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Abstract

In this paper, we consider parametric density estimation based on

minimizing an empirical version of the Havrda-Charvát-Tsallis ([15],

[25]) nonextensive entropy. The resulting estimator, called the Maxi-

mum Lq-Likelihood estimator (MLqE), is indexed by a single distor-

tion parameter q, which controls the trade-off between bias and vari-

ance. The method has two notable special cases. If q tends to 1, the

MLqE is the Maximum Likelihood Estimator (MLE). When q = 1/2,

the MLqE is a minimum Hellinger distance type of estimator with

the perk of avoiding nonparametric techniques and the difficulties of

bandwith selection. The MLqE is studied using asymptotic analysis,

simulations and real-world data, showing that it conciliates two ap-

parently contrasting needs: efficiency and robustness, conditional to

a proper choice of q. When the sample size is small or moderate, the

MLqE trades bias for variance, resulting in a reduced mean squared

error compared to the MLE. At the same time, the MLqE exhibits

strong robustness at expense of a slightly reduced efficiency in pres-

ence of observations discordant with the assumed model. To compute

the MLq estimates, a fast and easy-to-implement algorithm based on

a reweighting strategy is also described.
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1 Introduction

In parametric estimation, one approach is to compute the parameters of in-

terest by minimizing some appropriate data-based divergence between an as-

sumed model and the true model density underlying the data. The successfull

tradition in this area dates back to Rao [23] and Kullback [19]. Undoubtely,

the most popular representative of these methods is the Maximum Likeli-

hood estimator (MLE), whose relationship with the Kullback-Leibler (KL)

divergence has been pointed out by Akaike [2]. Despite the MLE is asymp-

totically efficient, in practice the large sample property is satisfied when two

important conditions hold: (i) the assumed model mimics well the empirical

distribution of the data and (ii) the sample size is sufficiently large.

In the last few decades, a large body of literature aimed to produce esti-

mators that are not unduly affected by small departures from such require-

ments. Beran [4] first introduced a density minimum divergence estimator

based on Hellinger distance. Similar research lines were embraced by Lindsay

[20], Park et al.[22] and Bhandari et al. [5]. Basu et al. [3] considered the

use of minimum density power divergences, a class of divergences indexed by

a parameter that controls for the trade-off between robustness and efficiency.

Their approach avoids kernel smoothing and exhibits robustness properties

similar to those of L2-norm based estimators. In continuous models, these

techniques require some degree of nonparametric analysis, with all the com-

plications related to the bandwith choice, which can be hard to handle in

high-dimensional problems.

In a different direction, Hu and Zidek [16] proposed the weighted likeli-

hood estimator, derived via minimization of the KL divergence subject to

data-dependent constraints. The weighted likelihood approach extends the

local likelihood method of Tibshirani and Hastie [24] and it shares its un-

derlying purpose with other methods such as weighted least squares and

kernel smoothers which can reduce an estimator’s variance while increasing

its bias to reduce mean-squared error. In practice, however, the advantages of
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weighted likelihood methods rely heavily on a proper selection of the weights,

which in many problems can be only performed using “ex-post” data-driven

procedures such as cross-validation [27].

In this paper, we consider a family of quasi-logarithmic density diver-

gences. The task of minimizing the proposed family has an information-

theoretical flavor, since it amounts to minimization of Tsallis-Havrda-Charvát

entropy, sometimes called nonextensive or q-entropy ([15],[25]). Tsallis and

collegues have successfully employed such measures in the context of statis-

tical mechanics (e.g., see [25]). More recently, applications have appeared in

finance, social, biomedical and environmental sciences (e.g., see Gell-Mann

[12]). The underlying goal of our work is to address the statistical usage of

the q-entropy for density estimation and explore the properties of the new

estimator.

The q-entropy, is indexed by a single parameter of distortion q, which

controls the trade-off between asymptotic bias and variance of the parameter

estimators which are the minimizers of such a family. The resulting estimator

is called Maximum Lq-Likelihood estimator (MLqE) and has been studied by

Ferrari and Yang [11] in the context of small tail inference. When q is fixed,

the MLqE belongs to the class of M-estimators, but yet representing a novel

case motivated by the need of improving upon the efficiency of MLE when the

sample size is small or moderate. When q is judiciously chosen and the sample

size is moderate or small, the MLqE trades successfully bias for variance,

reducing the mean squared error, sometimes dramatically compared to the

classical MLE. This phenomenon is confirmed by the asymptotic analysis,

computer simulations and real-world examples.

Besides, our approach appears to conciliate both efficiency and robust-

ness aspects, which usually involve distinct techniques: efficiency is priori-

tized when the model is thought to appropriately describe the data at hand

and robustness is stressed when it is not. In our view, these objectives are

intertwined as the degree to which an observation is treated as “outlying” de-
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pends not only on the probability of its occurrence under the assumed model,

but also on the sample size. In presence of outliers or perturbations from the

assumed model, the same methodology can be exploited to the purpose of

classical robust estimation. The MLqE generalizes other familiar minimum

divergence robust estimators depending on the value of the distortion param-

eter q. For example, when q = 1/2 the MLqE can be regarded as equivalent

to minimization of Hellinger distance. However, contrarily to other existing

methods such as Beran’s minimum Hellinger distance estimator (MHDE),

our apporach has the perk of not involving any nonparametric analysis, yet

mantaining reasonable performances.

In addition to the appealing properties, our methodology answers three

important needs of the practicioner: easy implementability, interpretability

and computational efficiency. The estimating equations are simply obtained

by replacing the logarithm of log-likelihood function in the usual maximum

likelihood procedure by the distorted logarithm Lq(u) = (u1−q − 1)/(1− q).
The resulting optimization task can be formulated in terms of a weighted ver-

sion of the familiar score function, where the weights are proportional to the

(1−q)th power of the assumed density. Consequently, a simple and fast algo-

rithm is automatically available for coumputing MLq estimates and in many

cases the steps of the algorithm reduce to a simple variable transformation.

The rest of the paper is organized as follows. In section 2, we introduce

a class of quasi-logarithmic divergences and point out their connection with

nonextensive entropies. In section 3, we introduce the MLqE for parametric

families. In section 4, convergence in probability and asymptotic normal-

ity results of MLqE are provided in light of exisiting M-estimation theory.

In addition, we discuss the trade-off between bias and variance for particu-

lar families of distributions. In section 5, we present an easy-to-implement

procedure for computing the MLq estimates and account for possible strate-

gies for the choice of the distortion parameter q. In section 6, we apply the

method to real-world examples and assess the finite-sample performance of
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the MLqE via Monte Carlo simulations. In section 7, final remarks are given.

2 Power divergence and nonextensive entropy

measure

Consider a family of models F having densities (or probability mass func-

tions) {g} with respect the measure µ on the support space Ω. Denote the

true density by f , which does not have to necessarily belong to F . Given

a convex function ϕ : R → R, the large class of Csiszár divergences [10] is

given by Efϕ {f(x)/g(x)}. Commonly, optimization is performed with re-

spect to g and different choices of ϕ lead to different divergence measures.

Pheraps, the most common choice is ϕ(·) = log (·), which yields the popular

KL divergence, or relative entropy [19]. Consider instead the following family

of divergences.

Definition 2.1. Define the power divergence between the distributions g(x)

and f(x) as

Dq(g||f) = −1

q

∫
Ω

f(x)Lq

{
g(x)

f(x)

}
dµ(x), (2.1)

where Lq(u) = (u1−q − 1)/(1− q), and q ∈ (−∞,∞) \ {1}.

When q = 1, the integrand is undefined and we set log(·) = limq→1Lq(·),
recovering the KL divergence. Interestingly, some algebra shows that many

common divergences can be recovered as special cases of the power diver-

gence. Namely, one can obtain Neyman’s Chi-squared divergence

NCS(g||f) =

∫
Ω

[f(x)− g(x)]2

2f(x)
dµ(x); (2.2)
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Hellinger distance:

HD(g||f) =

∫
Ω

[√
g(x)−

√
f(x)

]2

dµ(x); (2.3)

KL divergence:

KL(g||f) =

∫
Ω

f(x) log

{
f(x)

g(x)

}
dµ(x); (2.4)

Pearson’s Chi-squared:

PCS(g||f) =

∫
Ω

[f(x)− g(x)]2

2g(x)
dµ(x); (2.5)

by letting q = −1, 1/2, 1, 2, respectively. The same type of divergence has

been considered by Cressie and Read [9] in relation to goodness-of-fit tests

and by Lindsay [20] in the context of robust estimation. Although in general

the power divergence is not a distance as it lacks of symmetry, it enjoys the

following important discrimination property.

Theorem 2.1. Let g(x) and f(x) be two density functions on Ω. Then,

Dq(g||f) ≥ 0 and the equality is attained if and only if g = f almost every-

where.

Proof. Note that 1
q
∂2Lq(u)/∂u2 < 0 for all −∞ < q <∞. Thus, by Jensen’s

inequality we have

−1

q

∫
Ω

f(x)Lq

{
g(x)

f(x)

}
dµ(x) ≥ −1

q
Lq

∫
Ω

f(x)
g(x)

f(x)
dµ(x) = 0. (2.6)

When q = 1, Lq(·) is the usual logarithm and the task of minimizing

D1(g||f) can be equivalently restated in terms of minimization of Shannon’s

entropy. In particular, D1(g||f) = H1(f ||g)−H1(f ||f), where H1 represents
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Shannon’s information measure, defined as

H1(g||f) = −
∫

Ω

f(x) log {g(x)} dµ(x). (2.7)

The quantity − log g(x) is interpreted as the information content of the out-

come x evaluated at the candidate density g(·) and H1(g||f) is the average

uncertainty removed after the actual outcome of the random variable X is

revealed. When q 6= 1, the q-logarithm obeys the following pseudo-additivity

property:

Lq(u1u2) = Lq(u1) + Lq(u2) + (1− q)Lq(u1)Lq(u2), u1, u2 > 0, q > 0 (2.8)

and full additivity is recovered as q → 1. Thus, we can write

−qDq(g||f) =

∫
Lq(g) + Lq(f

−1) + (1− q)Lq(g)Lq(f
−1)fdµ (2.9)

=

∫
f q−1 − 1

1− q
+
g1−qf q−1 − f q−1

1− q
fdµ (2.10)

=

∫
Lq(g)f qdµ−

∫
Lq(f)f qdµ. (2.11)

Since in (2.11) integration is taken with respect a power transformation of

the true density, minimization of Dq(g||f) based on an empirical version of

f might be cumbersome. Instead, consider the tranformation f (α)(x) :=

f(x)α/
∫
f(x)αdµ(x), α > 0. Replacing the true density f in Eq.(2.11) with

the transformation f (1/q) gives

Dq(g||f (1/q)) = Z−1(q)

(∫
Lq(f

(1/q))fdµ−
∫
Lq(g)fdµ

)
, (2.12)

where Z(q) = q
∫
f 1/qdµ. Therefore, minimizing (2.12) is equivalent to min-
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imize the q-entropy, or nonextensive entropy, defined as

Hq(g||f) = −
∫

Ω

f(x)Lq {g(x)} dµ(x). (2.13)

Given observationsX1, . . . , Xn from f , our program is to minimizeHq(g||f).

Since f is unkown, we replace the above expectation with one taken with re-

spect the empirical distribution of the data Fn and find the minimizer of

−
∑

i Lq {g(Xi)}, say f̂∗. Of course, f̂∗ is a biased estimate of the target f

and one can promptly remedy to this by considering f̂ = f̂
(q)
∗ instead. How-

ever, this does not have to be necessarily the case and later we shall see that

retaining the bias can reduce sensibly the variance of the estimates, resulting

in an overall gain in terms of mean squared error when the sample size is

small.

The transformed density f (1/q) is sometimes referred to as zooming or

escort distribution ([21],[1]) and q provides a tool for accentuating different

regions of the untransformed true density f . In particular, note that when

q > 1, regions with density values close to zero are accentuated, while for

q < 1 regions with density values further from zero are emphasized.

3 The Maximum Lq-Likelihood method

In the rest of the paper, we consider the parametric familiy F(Θ) = {f(x; θ) : θ ∈ Θ ⊆ Rp}.
The true parameter vector is denoted by θ0. In the parametric case, the q-

entropy is

Hq(θ||θ0) = −
∫

Ω

f(x; θ0)Lq {f(x; θ)} dµ(x). (3.1)

Let θ∗ = arg minθ∈Θ Hq(θ||θ0). and note that θ∗ depends upon both θ0 and

the distortion parameter q. For q fixed, we make the fundamental assumption

that there exists a unique target parameter θ∗. The Maximum Lq-Estimator
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of θ0 is the point that minimizes the q-entropy relative to the probability

mass function Fn(x) associated with the empirical distribution of the sample

and f(x; θ).

Definition 3.1. Let X1, ..., Xn be a random sample from f(x; θ0), θ0 ∈ Θ.

The Maximum Lq-Likelihood Estimator (MLqE) of θ0 is defined as

θ̂q,n = arg max
θ∈Θ

`q(θ) := arg max
θ∈Θ

n∑
i=1

Lq [f(Xi; θ)] , q > 0, (3.2)

where Lq is the q-logarithmic function defined in (2.1).

When q → 1, if the estimator θ̂n,1 exists, it is the maximum likelihood

estimator of the parameters, which maximizes
∫

log {f(x; θ)} dFn(x). In gen-

eral, the estimating equations have the form

Ψn(θ) := n−1

n∑
i=1

U(Xi; θ)f(Xi; θ)
1−q = 0, (3.3)

where U(x; θ) = ∇θ log {f(x; θ)} is the maximum likelihood score function.

When q 6= 1, eq.(3.3) provides a relative-to-the-model downweighting. Ob-

servations that disagree sensibly with the model receive low weight. In the

case q = 1, all the observations receive the same weight. The idea of setting

weights that are proportional to the family from which the model is to be

chosen is not new in literature. Windham [28] and Choi et al. [8] propose

similar strategies to robustify esimators. For location models, the MLqE is

the same as minimum density power divergence of Basu et al. and the ro-

bustified estimator of Windham: in such case (3.3) equals to equation (2.4)

in Basu et al. [3], when q = 1 − α. Our perspective seeks a contact with

these approaches and ultimately highlights the role played by nonextensive

entropy measures in downweighting with respect the model rather than the

data.
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4 Properties and standard errors

When q is fixed, the MLqE is an M-estimator and properties can be derived

by applying existing theory (see Huber [17] and Hampel et al. [13]). M-

estimators are zeros of equations of the form
∑

i ψ(Xi; θ) = 0; in our case

the criterion function ψ is ψ(x; θ) = ∇θLq {f(x; θ)}. Let U(x; θ) and I(x; θ)

denote the score function and the information matrix of f(x; θ), respectively.

Let Jq(θ) and Kq(θ) be the following p× p matrices:

Kq(θ) :=

∫
Ω

f(x; θ)2(1−q)U(x; θ)U(x; θ)Tf(x; θ0)dµ(x) (4.1)

and

Jq(θ) :=

∫
Ω

f(x; θ)(1−q)[(1− q)U(x; θ)U(x; θ)T − I(x; θ)]f(x; θ0)dµ(x) (4.2)

In the next section, we shall see that under some conditions: (i) there exists

a sequence of MLqE points θ̂q,n that is consistent for θ∗ and (ii) the asymp-

totic distribution of
√
n(θ̂q,n− θ∗) is asymptotically normal with mean 0 and

variance Jq(θ
∗)−1Kq(θ

∗)Jq(θ
∗)−1.

4.1 Convergence results

The criterion function is ψ(x; θ) = f(x; θ)1−qU(x; θ). Let Θ∗ ⊆ Θ be the set

of points such that
∫
|ψ(x, θ)|f(x; θ0)dx <∞ and assume that Θ is compact.

For θ ∈ Θ∗, consider

Ψ(θ) :=

∫
Ω

Lq {f(x; θ)} f(x; θ0)dµ(x) <∞ (4.3)

and set Ψ(θ) = −∞ if θ is not in Θ∗. Consequently, θ∗ is such that

supθ∈Θ Ψ(θ) is finite. The next theorem establishes consistency of the MLqE

for estimating θ∗.
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Theorem 4.1. Assume the following conditions:

(C.1) For θ ∈ Θ, ψ(x, θ) is continuous almost everywhere;

(C.2) For all suffciently small balls B, sup
θ∈B
{ψ(x, θ)} is measurable and

Eθ0supθ∈B {ψ(x, θ)} <∞. (4.4)

Then, any sequence θ̂q,n of MLqE satisfying ψn(θ̂q,n) ≥ ψn(θ∗q)−op(1), is such

that for any ε > 0 and every compact set K ⊂ Θ,

P
(
||θ̂q,n − θ∗|| > ε ∧ θ̂q,n ∈ K

)
→ 0. (4.5)

Proof. The proof is given in van der Vaart [26], Theorem 5.14.

Next, we introduce some additional smoothness conditions needed to ob-

tain asymptotic normatlity of MLqE.

Lemma 4.2. Suppose that ψ(x; θ) is differentiable in a neighborhood of θ∗

almost everywhere. Assume that there exists an open ball B ∈ Θ and a

constant c such that ||∇θψ(x; θ)|| ≤ c for θ in B. Then, for every θ1, θ2 ∈ B
almost everywhere, there exists a constant γ(x), such that

|ψ(x; θ1)− ψ(x; θ2)| ≤ γ(x)||θ1 − θ2||, and E||γ(x)||2 <∞. (4.6)

The lemma is a well-known property of differentiable mappings and states

that if ψ(x; θ) is differentiable mapping, then it satisfies a global Lipschitz

condition on a set B in θ if its derivative is bounded on B and if B is convex.

Lemma 4.3. If the order of integration with respect to x and differentiation

with respect to θ can be interchanged in Ψ(θ) for θ in a neighborhood of

θ∗, then Ψ(θ) is twice continuous differentiable in that neighborhood and its

Hessian matrix is ∇2
θΨ(θ) = −Jq(θ).

Proof. Consider the score function as U(x; θ) = ∇θ log f(x; θ) and the infor-

mation matrix I(x; θ) = −∇2
θ log f(x; θ) = ∇θU(x; θ). The first derivative of
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ψ(x; θ) is f(x; θ)(1−q)UT(x; θ). The second derivative is

∇θ[f(x; θ)(1−q)UT(x; θ)] = (1− q)∇θ[f(x; θ)]

f(x; θ)q
UT(x; θ) + f(x; θ)(1−q)I(x; θ)

(4.7)

= f(x; θ)(1−q)[(1− q)U(x; θ)UT(x; θ) + I(x; θ)]

(4.8)

The result follows from the given condition.

The next theorem states the asymptotic normality of the MLqE.

Theorem 4.4. Let θ∗ be an interior point of Θ, and suppose the conditions of

Lemma 4.3 and Lemma 4.3 hold. Moreover, assume that there is an integrable

function a(x) such that |ujk(x; θ)f(x; θ)2(1−q)| < a(x) for j, k = 1, . . . , p,

where ujk denotes the jk-th element of the matrix U(x; θ)U(x; θ)T. Then,

any sequence θ̂q,n that is consistent for θ∗ is such that

√
n(θ̂q,n − θ∗)

D→ N
(
0, Jq(θ

∗)−1Kq(θ
∗)Jq(θ

∗)−1
)

(4.9)

where Kq and Jq are given in eq.(4.1) and eq.(4.2).

Proof. By Lemma 4.3, we can write the following Taylor expansion of ψ(θ):

Ψ(θ) = Ψ(θ∗) +
1

2
(θ − θ∗)T∇2

θΨ(θ∗)(θ − θ∗) + o(||θ − θ∗||2). (4.10)

By the Lipschitz condition (4.6), the desired result follows immediately from

applying Theorem 5.21 in Van der Vaart [26].

Note that assumption in Lemma 4.3 the interchangability of integration

and differentiation, implicitly implies the conditions for the existence of Jq.

Such requirements are

Eθ0
[
ikj(x; θ)f(x; θ)1−q] <∞, and Eθ0

[
ukj(x; θ)f(x; θ)1−q] <∞, (4.11)

12



where ikj and ukj are kj-elements of the matrices I(x; θ) and U(x; θ)U(x; θ)T,

respectively. Existence of Kq is ensured by the assumptions of the theorem.

4.2 Standard errors

A convenient approach for computing standard errors is to use the influ-

ence function, which is shown to be proportional to the criterion function ψ

([17],[13]). For the MLqE, the influence function is−J−1
q (θ∗) [f(x; θ∗)1−qU(x; θ∗)]

and Consistent estimates of the asymptotic variance of n1/2θ̂q,n can be ob-

tained using Huber’s sandwitch estimator (e.g., see Huber [17]). Let k(x) =

f(x; θ̂q,n)1−qU(x; θ̂q,n). The variance estimator is

V̂ar(θ̂q,n) = (n− 1)−1Ĵ−1
q

n∑
i=1

k(Xi)k(Xi)
TĴ−1

q , (4.12)

where Ĵq is obtained by replacing θ̂q,n in the expression of the influence func-

tion and taking expectation with repect the empirical distribution Fn. Esti-

mates of the variance of the MLqE and confidence intervals can be computed

also using other standard techniques such as bootstrap.

4.3 Exponential Families

In many cases, the target parameter θ∗ can be easily computed, as it the case

for exponential families. Consider densities of the form f(x; θ) = exp {θb(x)− A(θ)} ,

where θ ∈ Θ is the natural parameter and A(θ) = log
∫

Ω
exp {θb(x)} dµ(x) is

the cumulant generating function (or log normalizer).

Lemma 4.5. Let Ψ(θ) be as in eq.(4.3). If f(x; θ) is an exponential family

and the conditions given in Lemma 4.3 are satisfied, then θ∗ = θ0/q maxi-

mizes Ψ(θ).
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Figure 1: Influence functions for estimating the mean (left) and the standard
deviation (right) of a standard normal distribution for various choices of q.

Proof. The first derivative of Ψ(θ) is

∇θΨ(θ) =

∫
Ω

∇θ[f(x; θ)]

f(x; θ)q
f(x; θ0)dµ(x). (4.13)

For the families we have that f(x; θ0/q) ∝ f(x; θ0)1/q. Thus, by the condi-

tions, we have ∇θΨ(θ∗) = ∇θ∗
∫

Ω
f(x; θ∗)dµ(x) = 0. The second derivative

is

∇2
θΨ(θ) =

∫
Ω

∇2
θf(x; θ)

f(x; θ)q
f(x; θ0)dµ(x)− q

∫
Ω

[∇θf(x; θ)]T[∇θf(x; θ)]

f(x; θ)q+1
f(x; θ0)dµ(x).

(4.14)

The first addend of the above expression evaluated at θ∗ becomes
∫

Ω
∇2
θf(x; θ)dµ(x).

Since differentiation can be passed under integration, we have that∇2
θ

∫
Ω
f(x; θ)dµ(x) =

0. The second addend is clearly negative semi-definite. Thus, we obtained
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that ∇2
θΨ(θ∗) is positive semi-definite. Hence, θ∗ = θ0/q is a maximum.

Since for exponential families the target parameter is just θ0/q, one can

consider qθ̂q,n, a bias-corrected version of the MLqE. An important example

is when q = 1/2. Eq. (2.12) points out that such a choice for q corre-

sponds to finding θ that minimizes an empirical version of the Hellinger dis-

tance between f(x; θ) and the zooming transformation f(x; θ0)(1/2). Hence,

f(x; 2θ̂1/2,n) gives a Hellinger-type of estimate which does not involve kernel

smoothing and all the computational costs related to the bandwith choice.

However, simulations for variuous settings of q and n using data from several

univariate distributions showed that the mean squared error for the uncor-

rected MLqE is generally smaller than that of the corrected version. This

happens to be the case when the sample size is small or moderate. Insights

on this aspect will be given in next sections.

4.4 Trade-off between bias and varicance

4.4.1 Asymptotic calculations

Consider an exponential family and compare the asymptotic mean squared

error of MLqE for q = 1 with the case when q 6= 1. When q → 1, the formula

of the asymptotic variance involving Jq and Kq in Theorem 4.4 becomes

the inverse of the Fisher information. Thus, the expression the ratio of the

asymptotic mean squared errors is computed as

Λ(q, n; θ0) :=
aMSE(1, n; θ0)

aMSE(q, n; θ0)
=

Tr (J1(θ0)−1K1(θ0)J1(θ0)−1)

n||θ∗ − θ0||2 + Tr (Jq(θ∗)−1Kq(θ∗)Jq(θ∗)−1)
,

(4.15)

where Tr(·) is the trace operator. The quantity Λ(q, n; θ0), to be called bias-

adjusted relative efficiency, can be used to judge how much is gained/lost

relative to the MLE under the model conditions. This is more conveniently

explored on a case-by-case basis, as shown in the next two examples.
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Example 4.1. Consider the exponential ditribution with density θ0 exp {−xθ0},
x > 0, θ > 0. Ferrari and Yang [11] computed the Jq and Kq, obtaining

θ∗ = θ0/q, Jq(θ
∗) = − q3

θ0(θ0/q)q
, Kq(θ

∗) = q

[
q2 − 2q + 2

(2− q)3

](
θ0

q

)−2q

.

(4.16)

Thus, the MLqE has squared bias θ2
0(1− 1/q)2 and asymptotic variance

Jq(θ
∗)−2Kq(θ

∗) = θ2
0

q2 − 2q + 2

q5(2− q)3
(4.17)

When q = 1, we recover the MLE with asymptotic variance θ2
0 and the bias-

adjusted relative efficiency is

Λ(q, n) =

[
n

(
1− q
q

)2

+
q2 − 2q + 2

q5(2− q)3

]−1

, (4.18)

which turns out to be independent from θ0.

Example 4.2. Consider a scale normal N(0, θ2
0). In this case the target

parameter is θ∗ = σ
√
q. and the squared asymptotic bias has expression

θ2
0(1 − √q)2. The calculation in appendix A shows that the asymptotic

variance is

Jq(θ
∗)−2Kq(θ

∗) = θ2
0

(3− 2q + q2)

4(2− q)5/2q3/2
(4.19)

When q = 1 we have the usual MLE with variance θ2
0/2. Thus, the the

bias-adjusted relative efficiency is

Λ(q, n) =

(
2n(1−√q)2 +

(3− 2q + q2)

2(2− q)5/2q3/2

)−1

(4.20)

which, as for the case of the exponential distribution does not depend on the
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true value of the parameter.

In Fig.2, we represent the relative efficiency between MLE and MLqE

corresponding to various choices of the sample size for the previous two ex-

amples. When the sample size is small there are values of q that allow for a

bias-adjsted efficiency larger than 1.
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Figure 2: Bias-adjusted relative efficiency betwen MLE and MLqE for dif-
ferent sample sizes as in eq.(4.18) and in eq.(4.20), for an exponential (left
panel) and a scale normal (right panel).

4.4.2 Finite sample efficiency

One might ask whether the above asymptotic considerations can actually help

to decide the value of the distortion parameter when the sample size is moder-

ate or small. Although we do not provide an analytical answer to such a ques-

tion at the moment, numerical simulations performed for the scale normal

and the exponential distributions indicate that the actual relative efficiency

is bounded from below by Λ(q, n). A representation of this phenomenon is
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given in Fig.4.4.2, where the ratio of the Monte Carlo mean squared errors

of the MLE over that MLqE R̂(q, n) =
∑B

b=1(θ̂1,n − θ0)2/
∑B

b=1(θ̂q,n − θ0)2 is

compared to the asymptotic relative efficiency Λ(q, n) (solid line) for various

choices of the sample size. Hence, a choice of q based on maximization of

bias-adjusted relative efficiency is expected to be a safe but rather conserva-

tive choice.
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Figure 3: Monte Carlo relative efficiency between MLqE and MLE against
q for an exponential (left panel) and a normal for various sample sizes.
The solid line is the bias-adjusted relative efficiency as in eq.(4.18) and in
eq.(4.20). The Monte Carlo sample size is 1500.

5 Re-weighting algorithm

One of the main perks of the MLqE is that a simple and fast algorithm is

automatically available. Fixed q, eq.(3.3) tells us that the estimation problem

can be formulated in terms of a weighting process. Let s ∈ {0, 1, . . . } denote
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the iteration step.

1. If s = 0, set θ(0) = θ̂1,n. Note that here q = 1 and the initial estimate

is set to be the maximum likelihood estimate.

2. For s > 0,

θ(s+1) =

{
θ :

n∑
i=1

w∗
(
Xi; θ

(s)
)
U(Xi; θ) = 0

}
, (5.1)

where U(x; θ) is the score function and w∗(Xi; θ) := f(Xi; θ)
1−q/

∑n
i=1 f(Xi; θ)

1−q.

In many important cases, the steps of the algorithm reduce to a straighfor-

ward variable transformation, as it illustrated in the following two examples.

Example 5.1. Exponential distribution The initial value is given by θ̂(0) =

X
−1

. The solution at the s-th step is θ̂(s) = (
∑n

i=1 wiXi)
−1, where

wi =

[
n∑
j=1

exp
{
−(Xj −Xi)θ̂

(s−1)(1− q)
}]−1

. (5.2)

Example 5.2. Multivariate normal distribution with unkown mean vector

µ and covariance matrix Σ. Let s ∈ {0, 1, . . . , s∗} denote the iteration step.

1. Initialize, setting µ̂(0) = n−1
∑n

i=1 xi and Σ̂
(0)

= n−1
∑n

i=1(xi−µ̂(0))T(xi−
µ̂(0)), i.e., compute the MLE of µ and Σ.

2. For 0 < s < s∗, µ̂(s) =
∑n

i=1w
(s−1)
i xi and Σ(s) =

∑n
i=1w

(s−1)
i (xi −

µ̂)T(xi − µ̂),

where

w
(s)
i =

f(xi; µ
(s),Σ(s))1−q∑n

i=1 f(xi; µ(s),Σ(s))1−q
(5.3)

Finally, if asymptotically unbiased estimates are desired, one can set µ̂(s∗) =

µ̂(s∗−1) and Σ̂(s∗) = qΣ̂(s∗−1).
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The algorithm converges quickly, typically in less than 15 iterations. To

gain some insight on this behavior, we use an argument analogous to that

proposed by Windham [28]. First, note that the reweighting procedure com-

putes a fixed point, which is a solution to τ = h(τ). The iterating function

is such that EFn [f(X; τ)1−qU(X;h(τ))] = 0, where Fn is the empirical dis-

tribution. Differentiating with respect to τ , gives

∇τh(τ) = (q − 1)
{
EFn

[
f(X; τ)1−qI(X; τ)

]}−1
(5.4)

× EFn

[
f(X; τ)1−qU(X; τ)TU(X;h(τ))

]
.

The above derivative can be restated as

∇τh(τ) = (1− q)W (τ) [I + (1− q)W (τ)]−1 , (5.5)

where

W (t) = −
{
EFn∇τ

[
f(X; τ)1−qU(X;h(τ))

]}−1
(5.6)

× EFn

[
f(X; τ)1−qU(X; τ)TU(X;h(τ))

]
Data near the true model, say dFn(x) = f(x; θ0), result inEθ0 [f(x; θ∗)1−qU(x; θ∗)] =

0, where θ∗ is the target parameter, depending on θ0 and q, satisfying

f(x; θ∗) = f(x; θ0)(q). One can show that differentiating with respect the

parameter at θ0 leads to W (θ0) = q−1I. By substituting in eq.(5.5) we ob-

tain a diagonal matrix with diagonal elements equal to (1 − q). The local

convergence rate is related to the largest eigenvalue of (5.5) at the solution

(e.g., see Johson and Riess [18], p. 192). Therefore, if the empirical distri-

bution of the data is close to the true model, we should anticipate a linear

convergence rate r ≈ |1− q|. In addition, the closer is the distortion param-

eter to 1, the faster is the algorithm.

Figure 5 illustrates the convergence rates of the REMLq algorithm for q

ranging from 0.5 to 1.5. The dotted lines correspond to 10 samples from an
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Exp(1). As the sample size increases, the empirical distribution of the data

approximates better the true model. As a result, the estimated convergence

rate of the algorithm gets closer to |1− q|.
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Figure 4: The dotted lines are the estimated convergence rates of the REMLq
algorithm for 20 samples of size 25 (left panel) and 1000 (right panel) from
an Exp(1). The solid line corresponds to r̂ = |1− q|.

5.1 Selecting the distortion parameter q

An important issue in applications is the selection of the distortion parame-

ter, as it leads to different divergence measures and can potentially alterate

the trade-off between efficiency and robustness of the estimator. We discuss

three possible strategies to be used based on the goals of the experimenter.

Strategy 1: Bias-adjusted efficiency. The first approach takes advan-

tage of the variance reduction properties of the MLqE at the model and its

capability to improve upon the MLE by reducing the variance at expenses
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of a slightly increased bias, when the sample size is moderate or small. A

reasonalbe criterion is to choose q such that q∗ = arg minq {Λ(q, n)}. When

the asymptotic distribution of the MLqE is available, this method has the

advantage to be computationally inexpensive.

Strategy 2: REMLq automatic choice of q by Windham’s criterion.

Unlike other optimtization methods the convergence rate of the re-weighting

algorithm described in section 5 yields a statistical interpretation. Evalulate

expression (5.6) at θ̂q,n, obtaining

W (θ̂q,n)2 = Ĵq(θ̂q,n)−1EFn

[
f(X; θ̂q,n)1−qU(X; τ)TU(X; θ̂q,n)

]2

Ĵq(θ̂q,n)−1

(5.7)

Where Ĵq(θ̂q,n) = EFn∇θ

[
f(X; θ̂q,n)1−qU(X; θ̂q,n)

]
is an estimate of the ma-

trix Jq(θ
∗). By Schwartz inequality(

EFn

[
f(X; θ̂q,n)1−qU(X; θ̂q,n)TU(X; θ̂q,n)

])2

(5.8)

≤
(
EFn

[
f(X; θ̂q,n))2(1−q)U(X; θ̂q,n)TU(X; θ̂q,n)

])
(5.9)

×
(
EFn

[
U(X; θ̂q,n)TU(X; θ̂q,n)

])
, (5.10)

i.e. an estimate of the matrixKq(θ
∗) times the Fisher information. Therefore,

W (θ̂q,n)−2 ≥ Îq(θ̂q,n)
[
Ĵq(θ̂q,n)K̂q(θ̂q,n)Ĵq(θ̂q,n)

]
(5.11)

and W (θ̂q,n)−2 is an empirical upper bound for efficiency. The above calcula-

tion enlights that the convergence rate of the algorithm contains information

about the efficiency of the estimates through equation (5.5). Windham [28]

considered equating diagonal elements of (5.5), say w to r̂, an estimate of

the convergence rate. By solving for w one obtains w = r̂/[(1 − q)(r̂ − 1)],

which holds w−2 = (1 − q)2 (r̂−1 − 1)
2
. In practice, for choices of distor-
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tion paramters in a grid Qk = {q1, . . . , qk}, correponding convergence rates

convergence rate can be computed as

r̂qj =
||θ̂(S)

qj − θ̂
(S−1)
qj ||

||θ̂(S−1)
qj − θ̂(S−2)

qj ||
, 1 ≤ j ≤ k, (5.12)

where θ̂(S) is the last step of the algorithm. The distortion parameter is then

selected according to

q̂ = arg min
q∈Qk

{
(1− q)2

(
r̂−1
q − 1

)2
}
. (5.13)

Strategy 3: Parametric Bootstrap. Besides the above strategies, data-

driven procedures for the estimation of q aimed at the minimization of the

generalization error are also viable candidates. In particular, we recommend

bootstrap techniques over other methods such as leave-one-out or k-fold

cross-validation. In cross-validation, it is customary to divide the original

sample in two parts: a training set and a testing set smaller than the total

sample size. However, because of the relationship between the sample size

and the value of the optimal distortion parameter in MLq estimation, this

may cause biased estimates of q. Of course, the situation may be particularly

serious when the size of the sample under exam is moderate or small.

6 Numerical studies

6.1 Examples

The following two examples demonstrate the performance of the estimator

on two real datasets.

Example 6.1. In this example, we consider n = 799 observations of time

intervals (in seconds) between successive pulses along a nerve fibre in Hand
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et al.[14] (dataset 160). The goal of this example is to show that MLqE is su-

perior to MLE for estimating the exponential rate, when a small or moderate

sample size is considered. Inspections on the data shows that an exponential

distribution is appropriate. Since there are no evident outliers, the selection

of the distortion parameter is based on the bias-adjusted efficiency criterion.

Not surprisingly, the ML and MLq estimates for the whole dataset are very

close: θ̂q∗,n = 4.37 (se =.16) with optimal distortion parameter q∗ = 1.05 and

θ̂1,n = 4.58 (se =.16).

A simple hold-out procedure is then employed for evaluating the per-

formance of the two estimators in small or moderate samples. We draw

B = 250 subsamples of size n∗ < n from the original sample and computed

the quadratic error E(q, n∗) := B−1
∑B

b=1(θ̂q,n∗ − θ̂1,n)2. The results in table

n∗ = 10 15 25 50 100 200 400
E(1, n∗) 7.66 7.14 5.13 3.35 2.99 2.76 2.52
E(q∗, n∗) 6.32 5.88 4.39 2.99 2.81 2.66 2.51

q∗ 1.071 1.051 1.036 1.021 1.011 1.006 1.001
Gain (%) 17.47 17.72 14.41 10.78 6.13 3.66 0.64

Table 1: Hold-out validation error of MLqE and MLE for estimating Exp(θ)
in the nerve pulse data set. The last row indicates the percent gain of MLqE
over the MLE.

?? illustrate that setting q slightly larger than one improves the accuracy.

The gain is sensible when the sample size is small and persist even for larger

samples.

Example 6.2. In this example, we apply our method to Newcomb’s dataset,

representing 66 measurements of the passage time of light. Among others,

Brown and Hwang [7], Basu et al. [3] and Bhandari et al. [6] analyzed this

dataset under a normal model N(µ, σ), as it will be the case here. Since

the data present strong outliers at −44 and −2, the selection of q is per-

formed by the criterion function based on the estimated convergence rate of
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With outliers W/o outliers
q̂ = 0.83 q = 1 q = 1/2(∗) MHDE q̂ = 1.02 q = 1 q = 1/2(∗) MHDE

µ̂ 27.65(0.63) 26.21(1.32) 27.25(0.65) 27.46 27.76(0.64) 27.75(0.64) 27.25(0.65) 27.40
σ̂ 4.63(0.52) 10.66(3.52) 4.34(1.15) 4.98 5.09(0.45) 5.04(0.46) 4.34(1.15) 4.84

Table 2: Estimated parameters for the Newcomb data and their standard
errors (in parenthesis). The cases q = 1 and q = 1/2 correspond to maximum
likelihood and Hellinger distance estimates, respectively. The last line shows
the bias-adjusted asymptotic efficiency of the estimators compared to that
of MLE. (∗) Estimates have been obtained by adjusting the MLqE for its
asymptotic bias.

the MLqE. Table 6.2 presents the MLqE estimates of µ and σ for different

choices of the distortion parameter: q̂ denotes the estimated optimal value

of the distortion parameter, q = 1 and q = 1/2 correspond to maximum

likelihood and Hellinger distance esimates. Note that for finding Hellinger

distance estimates we adjusted the estimator for its asymptotic bias. Namely,

the Hellinger distance estimates of µ and σ are µ̂1/2,n and
√

2 σ̂1/2,n. The

analyses were also repeated after leaving out the two evident outliers. With

the outliers, MLqE shows remarkable robustness properties compared to the

MLE. In particular, the estimates for (µ, σ) of (27.65, 4.63) are very close to

to those based on L2 distance computed by Brown and Hwang ([7], p.254

) and Basu et al. ([3], p.557), who found (27.38, 4.67) and (27.29, 4.67) re-

spectively. Bhandari et al. found similar value for the minimum generalized

negative exponential density estimator and for the hellinger distance esti-

mator based on kernel smoothing ([6], p. 105). Without the outliers, MLqE

adapts well to the data and selects q̂ near 1, resulting in estimates close to the

MLEs and giving about the same efficiency. A visual representation of this

is supplied in Fig. ??, where fitted normal densities are superimposed to the

histograms of Newcomb data. In presence of outliers, the curve correspond-

ing to q̂ = 0.83 fits the body of the histogram better than the other cases.

When the outliers are left out, the MLqE and MLE are basically identical.
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Figure 5: Histograms of the Newcomb data with outliers (left panel) and
without (right panel) with normal densities fitted using maximum Lq-
likelihood (MLqE), maximum likelihood (MLE) and minimum Hellinger dis-
tance (MHD). The distortion parameter for MLqE is computed using Wind-
ham’s crieterion.
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6.2 Simulations

Contaminated normal model. We conducted a simulation study for the

N(µ,σ) model and computed the Monte Carlo mean, variance and mean

square error for MLE, MLqE and MHDE, under different contaminated mod-

els of the form τN(µ, σ) + (1 − τ)N(µc, σ), where µc = µ + 4, σ = 1.

We considered τ = 0 and 0.05 and n = 10, 25, 50, 100. When contami-

naticon is included, the samples present nonobvious outliers on the right

of the bulk of the data. To decide the value of q, we employ Windham’s

criterion. The MDHE is implemented using the automatic kernel density

function with the Epanechnikov kernel (w(x) = 0.75(1 − x2), if |x| < 1,

and w(x) = 0, otherwise) and bandwith h = cnsn, where cn = 0.5 and

sn = (0.6745)−1median(|Xi − median(Xi)|) (e.g., see Bhandari et al. [5]).

We tried other kernels and methods for the bandwidth choices obtaining re-

sults similar to those reported here. In our analysis, we also consider the fully

nonparametric version of the minimum hellinger distance estimator by com-

puting the MLqE with q = 1/2 and adjusting the estimates for the asymptotic

bias. In all the experiments, the Monte Carlo sample size is B = 5000.

The results in in Table 6.1 suggest that the MLqE performed well whether

or not contamination was present. For each simulation setting we the report

mean squared error of the estimates, computed as B−1
∑

b(θ̂b−θ0),θT0 = (0, 1),

along with its components: the squared bias and the variance. Without con-

tamination, we obtained values of q close to 1. As a consequence, the mean

squared error of MLqE occurred to be close to that of MLE. Note that the

minimum hellinger distance estimates – both kernel smoothing and MLqE

with q = 1/2 – tend to be substantially less efficient than the other methods

when contamination is absent. When contamination is included, we esti-

mated 1/2 < q̂ < 1 and the MLqE outperformed not only the MLE but also

the MHDE by balancing the trade-off between efficiency and robustness for
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all sample sizes. Clearly, both types of minimum hellinger distance estima-

tors do better than MLE in this setting, as the latter is highly nonrobust. It

is worth noticing that the q̂ changes towards 1 as the sample size grows in

both contaminated and clear data.

Finally, compare the kernel-smoothed MHDE with our fully nonparamet-

ric version. The two estimators performed similarly and, as expected, their

efficiency tended to be the same for larger samples. Note, that in very small

samples, a properly performormed kernel smoothing yields better results,

due to the additional flexibility given by the bandwidth selection. However,

depending on the choice of the kernel and the bandiwith selection criterion,

MHDE can give diverse results when small samples are considered. In most

cases, we found that the kernel-smoothed MHDE performed comparably to

our method.

Efficiency and choice of q. A second numerical study aimed to explore

the behavior of the MLqE when data are sampled from a Exp(1) model.

Here, we disregard robustness and focus on assessing the efficiency of MLqE.

The performance of MLqE is gauged using R̂(q, n), the ratio between the

Monte Carlo mean squared error of MLE over that of MLqE for sample sizes

n = 5, 15, 25, 50, 100. When estimating the MLqE, we consider choosing q

using both Windham and the bias-adjusted relative efficiency criteria. The

standard errors for R̂(q, n) are computed via the Delta method. The results

in Table ?? show that for small or moderate sample sizes, R̂ > 1 meaning that

the MLqE is more efficient than MLE. However,note that when q is chosen

by Whindam’s criterion the gain is more modest than the case when the

asymptotic criterion is used. Fig.?? shows R̂(q, n) corresponding to numerous

choices of q on the horizontal axis for various sample sizes. The superimposed

solid line represents the bias-asjusted relative efficency between MLqE and

MLE in eq.(). One can see that the optimal best values of q based on the

Monte Carlo simulations tend to be greater than the maximum for the solid
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N(0, 1) 0.95N(0, 1) + 0.05N(0, 4)
n Bias2 Var MSE q̂ Bias2 Var MSE q̂

MLqE
15 0.0015 0.0990 0.1005 1.0550 0.0119 0.1714 0.1832 0.8322
25 0.0001 0.0606 0.0608 1.0500 0.0089 0.0988 0.1077 0.8297
50 0.0000 0.0303 0.0303 1.0473 0.0113 0.0442 0.0555 0.8511
100 0.0001 0.0149 0.0151 1.0454 0.0162 0.0207 0.0369 0.8646

MLE (q = 1)
15 0.0031 0.0982 0.1013 0.0993 0.2455 0.3447
25 0.0009 0.0603 0.0611 0.1142 0.1562 0.2704
50 0.0002 0.0301 0.0302 0.1245 0.0773 0.2017
100 0.0001 0.0148 0.0149 0.1401 0.0381 0.1782

MLqE∗(q = 1/2)
15 0.0224 0.2214 0.2437 0.0196 0.2524 0.2720
25 0.0064 0.1301 0.1365 0.0072 0.1451 0.1523
50 0.0015 0.0595 0.0609 0.0012 0.0643 0.0655
100 0.0004 0.0274 0.0278 0.0000 0.0305 0.0305

MHDE
15 0.0005 0.1484 0.1489 0.0091 0.2185 0.2276
25 0.0001 0.0964 0.0965 0.0088 0.1325 0.1413
50 0.0003 0.0482 0.0485 0.0078 0.0618 0.0696
100 0.0004 0.0239 0.0243 0.0085 0.0302 0.0387

Table 3: Monte Carlo squrared Bias, variance and mean square error of the
MLqE, MHD and MLE of µ and σ for sample sizes 15,25,50,100 and 250
under clear and contaminated normal model.
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6.2

n = 5 15 25 50 100

R̂ 1.174(.008) 1.134(.005) 1.103(.004) 1.055(.004) 1.030(.003)
q∗ (Adj-Eff) 1.108 1.052 1.034 1.019 1.010

R̂ 1.049(.002) 1.068(.002) 1.068(.004) 1.054(.006) 0.988(.009)
q̂ (Windham) 1.071 1.043 1.038 1.034 1.032

Table 4: Monte Carlo relative efficiency between MLqE and MLE for vari-
ous sample sizes. Asymptotic bias-adjusted relative efficiency (Adj-Eff) and
Whindam’s criterion are employed for choosing q.

line.

This findings indicate that for smaller samples the asymptotic criterion

is too conservative and it can be further improved. Thus, a last set of simu-

lations was devoted to investigate whether the choice of q via bootstrap can

improve further the efficiency of MLqE in small or moderate samples. Given

a grid of distortion parameters q, we generated Monte Carlo samples from

an Exp(1) and for each sample selected the optimal value of q by minimiz-

ing a bootstrap estimate of the mean squared error based on 250 bootstrap

repetitions. The procedure is repeated for n = 15, 25, 35, 50, 75, 150, 250. In

Fig., we plot the Monte Carlo estimates of the optimal qs chosen via boostrap

along with: (i) the true optima, i.e. the values that minimize the Monte Carlo

mean squared error and (ii) optimal q based on minimization of asymptotic

mean squared error ??. Overall, parametric boostrap approximates better

the true optima and does sensibly better than the asymptotic criterion for

sample sizes of 25 or larger.

Generalized linear models with covariates Our technique for para-

metric density estimation can be easily extended to generalized linear mod-

els (GLM). In the current experiment, we consider a response variable Y ,

from an exponential distribution with rate exp (−Xβ), where X denote the
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Figure 6: True values of q (MC) along with estimates of the optimal q
via parametric bootstrap (Par.Boot) and minimizing eq. (Asympt.). The
vertical segments represent 95% cofindence intervals.
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p covariates and β is the vector of coefficient to be estimated. The simula-

tions are structured as follows. Initially, we randomly draw n design points

x1, . . . , xn from the hypercube [−1, 1]p and keep them fixed throughout the

study. The vector of the true coefficients β0 is generated from a Unif[−1, 1]p.

Then, we cosider 1500 Monte Carlo samples of size n of the response from

Exp(exp(Xβ0)) and for each Monte Carlo sample we compute the MLqE

of β0. The choice of q is performed minimizing the bias-adjusted relative

efficiency. The performance is finally gauged by comparing Monte Carlo

estimates of the residuals sum of squares:

RSS.ratio =
RSS(n, 1)MC

RSS(n, q)MC

=

∑B
b=1

∑n
i=1(log (yi)− xiβ̂1,n)2∑B

b=1

∑n
i=1(log (yi)− xiβ̂q,n)2

(6.1)

The Monte Carlo standard error of R̂(q, n) is computed using the Delta

method (CITE). The study is repeated for p = 2, 4, 8, 16 and n = 25, 50, 100, 500.

Finally, we assess the prediction error of the MLqE compared to that

of MLE using leave-one-out cross validation. We consider samples of size n

of (X, Y ) generated as described above. The parameter values β are also

generated analogously. Let us denote by (X−i, Y−i), the training data set,

obtained by excluding the ith point. From the training set, we calculate the

MLqE and MLE of β denoted by β̂
(−i)
q,n . An estimate of the prediction error

based on a squared lost is computed as

PE(n, q) = n−1

n∑
i=1

(
log (yi)− xiβ̂(−i)

q,n

)2

. (6.2)

We repeat the hold-out validation for different numbers of covariates p =

2, 4, 8, 10 and sample sizes n = 25, 50, 100.
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p n = 25 50 100 500
2 2.4571(0.0149) 2.3461(0.0092) 2.3014(0.0059) 2.3023(0.0026)
4 3.1601(0.0341) 2.7018(0.0142) 2.9942(0.0117) 2.8152(0.0049)
8 6.7402(0.2364) 3.1389(0.0221) 3.3599(0.0156) 2.9757(0.0056)
16 19.9716(0.8626) 22.2592(1.0620) 6.1786(0.0731) 6.0593(0.0233)

Table 5: Monte Carlo estimates of the ratio of the residuals sum of square of
MLE over that of MLqE as in (6.1). In parenthesis we report the standard
error of the Monte Carlo estimates, computed using the Delta method. The
Monte Carlo sample size is 1500.

MLqE MLE Penalty
p n = 25 50 100 25 50 100 25 50 100
2 1.50 2.95 1.85 3.79 5.85 4.53 3.76 5.82 4.46
4 2.00 1.49 1.90 5.45 4.21 5.12 5.05 4.03 4.97
8 3.04 1.36 1.85 24.88 4.96 5.74 5.45 3.88 5.54
10 3.94 1.60 2.06 24.11 9.46 6.11 6.08 6.07 5.33

Table 6: Prediction errors for MLqE, MLE and penalized likelihood estima-
tion with ridge penalty, computed using leave-one-out validation.

7 Final Remarks
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Appendix A

Calculation of the asymptotic variance of the MLqE

In this section we report the main passages for the calculations for the asymp-

totic variances discussed in section 4.3.
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Univariate Normal with known mean

In this case, the score function is

log f(x;µ, σ) = −1

2
log (2πσ2)− (x− µ)2

2σ2
(7.1)

Consider derivatives taken with respect to µ and σ. The gradient vector and

hessian matrix are

U(x, σ) =
(x− µ)2

σ3
− 1

σ
(7.2)

and

I(x, σ) =
1

σ2
− 3(x− µ)2

σ4
(7.3)

Next, we compute the integrals

Kq =

∫ ∞
−∞

U(x, σ
√
q)2f(x;µ, σ

√
q)2(1−q)f(x;µ, σ)dx (7.4)

=
σ2q−4(2π)q−1qq−3/2(3− 2q + q2)

(2− q)5/2
(7.5)

J (A)
q =

∫ ∞
−∞

U(x, σ
√
q)2f(x;µ, σ

√
q)(1−q)f(x;µ, σ)dx (7.6)

= −2(1+q)/2πq−1)/2qq/2−1σq−3 (7.7)

and

J (B)
q =

∫ ∞
−∞

I(x, σ
√
q)f(x;µ, σ

√
q)(1−q)f(x;µ, σ)dx (7.8)

= −2(1+q)/2π(q−1)/2qq/2−1σq−3 (7.9)
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Thus, we using some simple algebra, we compute the diagonal matrix

Jq = (1− q)J (A)
q + J (B)

q = −2(1+q)/2π(q−1)/2qq/2σq−3. (7.10)

Finally, we have

J−1
q KqJ

−1
q = σ2 (3− 2q + q2)

4(2− q)5/2q3/2
. (7.11)

Re-weighting algorithm for multivariate normal

The multivariate normal distribution has the following pdf:

f(x; µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
, (7.12)

where | · | denotes the matrix determinant. The logarithm of the likelihood

evaluated at the i-th observation xi is

`i := log f(xi; µ,Σ) = −p
2

log(2π)− 1

2
log(|Σ|)− 1

2
(xi − µ)′Σ−1(xi − µ)

(7.13)

Define zi = Γxi, 1 ≤ i ≤ n and µ∗ = Γµ, where Γ is such that ΓΣΓ =

Λ = diag(λj). The determinant of Σ can be computed as the product of the

latent roots λj, i.e. |Σ| =
∏p

j=1 λj. Next, note that the last summand in

(7.13) is

(xi − µ)′Γ′ΓΣ−1Γ′Γ(xi − µ) = (zi − µ∗)′Λ−1(zi − µ∗). (7.14)

Thus, we can rewrite (7.13) as:

`i = −p
2

log(2π)− 1

2

p∑
j=1

log(λj)−
p∑
j=1

(zij − µ∗j)2

2λj
, (7.15)
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where µ∗j and zijare j-th elements of µ∗ and zi, respectively. Given a vector of

constants, v′ = (v1, . . . , vn) such that
∑n

i=1 vi = 1, the estimating equations

have the form

n∑
i=1

vi
∂`i
∂µk

=
n∑
i=1

vi
(zik − µ∗j)

λk
, k = 1, . . . , p (7.16)

and

n∑
i=1

vi
∂`i
∂λk

= −
n∑
i=1

vi
2λk

+
n∑
i=1

vi
(zik − µ∗j)2

2λk
, k = 1, . . . , p. (7.17)

Equating (7.16) and (7.17) to zero gives solutions µ̂∗k =
∑n

i=1 vizik and λ̂k =

n−1
∑n

i=1 vi(zik − µ̂∗k)2. Finally, some straightforward algebra shows that the

solutions can be written in terms of the untransformed variable xi as

µ̂ =
n∑
i=1

vixi and Σ̂ =
n∑
i=1

vi(xi − µ̂)′(xi − µ̂). (7.18)
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