ and take z € oker C.
It holds

me(—z) = sup{(—z,0), £ € Q} < sup{(—z,{), £ € (oker C)¥} < —1,

which, together with (a), proves that [m¢ < —1] = —okerC. To finish the proof, let
p: X — R be a l.s.c. sublinear gauge of C' which does not coincide with m¢.
Then there exists T, necessarily belonging to Rec C, such that

me(z) < p(z) <O0.

Hence, for some o > 0 and §y = az, it holds

p(H) > —1>mo(y).

The inequality on the right shows that § € —oker C, while the one on the left shows
that g ¢ [p < —1] and the proof is finished.
O
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6 Further results on costarshaped and hyperbolic
convex sets

In [6] the authors study the existence of negative gauges for a convex, radiant set C' in the
framework of conical equivalence of convex sets. Theorem 3.1 in [6] says that if a negative
gauge exists, then the barrier cone b(C) is closed. Although Example 6.4 shows that the
condition that b(C) is closed is not sufficient for C' to admit a negative gauge, still the
class of convex sets for which the barrier cone is closed is worth studying. Such sets are

called pseudo-hyperbolic in [11] and are a generalization of hyperbolic convex sets (see
(2, 3, 11]).

Definition 6.1 The convexr set C C X is said to be hyperbolic if there exists a bounded
set D such that
C C D+ RecC.

Inside the class of (linearly) unbounded convex sets, they are somehow opposite to
continuous (parabolic) convex sets, introduced by Gale and Klee [10], and studied for
instance by [1, 7, 9], for which the barrier cone is open or, more precisely, satisfies the
equality b(C)\{0} = int b(C).

The statement that a convex set, whose barrier cone is closed, is hyperbolic is given in
[2], but Goossens [11] gives a counterexample. We give a characterization of hyperbolicity,
also underlining some quantitative aspect, which allows to discuss a further result about
subdifferentiability properties of the Minkowski gauge of a hyperbolic convex set at the
points of the recession cone.

Theorem 6.2 For the convex set C C X and M > 0 it holds
C C MB + RecC
if and only if

(RecC)~ = cone (CO \ AZU*) . (8)

Proof:
To prove necessity, let £ € (RecC)™, with ||/|] = 1. Since for all ¢ € C there exist
k € RecC and b € B such that ¢ = k 4+ Mb, it holds

0(c) = £(k + Mb) < M,

whence

0/MeC® and (/M ¢ (1/M)U,
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which proves that
1
RecC)™ C c°\ —=U").
(RecC) _cone< \M )
The opposite relation is obvious, as the inclusion

cone <C’° \ ]\14U*> C cone (C°) =b(C) C (RecC)™

is true for every convex set C.
To prove sufficiency let ¢ € C\(MB + Rec C') and separate ¢ from the convex solid set
MB + RecC. We find ¢ € X*\{0} and « € R such that ||¢|| =1 and

() > a > l(k+ Mb), Vk € RecC, b € B;

since Rec C' is a cone, it holds ¢(k) < 0 for all k£ € RecC and ¢ € (RecC)~.
It holds
¢(¢) > M = sup {l(k + Mb), k € RecC, b€ B}.

Take M’ such that £(¢) > M’ > M to show that ¢(¢)/M’' > 1 and ¢/M' ¢ C°. Since
C° is radiant, no point on the halfline

11, +00)¢/M' = [L/M’, +o0)¢

belongs to C°. Hence, if the open ball (1/M)U* is removed from C°, we have

{al, a > 0} N cone (C’O \ ]\ZU*> =0

and
(RecC)™ < cone <C’° \ ]\ZU*) .

O
Theorem 6.2 shows that hyperbolicity of a convex set is a stronger requirement for a
convex set C' than asking that the barrier cone b(C') is closed. In the latter case we have
that for every point ¢, with [|¢|| = 1, of the cone (Rec C)~ there must exists some ¢ > 0
such that the segment [0, ]¢ is contained in C°. For C' to be hyperbolic, we also need a
further uniformity condition, namely that there exists § > 0 with ¢ > ¢ for all £. The
interested reader finds in [11] an example of some convex set C' in R? for which the barrier
cone is closed, but such uniformity condition fails, and C' is not hyperbolic.

Remark 6.3 Proposition 6.2 can be used to formulate a subdifferentiability property of

the Minkowski gauge of an hyperbolic convex set C', which is relevant to our purposes.
Indeed if we search for gauges of C' which minorize puc and take negative values, it is
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important to study the slope of uc at points close to the recession cone. Actually for
x € RecC we have puc(x) = 0 and 0 € duc(z). If there are points on the boundary of
Rec C in which the subdifferential reduces to {0}, then there can be no gauges of C' other
than pue. We can use Proposition 6.2 to show that this does not happen if C' is hyperbolic.
To see this, remind that, for any sublinear functional p : X — R, it holds

Op(z) = {L € Op(0) : U(x) = p(z)}.
Thus, for any x € Rec C, it holds
Opc(x) ={l€ C°: l(x) =0}.

If we consider the characterization of hyperbolic sets given by (8) it is easy to see that for
x € RecC and ¢ € (RecC)™, with ¢(z) = 0, we have that

diam duc(x) > 0,

where the diameter of a set S is diam S = sup{||z—s||, z,s € S}, in that the subdifferential
Opc(x) contains elements whose norm reaches § = 1/M on the ray passing through ¢.

The next example shows that hyperbolic convex sets, though their barrier cone is
closed, do not in general admit a gauge lower than pc.

Example 6.4 Let C = {(z1,72) € R? : =1 <1 < 1,29 > —/1 — 2%}, with RecC =
{(0,22) : 9 > 0}. We have

\/x% +x%, z9 <0

|1, x2 >0

MC($1-962) =

As puc is continuous on R?, the same is true for any other gauge p of C. If there
existed another gauge p of C, whose sublevel set [p < 0] were nonempty, it would hold
[p < 0] = int RecC. But Rec C has an empty interior and hence no gauge of C' can take
negative values.

O
Though our original purpose, in the analysis of gauges of convex radiant sets, was to
give an analytic description of the separation theorem for coradiant sets given by Proposi-
tion 2.3, in the study carried out until now we dropped the assumption 0 € int C', which is
always satisfied by the separating set C', and developed a more general analysis in which
that assumption was not required to hold.
Now we want to show that under this assumption there are further relations between
costarshaped and hyperbolic convex sets which are worth being illustrated, including an
interesting characterization of costarshaped sets by means of their barrier cone.
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Theorem 6.5 Let the set C C X be closed and convex, with 0 € intC. Then the following
statements are equivalent

a) C is costarshaped;
b) C is hyperbolic, with int RecC # ().
If moreover X 1is a reflerive Banach space, they are also equivalent to

¢) b(C) admits a closed bounded base, i.e. there exists a closed, convex, bounded set B
with 0 ¢ B such that b(C) = cone B.

Proof: Suppose first that C' is hyperbolic, i.e.
C CRecC+B(0,M) (9)

for some M > 0 and that B(z, ) C RecC for some z € X and § > 0.
The latter inclusion is equivalent to B(0,d) C (—Z + Rec C), which yields
M

FIB%(O, 5) =B(0,M) C —%:ﬁ + RecC.

Call z= Mz/6 and use (9) to obtain
C CRecC —-—zZ+RecC =—-Z+ RecC

and z € oker C, so that C' is costarshaped.

If conversely C' is costarshaped and z € oker C', then C' — Z is coradiant, or a cone, and
C — z C RecC, which implies C' C z 4+ Rec C, so that C' is hyperbolic.

Moreover, using again oker C' # (), there exists a gauge p of C' with negative values, so
that 0 ¢ Op C C°. As 0 € int C, the polar set C° is bounded, hence weak*-compact and
the same holds for dp, since dp C C°. Hence p is continuous.

This implies that, if p(Z) < 0, then there exists § > 0 such that p(y) < 0 for all
y € B(z, ) and Rec C has a nonempty interior.

To prove the last statement of the theorem we recall that, for any convex set C, it
holds (RecC')™ = clb(C), which becomes (Rec C')~ = b(C) when C is hyperbolic, as the
barrier cone is closed. Moreover we refer to [17] in which it is proved that, in a reflexive
Banach space X, a cone K C X has a nonempty interior if and only if its polar cone K~
has a closed bounded base, to conclude the proof.

O

The equivalence between (a) and (b) in Theorem 6.5 can be reformulated to hold in the
vector space spanned by C, provided that the interior of the recession cone is nonempty
there. As this always holds in finite dimensional spaces, that is the relative interior, ri C,
of every convex set C' is nonempty, we can use the same proof as above to show that the
following propostion holds.
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Proposition 6.6 Let C be closed, conver and radiant in R™. Then the following are
equivalent:

a) C is costarshaped;
b) C is hyperbolic, with C' C RecC — RecC.

With reference to Example 6.4, we see that the set C' does not admit a negative gauge
because C and its recession cone lie in two different linear spaces, that is the span of the
recession cone does not coincide with the span of C. The example below, which emerged
from a very helpful discussion with E. Ernst, shows that, in a separable Hilbert space, the
two conditions of Proposition 6.6 (b) are not sufficient for a set C' to be costarshaped.

Example 6.7 Consider the Hilbert space X = Iy and let €™ € Iy, n € N, denote the
sequence whose terms are all equal to 0 except the n-th term, which is equal to 1.

Let C = clconv ({—¢',i € NJUX,), where X = {z € I : z; > 0,i € N} is the
nonnegative cone. C' is a closed convex radiant set with RecC = X .

Moreover
C CRecC+B (10)

so that C' is hyperbolic and
X =RecC — RecC, (11)

so that both conditions of Proposition 6.6 (b) are satisfied. However any gauge p of C' is
nonnegative. To see this we will show that

(P<1=C) — (pla)>-1VaeX.).

Indeed pick v = (v1,v9,...) € Rec C; as v, — 0, there is n € N such that v; = v-e™ < 1
and thus i
—e"/2+v/2 ¢ RecC
as . .
(—e"/240v/2)-e"=-1/2+v5/2 <0.

Thus p(v/2 — €™/2) > 0, which yields p(v) + p(—e™) > 0 and p(v) > —p(—e").
But —e™ € C, so that p(—e™) < 1 and p(v) > —1 for all v € Rec C. Since p is positively

homogeneous, this implies that p is nonnegative.
O
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