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Preface

During the three years of my PhD research, I worked together with my supervisor, Prof. Guido Sciavicco

on many different projects. Although some of these projects brought us relevant publications not included

in this thesis, they are still worth mentioning. In one instance [1], we proposed a new method for

symbolic multivariate temporal regression which was then applied to improve our previous results in the

air pollution problem (Chapter 6). In another publication [2], we provided a novel discretization algorithm

to perform an association rule extraction that was also applied to the same data. In a third instance [3],

we designed a standard prediction model for specific oceanic resources. In all of these publications,

we worked in the subfield of explainable machine learning and we applied these novel models to solve

real-world problems. This thesis focuses on solving real-world problems by providing explanatory and

interpretable results. The difference between the results in these three publications and those included

in the thesis is that the former publications entailed working on new algorithms at a much lower level

when compared with the latter publications (in [1, 2]), and their results are certainly less immediately

applicable, or working with standard technologies (in [3]). The results included in this thesis, on the

other hand, are characterized by a new methodology (proposed in this thesis) combined with standard

learning algorithms.
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Chapter 1

Introduction

1.1 A General Framework

Artificial intelligence, and particularly machine learning, has been the most powerful tool for intelligently

automating human activities in the last decades. In different fields, artificial intelligence helps people and

solves real-world problems. It is a tool that, by helping the understanding of natural processes, brings

new solutions to common and unresolved problems. In present times, mathematics and computer science

work together to solve problems, to create new problems and to discover new possibilities and approaches.

This is the premise of this research: to develop new mathematical and computer science methods that

provide better solutions to real-world problems by searching for optimal models. Specifically, we studied

preprocessing and machine learning techniques to obtain better and more relevant results than those

existing in current literature. Our goals were also to obtain interpretable and explainable results and

to find the optimal model according to the application specificity. In order to develop the best models

and, later, a general mathematical framework that will allow us to solve various real-world problems,

we first needed to study real data and its characteristics. The issues studied in this research concern

the conservation and preservation of natural resources such as water, as well as earth and atmospheric

resources. The current approaches often consist of long-term (sometimes by hand) processes to manage

huge amounts of information and associated data. We developed methods that learn from these data and

then used them to better understand the natural processes. As examples, we approached the problem

of the protection of water resources by concerning the preservation of the availability of fresh water; we

studied the characterization of medieval buildings; and we studied the problem of recognising the factors

that have the greatest impact on the concentration of air pollutants at a specific time and geographical

location. After analyzing the data, we realized that all of the issues above had commonalities: the data

consists of a set of chemical, physical, and/or isotopic origins, they require similar data preprocessing

steps, and they are meant to produce interpretable models and results. Thus, we need an initial

preprocessing phase, a learning algorithm to solve specific problems, and interpretability measures.

Given this, the methods that we are looking for must take into account both the performance of the

learning algorithm and the interpretation of the results. The solutions are associated with more than

one objective which, therefore, implies that our problems are intrinsically multi-objective. In machine

learning, the techniques used to solve multi-objective problems are called multi-objective optimization

algorithms. Interpretable results are results that consist of a reduced number of attributes and relations

between them, so that the expert is able to give straightforward explanations, if possible. This meant

that all of our problems required an optimized feature selection. This then inspired us to utilize feature

selection, seen as a multi-objective optimization problem, as the basis to develop all of our models. In

addition to providing new machine learning models to solve the real problems that we considered, this
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study analyzed the properties that are common across these models, in order to obtain a more general

mathematical framework. Such a framework consists of the previously mentioned elements: data input,

preprocessing techniques, learning algorithms and optimization algorithms. The question that we posed

is: is there a common scheme or approach to all of our solutions? Can we devise a general mathematical

framework of which all our models are particular cases? To answer these questions we analyzed the

building elements of each model and realized that the same procedure was repeated each time. Inspired by

the feature selection process seen as a multi-objective optimization problem (well known in the machine

learning community and literature), we modeled all of our problems as multi-objective optimization

problems. As a result, we instantiated the multi-objective optimization equation with different objective

functions associated with the specific problem requirements. Then, we used the individual (or gene)

definition to create the new interpretability measures. The individual definition is a component of the

optimization problem and we modeled it to perform the preprocessing technique. That is, we defined

the individual based on preprocessing requirements and later, we used the individual representation to

perform preprocessing techniques and to define the interpretability measures. Interpretability measures

are the objective functions of our problem and, as previously mentioned, we used them together with

the objective functions associated with the performance of the learning algorithm to instantiate the

multi-objective optimization equation. In response, we provided a general mathematical framework that

included data input, a preprocessing phase, a learning phase and an optimization phase, which all pivot

on their common element: the individual.

1.2 The Framework as a Wrapper

Feature selection in real cases such as ours is used to determine exactly which independent variables have

a role in learning certain tasks. Feature selection methods (see Figure 1.1) are categorized into filters,

wrappers and embedded models. Filters are algorithms that perform the selection of features using a

statistical measure that classifies their significance without making use of any machine learning algorithm;

wrappers evaluate the attributes driven by the performances of an associated learning algorithm, and

embedded models perform the two operations (selecting variables and building a classifier) at the same

time. While embedded models tend to produce very good subsets efficiently, they are usually complex

and difficult to implement. On the other hand, filters are very simple, and their results are often of lower

quality when compared to wrappers. We used the idea of feature selection as a wrapper (see Figure 1.2)

as the basis of all our implementations as this allowed us to separate the various components, and focus

on each of them separately. Regarding the optimization of algorithms, the range of possible choices is

very wide. In terms of purely multi-objective optimization, though, the possibilities are reduced; our

option was to use genetic algorithms for this role. Exploring what happens when genetic algorithms are

substituted with other paradigms in the same context is a open problem, both in terms of definitions and

in terms of results. A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory

of natural evolution. This algorithm reflects the process of natural selection where the fittest individuals

are selected for reproduction in order to produce offspring for the next generation. The process of natural

selection starts with the selection of the fittest individuals from a population. They then produce offspring

which inherit the characteristics of the parents, which will continue to the next generation. If parents

have better fitness, their offspring will be better than the parents and, therefore, have a better chance

at surviving. This process keeps on repeating and will result in a generation with the fittest individuals.

This notion can be applied to a search problem, where we consider a set of solutions for a problem and

then select the set of best ones. In a genetic algorithm, there are several important components, which

include, the choice of the initial population; the choice of the fitness function(s); and the definitions of

three operators, namely selection, crossover and mutation. The process begins with a set of individuals

10



CHAPTER 1. INTRODUCTION

known as the initial population. Each individual is a solution to the problem that we want to solve. An

individual is characterized by a set of parameters (variables) known as genes. Genes are joined together as

a string to form a chromosome (i.e., a solution, or individual) and usually, binary values are used to encode

it. In our framework, we codify the genes of an individual depending on the preprocessing requirements

of the specific problem. That is, we use different values (binary, integer or real, or ranged values) and

we define the size of an individual based on the preprocessing technique necessary for the application.

For example, to perform the classical feature selection, we use binary values and we set the individual

size as the number of attributes of the data set. For example, a gene with a value of 0 means that the

attribute in that gene position is removed and a gene with a value 1 means that the attribute in this gene

position is selected. As another example, to perform an outlier detection, we set gene size as the number

of instances of the data set and we used binary values whereby 0 means that the instance is deleted and

a 1 value means that the instance is preserved. Accordingly, let us observe how interpretability measures

can be defined by using this individual representation. We can define the cardinality of an individual

as the number of features selected by the feature selection process. Considering the previous definition

of our individual in the feature selection process, cardinality is defined as the number of values 1 of

the individual itself. The cardinality function can be considered as an objective function and can be

minimized in the optimization process. We shall see that similar measures can be defined in different

interpretations of the individual in order to solve different problems. The fitness function is an evaluation

function that determines how fit an individual is (i.e. the ability of an individual to compete with other

individuals) by giving a fitness score to each individual. This fitness score, in our case, is associated with

the performance of the learning algorithm of a particular solution as well as the interpretability of such

solution. For example, if the learning algorithm consists of a linear regression, one fitness function may

be the correlation coefficient of the regression model. A fitness function is considered as an objective

function, and will be maximized or minimized in the context of the optimization, depending on the case.

Currently, we have a population whose individuals have a fitness score that determines their level of

fitness. However, a population usually consists of a large number of individuals and, given this, the

goal of the next phase is to gather the individuals with the highest fitness scores. The main goal of

the selection operator is to make duplicates of the good solutions and eliminate the bad solutions in a

population, while keeping the population size constant. The selection operator characterizes a specific

genetic algorithm over the others. Our choice was to use a well-known algorithm, whose suitability is

accepted in the literature; we did not explore different options. The crossover operator(s) make their

selections from the mating pool at random, and sections of the strings that represent the individuals are

exchanged between them to create two new strings. We used the single-point crossover operator that

performs by randomly choosing a crossing site along the string and by exchanging all bits on the right

side of the crossing site. Here, depending on the individual representation, we defined the range of the

crossing sites; in other words, we created different versions of this operator for different problems. This

operator is mainly responsible for the search aspect of genetic algorithms, even though the mutation

operator can also be used for this purpose. The mutation operator consists of randomly flipping some of

the sections of the strings that represent individuals, with some form of a mutation probability. In those

cases in which individuals are represented with non-binary pieces, the mutation had to be redefined. We

limited our versions of the mutation by setting a range of possible (and meaningful) values. Finally,

the typical termination condition consists of checking if the population has converged (does not produce

offspring which are significantly different from the previous generation) or a predetermined number of

iterations has been reached.
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1.3. THE FRAMEWORK AS A MATHEMATICAL OBJECT

Figure 1.1: Feature selection methods.

Figure 1.2: Wrapper.

1.3 The Framework as a Mathematical Object

The final goal of this thesis is to define a general framework in an abstract sense, in addition to the

practical and implementation one. We aim to design a general form of operator that applies to classically

presented data, i.e., in tabular form, by taking into account their components: instances, attributes,

and dimensional characteristics. We are interested in problems with final solutions that will be the

result of feature selections, outlier detections, and feature extraction and transformation. Inspired by

the wrapper-based approach to feature selection, we defined all such processes as wrappers and, in the

end, as particular cases of the same mathematical operator acts on the data. Such an operator is

parameterized by the specific preprocessing that the data require, and the parameterization determines

the shape and the interpretation of an individual (in terms of multi-objective optimization solved via

a genetic algorithm). By abstracting all such processes, our purpose is to study the properties of this

operator and, in due course, to lay down the bases for their integrated treatment. In this sense, we shall

define very practical objects such as water fingerprints or geochemical characterization as, depending on

the case, specific applications of the same, general operator, therefore offering a clean, mathematically

well-founded characterization of processes that in the literature are, in many cases, simply applied (that

is, without any formal treatment or interpretation).

12
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Structure of the Thesis

The thesis is organized as follows.

• In Chapter 1 we present the premise of this work and the real-world problems studied. Then,

we explain the steps we followed to obtain the general mathematical framework definition. We

introduce the more important elements and properties of the framework and finally, we show the

math application nature of our framework.

• In Chapter 2 we give the necessary background of the components of our general framework.

We deal with data type, data preprocessing techniques, data analysis techniques and optimization

algorithms.

• In Chapter 3 we describe our methodology. First, we present the math characterization of our

general framework. We include math characterization of data and the prepocessing techniques

used, individual and the iteration between them. Finally, we present the implementation by using

the optimization algorithm.

• In Chapter 4 we present a problem related to protection of water resources, concerning the

preservation of the availability of fresh water. We explain models used to solve it and the results

obtained.

• In Chapter 5 we present the atmospheric resource problem. We explain the models that have been

used to solve it and the results obtained.

• In Chapter 6 we explain the problem associated to earth resource. We describe the model used to

solve it and the results obtained.

• Finally, in Chapter 7 we mention the main objectives satisfied by this thesis, our contributions, as

well as the remaining questions to be addressed in future work.
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Chapter 2

Background

2.1 Data

2.1.1 Data Sets

Definition 1 (data set as a collection) A data set I = {I1,. . . ,Im} is a finite collection of m

instances, each of which is characterized by values of n distinct attributes A = {A1, . . . , An} and a name,

N . We say that I is labeled if every instance I is associated to exactly one class C ∈ C = {C1, . . . , Ck}.

A data set may contain spatial or temporal information, which means that some of the attributes may

be temporal or spatial coordinates; this is a very general setting that captures how most data sets are

traditionally presented. Needless to say, non-spatial and non-temporal data do not have any coordinates.

In an ideal situation, spatial coordinates are assumed to be codified in a single column, while in reality,

they are usually spread out on several dimensions. When possible, names are used to identify the different

devices, persons or resources from which the features are collected. Thus, in the simplest case, data can

be collected from a single source, without any spatial-temporal identification. While in the most complex

cases, we have several sources (therefore, several names), each of which contributes data at different times

and locations. Classes may be categorical or numerical and we shall see how theses cases are associated

with problems that, although, are different in nature, they may be approached in very similar ways. By

considering the instances of a data set as rows and the attributes as columns, a data set can be defined

as a matrix, as follows.

Definition 2 (data set as a matrix) A data set I is a matrix with m rows and n + 4 columns A =

{N,A1, . . . , An, T, S, C}. The columns A1, . . . , An contain the values of n independent attributes, while

the column N (resp., T, S) contains the values of the name (resp, temporal, spatial) attributes:

I =



N1 a11 a12 . . . a1n−4 t1 s1 c1

N2 a21 a22 . . . a2n−4 t2 s2 c2

...
...

...
. . .

...
...

...
...

Nz am1 am2 . . . amn−4 tm sm ck


mn

(2.1)

where z, k ≤ m.

In the rest of this work, we shall use several alternative notations and we shall make some simplifying

assumptions. For a given attribute A, we shall use dom(A) to denote its domain, that is, the set of all

values that occur in the column A in I. We assume that dom(T ) is an initial segment of N. As such,
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this assumption allows us to deal with most real-world cases. It should be noted that we are, in fact,

discarding temporal distances between events. We make the same assumption for dom(S); even if space

can be generally described by several coordinates with finite domains, one can always encode tuples in

single numbers. In this case, I may be associated with one or several auxiliary functions and we shall

always assume that there is a function dist(s, s′) that returns the distance between two spatial locations

s and s′ along any of the coordinates.

2.1.2 Knowledge Extraction

Historically, different approaches have been used to extract information from a data set. In the simplest

cases, names, time, space, and classes can be ignored, and extracting knowledge from a data set I is,

therefore, reduced to understanding the mathematical behavior of the attributes, often referred to as

descriptive statistics. In doing so, we analyze each attribute (or variable) independently, and the goal is

to summarize the information that we can extract from such an analysis. We use descriptive statistics to

describe individual quantitative observations and, very often, the methods that are applied are graphical

by nature (i.e. histograms, boxplots, and scatter plots). Descriptive statistics are progressively integrated

with inferential statistics when relations between variables are taken into account, and even in simple

scenarios, much effort can be devoted to understanding the possible multivariate relationships that the

data present. As indicated previously, such relationships may help to understand how the data behave.

When considering classes, the idea of causality arises, and regression and classification models are used

to understand the processes that underlie the data. Regression is the term commonly used to denote the

inferential methods for describing the behavior of one variable (for this study, the class variable when

it is numeric) in terms of other variables (for this study, the attribute variables). Classification, on the

other hand, deals with non-numerical classes, and consists of describing how the class variables depend

on the values of the attributes. These two problems originally stem from different areas (inferential

statistics the former, machine learning the latter) but share a number of concepts and methods. It can

be argued that, as of late, machine learning when intended as a discipline, includes both regression and

classification tasks and algorithms. Moreover, the ever-growing quantity of data that are produced and

recorded, and that are therefore object of analysis, justifies a frequentist approach to learning – typically

associated with machine learning, as opposed to a distribution-based – typically associated to inferential

statistics. Interestingly, focusing on classification does not automatically entail that neither descriptive

or simple inferential methods become ineffectual. For example, a simple binary classification problem

can be approached by observing how the mean of a particular attribute changes among positive and

negative cases, and a näıve classifier can be designed based on such an observation. The same principle

applies to any other descriptive method, as well as to non-class oriented inferential methods (e.g., one

could build a classifier based on the level of linear correlation between two columns). Such immediate

approaches can be evaluated using the same machinery employed for true classifiers, that is, exploiting

concepts such as training+test approaches, among many others. In a sense, pure classification and

regression approaches generalize such simple approaches. In the case of real-world data and problems,

however, classification and regression may not be enough. As a matter of fact, in real-world situations,

the premise is not necessarily searching for relations between variables and/or the class, and ultimately,

many practical problems cannot be solved by simply classifying or predicting something. Meta-learning

can be defined as a set of techniques that are independent of the learning algorithm and that, when

applied, help the task of the learning algorithm. These techniques are classically separated into feature

selection and transformations, instance selection and outlier detection. Feature selection is defined as the

process of selecting features from the database that are relevant to the task to be performed [4]. Moreover,

feature selection can be generalized to feature transformation in order to take into account temporal and

spatial aspects (not usually considered by conventional classification and regression algorithms) as well
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CHAPTER 2. BACKGROUND

as non-linear behaviors of single variables (up to a limited point). Instance selection is defined in [5] as

the process that selects or searches for a representative portion of data that can fulfill a data knowledge

discovery task as if the whole data is used. Finally, outlier detection is defined in [6] as the process

of eliminating samples from the data base that do not comply with the general behavior of the data

model. All together, meta-learning techniques are used in combination with conventional classification

and regression algorithms. Their aim is not only to ease the task of the former, but also to extract

more abstract information that transcends the classification/regression algorithms and is, ultimately,

the solution to a practical problem. The key observation is that all such meta-processes share several

aspects: they consist of specific kinds of matrix transformations, they can be defined as optimization

problems, and they are essentially independent from the used classification/regression approach. Their

versatility makes meta-learning methods the ideal solution to a great variety of problems because they

can be immediately adapted to the multi-names cases, and they can be all defined as particular cases of

the same operator, which we call here, the dynamic preprocessing operator.

2.2 Canonical and Non-Canonical Preprocessing

2.2.1 Feature Selection

Feature selection (FS) is defined as the process of selecting features from the database that are relevant

to the task to be performed [4]. Feature selection facilitates data understanding, reduces storage

requirements, and lowers processing time, so that model learning can become an easier process. Feature

selection methods that do not incorporate dependencies between attributes are called univariate methods.

They consist of applying specific criterion to each pair feature-response, and measuring the individual

power of a given feature with respect to the response independently from the other features, so that each

feature can be ranked accordingly. In multivariate FS, on the other hand, the assessment is performed for

subsets of features rather than single features. In many cases, the data set will be better characterized by

the sole features with highest discriminative power than by the whole features, because the irrelevant and

redundant ones should be regarded as noise. However, when an individual feature in a high dimensional

feature, space presents small correlation with the target class, it may be still useful in combination with

other features. In this regard, multivariate FS tends to give better results than univariate FS [7]. From

the evaluation strategy point of view, FS can be implemented as a single attribute evaluation (in both the

univariate and the multivariate case), or as a subset evaluation (only in the multivariate case). Feature

selection algorithms are also categorized into filter, wrapper and embedded models (for example, lasso

regression [8] in regression models). Wrapper methods for feature selection are more common in the

literature and are often implemented by defining the selection as a search problem, and solved using

metaheuristics such as evolutionary computation (see, e.g., [9,10]). Wrapper schemata are more common

in supervised a classification than in a regression however, some effort in this direction has been made

(see, e.g., [11]). Other strategies for FS include adaptive boosting [12].

2.2.2 Feature Transformation: the Temporal Case

Traditionally, in machine learning, methods that handle temporal information are the same as those that

handle time series. A time series is a series of data (in our case, a row of the matrix) labelled with a

temporal stamp. In the literature, there are two main problems associated with time series: time series

explanation and time series forecasting. These problems are usually associated with different contexts

and are approached with different tools, which, however, share some common ideas. Among these, lagged

models are the best known ones. In lagged models, data are systematically transformed by adding a delay

so that a traditional, propositional learning algorithm can be then applied; among the available packages
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for this purpose, we reference WEKA’s timeseriesForecasting [13]. Lagged models are flexible by nature

because they are not linked to a specific learning schema, and their focus is on time series explanation.

While explicit models can be used for forecasting, it is not their focus considering that their forecasting

horizons are limited to the maximum lag in the model. The key point to note is that lagged variables

can be seen as a form of feature transformation, in which the correct lag is chosen (i.e. delay) to apply

to a certain column (possibly, within a certain name). Given this, we could argue that feature selection

is a particular form of lag selection. Such an observation can be further generalized into considering a

combination of different, but temporally adjacent, lags for the same variable, driven by a linear function,

as an example. As another example, consider temporal data for an air pollution problem and assume

that, among several variables, one particular variable denotes the wind speed at a certain location at a

certain time. While it is clear that the wind speed influences the pollution concentration at that same

location, the temporal aspects of such an influence may vary. To take this aspect into account, we may

consider a data transformation that combines different lags (e.g., the wind speed two hours before the

considered moment, one hour before, and at the considered moment), and assume that they all have an

influence. By combining such lagged variables into one, we may obtain a more informative, and very

interpretable data set to be used in a regression problem, for instance. We call this type of transformation

lag selection with intervals and functions.

2.2.3 Feature Transformation: the Spatial Case

In a similar way, when working with spatial data, each observation (i.e. each row of the data matrix)

is associated with a multi-dimensional location. In the planar case, for example, each location may

be represented with two Cartesian coordinates (for simplicity, these are denoted as a single column S

in Definition 2). The spatial equivalent of lagged data in the temporal case is known as flatted data,

and consists of creating, whenever necessary and convenient, new variables that contain the value of

the original ones at neighboring locations. We interpret this as another form of feature transformation,

and we treat it similar to the temporal case. Not only does this kind of spatial transformation entail

the problem of establishing distance, and in which direction(s) one should go per each point but also,

different locations may be combined into single variables as we did for different lags. An example of this

application can be seen when considering the problem of studying the presence of a certain biological

entity at each point of the area under study, at a certain moment in time. It may the case that the

variables, whose influence we are assessing, exercise such an influence from the neighboring locations at

earlier times. We call this transformation spatial selection with intervals and functions. Again, going after

a higher interpretability, both the area of influence and the ways in which the attribute influences are

limited. Not unlike in the temporal case, but with higher degrees of variability, spatial transformations

may be performed by searching into different shapes of neighboring areas, and combinations may use

different functions. Although the principles are the same, in our experiments we will limit ourselves to

simple, squared areas and linear combinations.

2.2.4 Feature Transformation: the Nonlinear Case

Finally, feature transformations allow us to deal with nonlinear problems, on a limited basis, which

arise in systems in which the change of the output is not proportional to the change of the input.

Nonlinear problems are of interest to the fields of engineering, biology, physics, among many others,

because most systems are inherently nonlinear in nature. Traditional methods of solving these problems

are generally known to fall in the field of non linear programming. But, to a certain extent, nonlinear

transformations are feature transformations and can be treated as such. We limit ourselves to considering

simple nonlinear transformations in which variables are simply elevated to a certain power. Nonlinear
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transformations, however, can be combined with both lag selection and spatial selection, whenever

necessary and convenient.

2.2.5 Outlier Detection

Outlier detection (OD) is defined in [6] as the process of eliminating samples from the database that do

not comply with the general behavior of the data model. Such samples, called outliers, differ significantly

from the remaining records in the data set, and their existence can be either caused by measurement

error or they may be the result of inherent data variability. Outliers can be detected via non-algorithmic

methods (for example, as seen in in [14]) however, more recently, algorithmic methods are the preferred

method of detection. While OD methods can be classified following a taxonomy similar to the one used for

FS methods, in the literature, OD is first separated into supervised and unsupervised methods. Supervised

OD defines outlier detection as a classification process. It requires a previous labeling of those instances

that are known to be outliers, and then it focuses on training a classifier to recognize further outliers.

Examples of supervised methods, which are focused on anomalous, unexpected, or fraudulent behavior

detecting include [15–19]. The most relevant difference between supervised OD and a simple supervised

classification problem is derived from the intrinsic unbalancing of data in the latter case. When referring

to generic outlier detection, unsupervised OD, which is more common than a supervised OD, is further

separated into density- (see, e.g., [20] and many other variants of the algorithm LOF) and distance-based

methods (see, e.g. [21, 22]). In both cases, these methods treat the OD problem as a sort of clustering

problem. In our terminology, all these methods can be classified as filters (unsupervised and supervised,

univariate and multivariate), as the process of detecting outliers is not linked to any successive learning

task or algorithm. Univariate, unsupervised filters for OD are also the most commonly available methods.

For example, the open-source suite Weka offers the filter InterquartileRange, which allows for the detection

of outliers and extreme values by looking at the values of any attribute, under a normal distribution

hypothesis. Embedded models for OD in regression have been attempted. In [23], for example, multiple

outliers are detected during the learning process, and in [24, 25] a genetic programming-based approach

to outlier detection has been presented. A comprehensive comparison among several OD methods can

be found in [26]. Outlier detection methods can be also classified as filters, wrappers, and embedded

methods just as FS approaches are. However, unlike FS, this classification is not widespread. In the

case of a regression problem there are, however, notable embedded OD methods. An example is robust

regression (see, e.g., [27]), which is a portfolio of regression techniques that are designed to respond

better than classic regression techniques when the usual hypothesis on which they are based fail, as can

be seen in the presence of outliers. Therefore, they should be listed as outlier detection techniques.

Robust methods are based either on substituting the least square principle with other principles, such

as least absolute deviation, m-estimation, least trimmed squares, or on replacing the normal distribution

with a t-distribution, or on using unit weights. Robust regression is not as popular as classical regression,

algorithms are not very widely present in learning and statistical suits, and they have been often criticized

for being computationally demanding. Robust regression has also been approached via evolutionary

algorithms [28].

2.2.6 Instance Selection

Instance selection (IS) is defined in [5] as the process that selects or searches for a representative portion

of data that can fulfill a knowledge extraction task, such as classification or regression, as if the whole

data was used. Utilizing IS reduces an original data set to a manageable volume, which leads to a

reduction in the computational resources needed to complete the learning process. As in FS and OD [29],

IS methods can be divided into filters, wrappers, and embedded methods. Instance selection methods
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use information measures or rules to evaluate instance subsets, such as weakness [30], clustering [31],

weighting [32], relevance [33], and so on. Instance selection wrapper methods use a classifier to evaluate

candidate instance subsets. Most of the IS wrapper methods have been proposed based on the k −NN
classifier [34], and this type of instance selection is called prototype selection [35]. Prototype selection

methods attempt to select a representative subset of samples from the training set, while prototype

generation methods [36] generate a small set of artificial prototypes to replace the original training set.

These methods are usually based on misclassification [37–39], although there are others based on associate

sets [40] or on support vector machines [41]. As in FS, IS can be considered as a search problem, and

forward, backward and mixed search strategies can be applied for IS [42], in addition to metaheuristics

such as evolutionary algorithms. Finally, IS methods can also be categorized according to the selection

strategy [43] into condensation algorithms that attempt to remove the instances far away from the decision

surface, edition algorithms that remove noises to improve the classification accuracy, and hybrid algorithms

that remove both central and border instances, and a reduced set can be obtained by merging border and

core instances [44]. Instance selection is not only connected to classification tasks, but also to regression

tasks [45–47]. Overviews of IS methods can be found in [48–50]. Just as FS and OD, IS tasks can be also

combined freely with lag as spatial selection, when necessary, as well as with nonlinear selection.

2.2.7 Combined Models

Combined models refer to applying FS and OD or FS and IS to the same data. Combined models range

from sequential combinations (e.g. FS+IS versus IS+FS), to simultaneous models, although the latter are

not usually defined as optimization models. Combined FS and OD has been attempted in the literature

using several different schemata. One of the early approaches includes [51], in which a two-step, rather

primitive, technique for multivariate simultaneous FS and OD was presented. A more recent diagnostic

method, based on dummy variables and evaluation-by-plotting specific for linear regression, has been

presented in [52], and a two-step method specific for linear regression, in [53]. Combined models also

include [54], based on a neural network trained by an evolutionary algorithm, as well as [55–58], which

are specific for combining FS with IS. In general, the simultaneous strategies have shown the highest

performance.

2.3 Canonical Learning Algorithms

Machine learning includes numerous learning algorithms that depend on the data type and the task to

be performed. Learning algorithms can either be supervised or unsupervised. The difference between

these two main classes is the existence of labels in the training data subset. According to [59],

supervised machine learning involves a predetermined output attribute in addition to the use of input

attributes. The algorithms’ attempt to predict and classify the predetermined attribute, and their

accuracies and misclassification alongside other performance measures, is dependent upon the ability of

the predetermined attribute to correctly predict or classify or otherwise. Accordingly, supervised learning

can be divided into two categories: classification and regression. Conversely, unsupervised data learning

involves pattern recognition without the involvement of a target attribute. That is, all the variables

used in the analysis are used as inputs and because of the approach, the techniques are suitable for

clustering and association mining techniques. Classification and regression models can be broadly divided

into tree-based, function-based and rule-based, depending on how the model is represented. Tree-based

classification models are characterized by describing the underlying theory as a tree, and they range from

deterministic single-tree models, such as ID3 or C4.5, to random tree models, to random forest models

(see, e.g., [60–62]). Function-based classification models range from the very simple logistic regression

models, to linear regression models, to neural network models (see, among others, [63–65]), and they are
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Algorithm type Category Name Source

Classifier Tree-based j48 Weka

Random Forest Weka

Classifier Function-based Linear regression Weka

Logistic regression Weka

Sequential Minimal Optimization Weka

Multilayer Perceptron Weka

Cluster Centroid-based Simple K Means Weka

MOEA Elitist Non-Dominant NSGA-II jMetal

Table 2.1: Summary of machine learning algorithms used.

characterized by the fact that the underlying theory is modelled as a function where the output value

is used to determine the class. Finally, rule-based classification models describe an underlying theory

by means of sets of rules, which are independent from each other and, in a sense, imitate the human

reasoning (see, among others, [66–68]). Rule-based classification generalizes tree-based classification,

since a tree can be seen as a particular case of rules set, but not the other way around. Moreover, single

trees and rule-based models are generally interpretable, that is, they are models that can be read (and

explained) by a human, while function-based models (especially those based on neural networks) are

not. In this thesis, we focus on tree-based and function-based algorithms for classification and regression,

as well as on clustering algorithms. All of these are seen as a black box that is independent of the

preprocessing technique. From a strict implementation point of view, we use Java and, in particular, the

classes classifiers and clusterers from the open-source learning suite Weka [69]. we have also implemented

some other derivated models using the eclipse environment. As classifiers of Weka, it was used in the

linearRegression, logistic, SMO, multilayerPerceptron, randomForest, j48 and REPTree algorithms. As

clusterers of Weka, we have used the simpleKMeans algorithm. A summary of this is shown in Table 2.1,

which also includes the evolutionary algorithm NSGA-II explained in next sections.

2.3.1 Tree-Based Classification and Regression Models

The decision tree model is probably the most widely known classification and regression model. Originally,

it was studied in the fields of decision theory and statistics however, it was found to be effective in

other disciplines such as data mining, machine learning, and pattern recognition. Decision trees are

also implemented in many real-world applications and considering the long history and the high level of

interest in this approach, several surveys on decision trees are available in the literature, such as [70,71].

A decision tree is a classifier expressed as a recursive partition of the instance space. It consists of nodes

that form a rooted tree, meaning it is a directed tree with a node called root that has no incoming edges.

All other nodes have exactly one incoming edge. A node with outgoing edges is called an internal or test

node. All other nodes are called leaves (also known as terminal nodes or decision nodes). In a decision

tree, each internal node splits the instance space into two or more subspaces according to a certain discrete

function of the input attributes values. In the simplest and most frequent case, each test considers a

single attribute, such that the instance space is partitioned according to the attribute’s value. In the

case of numeric attributes, the condition refers to a range. Each leaf is assigned to one class representing

the most appropriate target value. Alternatively, the leaf may hold a probability vector indicating the

probability of the target value having a certain value. Instances are classified by navigating them from

the root of the tree down to a leaf, according to the outcome of the tests along the path. Algorithms that

automatically construct a decision tree from a given data set are called decision tree inducers. Typically,
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the goal is to find the optimal decision tree by minimizing the generalization error. There are various

top-down decision trees inducers such as ID3 [72], C4.5 (j48 in Weka) [73], and CART [74]. C4.5 is

an evolution of ID3 which is considered as a very simple decision tree algorithm, presented by the same

author [73]. ID3 uses information gain as splitting criteria: the growing stops when all instances belong

to a single value of target feature or when the best information gain is not greater than zero. Contrary

to ID3, C4.5 uses gain ratio as splitting criteria: the splitting ceases when the number of instances to be

split is below a certain threshold, and error-based pruning is performed after the growing phase. C4.5

is capable of handling numeric attributes. It can induce from a training set that incorporates missing

values by using the corrected gain ratio criteria. On the other hand, random forest models, seen as

tree-based algorithms, are also used for classification and regression tasks. The random forest technique

uses the decision tree model for parametrization, but it integrates a sampling technique, a subspace

method, and an ensemble approach to optimize the model building. A random forest model is made up

of a large number of small decision trees, called estimators, which each produce their own predictions

and by combining the predictions of the estimators, produces a more accurate prediction.

2.3.2 Function-Based Classification and Regression Models

Function-based learning refers to the set of algorithms that solve or approximate a learning task via a

mathematical function, as opposed to a logical function (as in tree-based methods). Whereas logical

learning is usually associated with classification (but, as we have seen, is adapts perfectly to regression

tasks), function-based learning is usually associated with regression, but all learned functions can als be

used for classification. This is particularly true for modern function-based learning that is based on neural

networks, but the argument works naturally with any learning function model. Linear regression is the

most widely known function-based learning algorithm, and the literature on algorithms to approximate

linear functions is wide and very well-known. Logistic regression is another widespread approach to

function-based regression and, seemingly, can be seen as a particular case of neural networks or artificial

neural networks. Artificial neural networks are an important tool that can adapt and adjust itself to the

data, irrespective of any special functional or distributional requirement of the primary model. They

are widely used for nonlinear pattern recognition and regression [75]. However, they are considered as

black boxes due to the lack of transparency of internal workings and a lack of direct relevance of its

structure to the problem being addressed, thereby making it difficult to gain insights. Furthermore, the

structure of a neural network requires optimization which is still a challenge. Many existing structure

optimization approaches require either extensive multi-stage pruning or setting subjective thresholds for

pruning parameters. A Multilayer perceptron is a feed forward neural network that maps the inputs to an

appropriate set of outputs and it is made up of several layers of nodes inside a graph, so that each layer is

entirely linked to the next one with a nonlinear activation function, excluding the input nodes. Multilayer

perceptron employs a supervised learning technique called back propagation for training purposes and a

nonlinear activation function [76]. Support vector machines are another function-based technique that

provides a classification learning model and an algorithm rather than a regression model and an algorithm

[77]. This method is known as an algorithmic application of statistical learning theory and it uses some

characteristics of the model and its performance on a training set to build reliable estimators from the data

set. Consequently, this method can predict the model performance of an indefinite data set. Moreover, a

support vector machine is able to solve a constrained quadratic optimization problem and build optimum

separating borders between data sets [77]. The support vector machine can be also divided into linear

and non linear models [78, 79]. It is called linear support vector machine if the data domain can be

divided linearly (e.g. straight line or hyperplane) to separate the classes in the original domain. If the

data domain cannot be divided linearly, and if it can be transformed to a space called the feature space

where the data domain can be divided linearly to separate the classes, then it is called nonlinear support
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vector machine. The sequential minimal optimization (SMO) algorithm has been shown to be an effective

method for training support vector machines on classification tasks defined on sparse data sets. The SMO

algorithm differs from most support vector machine algorithms in that it does not require a quadratic

programming solver.

2.3.3 Clustering Models

Cluster analysis or clustering is the task of grouping a set of objects so that those in the same group, or

cluster, are more similar to each other than to those in other groups. The literature on cluster analysis is

very wide, and includes hierarchical clustering, centroid-based models, distribution-based models, density

models, among many others. Centroid-based models are of particular interest for us, because they are

especially useful for numerical, multi-dimensional objects such as those that arise with chemical-physical

data. The concept of centroid is essential in the most well-known centroid-based clustering algorithm,

that is, k-means [80]: given a group of objects and a notion of distance, its centroid is the set of values

that describes an object C (which may or may not be a concrete object of the group) such that the

geometric mean of the distances between C and every other element of the group is minimal. In the

k-means algorithm, the groups (and even their number) are not known beforehand (this type of cluster

analysis is called exploratory), and the algorithm is based on an initial random guess of the centroid that

eventually converges to a local optimum. KNN [81] is a distance-based classification algorithm, whose

main idea is that close-by objects can be classified in a similar way.

2.4 Optimization and Optimization Algorithms

Optimization refers to finding one or more feasible solutions that correspond to extreme values of one or

more objectives [82]. Optimization can be, broadly speaking, continuous ( numerical), or discrete. In the

first case, for example, the interest is in finding solutions to mathematical functions. The applications

of continuous optimization to machine learning and knowledge extraction, in general, are maximally

represented by strategies such as backpropagation in neural networks (at the classification/regression

level, rather than at the meta-problem level). Discrete optimization, in which we look for objects

from a countably (in)finite set, typically integers, permutations, or graphs. It is further classified as

linear or nonlinear, reflecting the fact that for linear discrete optimization, efficient algorithms exist

that solve problems in an exact way. Nonlinear discrete optimization is a more difficult case, in which

problems are generally characterized by being at least NP-hard. Among the several groups of approaches

that can be used to solve a nonlinear discrete optimization problem, heuristic solutions are probably

the most common ones. These are, in turn, characterized by a probabilistic approach with no formal

guarantees of reaching a global optimum, but that shows good results in practice. There are several

sub-categories of heuristic approaches, often associated with colorful names with the intent of suggesting

the underlying ideas. They go from tabu searches [83], to particle swarm optimization [84], to beehive

optimization [85], to evolutionary optimization [86] algorithms, among many others. Evolutionary

algorithms have at least three notable characteristics that distinguish them from the other categories and

are: they can be naturally adapted to be multi-objective instead of single-objective, they can be more

commonly found in open-access code libraries compared with other categories, and with a superior variety

in programming languages, and they have been applied far more than any other category of heuristic

optimization approaches to knowledge extraction tasks, both directly and indirectly.
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2.4.1 Multi-Objective Optimization

A multi-objective optimization problem (see, e.g. [87]) can be formally defined as the optimization problem

of simultaneously minimizing (or maximizing) a set of k arbitrary functions:


min /max f1(x̄)

min /max f2(x̄)

. . .

min /max fk(x̄),

(2.2)

where x̄ is a vector of decision variables. Maximization and minimization problems can be reduced to

each other, so that it is sufficient to consider one type only. In general, a problem of multi-objective

optimization, does not have a solution that optimizes all objective functions simultaneously. For this

reason, Pareto optimal solutions, that is, solutions that cannot be improved in any of the objectives

without degrading at least one of the other ones, are considered. A set F of solutions for a multi-objective

problem is non dominated (or Pareto optimal) only if, for each x̄ ∈ F , there exists no ȳ ∈ F such that

(i) there exists i (1 ≤ i ≤ k) that fi (ȳ) improves fi (x̄), and (ii) for every j, (1 ≤ j ≤ k, j 6= i), fj (x̄)

does not improve fi (ȳ). In other words, a solution x̄ dominates a solution ȳ only if x̄ is better than

ȳ in at least one objective, and it is not worse than ȳ in the remaining objectives. We say that x̄ is

non-dominated only if there is not other solution that dominates it. The set of non dominated solutions

from F is called Pareto front. The classical way to solve multi-objective optimization problems is to follow

the preference-based approach, where a relative preference vector is used to scalarize multiple objectives.

Since classical search and optimization methods use a point-by.point approach, where one solution in

each iteration is modified to a different (hopefully better) solution, the outcome of using a traditional

optimization method is a single optimized solution. However, the field of search and optimization has

changed over the last few years due to the introduction of a number of non-classical, unorthodox and

stochastic search and optimization algorithms. Of these, the evolutionary algorithm mimics nature’s

evolutionary principles to drive its search towards an optimal solution.

2.4.2 Evolutionary Multi-Objective Optimization

Evolutionary multi-objective optimization (EMO) algorithms [88] use a population-based approach in

which more than one solution participates in an iteration and evolves a new population of solutions in

each iteration. Such class of algorithms lies within the class of genetic algorithms (GA). Evolutionary

multi-objective optimization algorithms are a good choice in solving multi-objective optimization

problems because EMO problems, by nature, give rise to a set of Pareto-optimal solutions. Generally

speaking, EMO algorithms can be all considered as structured as a main loop where the first population

P (of solutions) is usually created at random, say P = {Γ1,Γ2, . . . ,ΓN}. At each iteration, a new

population is generated by using four main operations: (i) selection, (ii) crossover, (iii) mutation, and

(iv) elite-preservation. After that, the members of the population are evaluated, the selection operator

chooses the best solutions with a large probability to fill an intermediate mating pool. The crossover

operator randomly picks two or more solutions (parents) from the mating pool and create one or more

solutions (offspring), e.g. P ′, by exchanging information among the parent solutions. The simplest

crossover operator is the single-point crossover operator. Suppose there are two candidates Γi,Γj ∈ P ,

represented as 0-1 binary sequences of M pieces, then a randomly chosen an integer k ∈ {1, . . . ,M} and it

generates Γ′i ∈ P ′ by juxtaposing the first k pieces from Γi with the last M−k pieces from Γj ; similarly for

Γ′j if needed. The mutation operator randomly perturbates each child, created via crossover. In this case,

the most simple operator is to randomly flip a piece. The elitism operator combines the old population

with the newly created population and chooses to keep best solutions from the combined population
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(i.e. survival of the fittest). This set of operations is performed until one or more stopping conditions

are met (e.g. number of generations). Biological evolution is non-deterministic by nature, therefore

EMO algorithms, which resemble such evolution, are also non-deterministic, in contrast to traditional

searching procedures that are deterministic. Over the past decade, a number of EMO algorithms have

been suggested [82, 89–92]. One of the most popular EMO procedures is Elitist Non-dominant Sorting

GA (NSGA-II) [93]. In our experiments, we used such an algorithm, which is available as open-source

from the suite jMetal [94]. NGSA-II is an elitist Pareto-based multi-objective evolutionary algorithm

that employs a strategy with a binary tournament selection and a rank-crowding better function, where

the rank of an individual in a population is the non-domination level of the individual in the whole

population.
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Chapter 3

Methodology

3.1 General Mathematical Characterization

3.1.1 Notation and Definitions

As seen in the previous chapter, we are interested in a systematic exploration of data transformations

in order to solve a meta-learning problem. This strategy has many advantages: by considering

learning algorithms as black-boxes, we can always choose the state-of-the-art ones. By focusing on

the meta-problem rather than the problem itself, we can reach a certain degree of interpretability even

when we decide to use non-interpretable classificators/regressors. Additionally, by suitably transforming

the data, we can deal with temporal and spatial components even when the classifiers/regressors do

not offer spatial-temporal capabilities natively without resorting to the most näıve approaches such as

flattening. The mathematical characterization of dynamic preprocessing allows us to decide on a clear

and reasonably elegant syntax. A consequence will be that the expressive power may be slightly reduced

but this, however, is not necessarily negative, considering that complex transformations may hamper the

interpretability of the results. In the following, we assume that data sets are presented in their matricial

form with m instances (rows), that A1, . . . , An are the independent attributes, that data are distributed

under z names (that is, there are z sources), and associated to k classes. Whenever necessary, we assume

that m = m∗z, that is, that each name has m∗ of the m instances associated with it. While it may be

intuitive to suggest that the class should be a function of the name (that is, that different instances of

the same source should be associated to the same class), in the most general setting we can give up such

an assumption. There are, in fact, real-world cases in which it may not be true. Let M be the space of

all data sets, and let V ⊂M be the space of all real vectors (i.e., single-dimension matrices).

Definition 3 A dynamic pre-processing operator P is a real vector. A dynamic pre-processing

transformation is a function:

τ :M×V →M (3.1)

that is, is the application of a dynamic preprocessing operator to a data set, that returns a data set.

From a syntactical point of view, P is generated by a simple grammar:
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P ::= PfstPodPis

Pfst ::= (T, S, F )|(T, S, F )Pfst

Pod ::= B|BPfst

Pis ::= B|BPfst

T ::= N−

S, F ::= N

B ::= 0|1

where N− ∈ N ∪ {−1} and N ∈ N. As the symbols suggest, the first segment is dedicated to feature

selection and transformations, the second segment is dedicated to outlier detection, and the third segment

is dedicated to instance selection. Each segment entails a specific interpretation of the values and such

an interpretation implicitly takes care of assigning a null semantics to those P whose lengths of each

part does not match the data set matrix to which is applied. This, therefore, allows us to simplify the

syntactic definition of P . Our purpose is to define the semantics of τ and we shall do so by first defining

the semantics of each part, and a specific transformation associated to it, which we call τfst, τod, and τis,

and then combining them. In the following, if q ∈ {fst, od, is}, then Pq[i] indicates the i-th component

of Pq (a triple, when q = fst, a bit otherwise).

3.1.2 Semantics of Feature Selection and Transformations

Given an attribute A, then, let AI(t, s) be the value of A at the time t and position s under a specific

name in the data set I; we use A(t, s) when I is clear from the context. We let A(t − t′, s − s′) be

the value of A under the same name, at the time t − t′ and position s′′, where dist(s′′ − s) = s′ is any

dimension (thus, A(t− t′, s− s′) is not uniquely defined, but, as it will be immediately clear, this is not

a problem). For learning purposes, we can safely assume that if there is no information about time t− t′

and/or position s′′ in I, A(t− t′, s− s′) takes a random value. Now, we use:

A(t− t′, s− s′) = {A(t− t′′, s− s′′) | t′′ ≤ t′, s′′ ≤ s′}.

As a result, under our limiting assumptions, we can model a wide portfolio of selections and

transformations of features using this notation. Let us call τfst the specific operator for feature

selection and transformation; τfst is defined column-by-column, using auxiliary transformations τ i,jfst,

where 1 ≤ i ≤ n and ≤ j ≤ m. For a specific component i, Pfst[i] is a triple of numbers (T, S, F ).

The idea is that T represents the temporal displacement of the i-th attribute (whereas −1 represents

de-selecting it), S represents the spatial displacement (in terms of semi-length of the edge of the outermost

hypercube to be considered), and F represents the combining function. Thus, specific values of t and S

entail considering a subset of values of Ai to be combined into a single value that substitutes the original

one. Accordingly, for example, Pfst[i] = (2, 0, 0) is interpreted as substituting the current value of A

with the value of A two time units before the considered time. The semantics of other functions can be

decided for specific applications. To ease the notation, if Pfst[i] = (T, S, F ), we let T [i] (resp., S[i], F [i])

denote the temporal (resp., spatial, functional) component; recall that F [i] is a function of the type:

F [i] : 2dom(A) → dom(A)

Formally, let us define:

τ i,jfst(I, P ) = F [i](A(t− T [i], s− S[i])) (3.2)

If we use the simplified notation τ i,jfst(P ) when I is clear from the context, we can now define τfst; we shall

do so by ignoring the columns with names, times, space, and classes, recalling that their information is
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A1 =


100 11 12

9 104 7

16 17 7

108 102 102

 , A2 =


2 23 24

102 90 100

8 29 30

31 32 33

 , A3 =


34 35 36

103 38 109

40 100 42

43 102 45

 at t = 0

A1 =


22 107 48

49 100 56

102 5 54

85 56 101

 , A2 =


58 78 60

105 88 109

64 120 101

67 68 69

 , A3 =


70 71 2

73 100 75

106 10 108

79 80 81

 at t = 1

A1 =


82 83 84

105 86 77

88 89 100

41 92 93

 , A2 =


94 95 96

97 98 99

100 101 102

103 104 105

 , A3 =


106 10 108

10 80 111

11 113 14

115 11 117

 at t = 2

A1 =


78 119 120

121 12 13

14 15 16

127 18 129

 , A2 =


130 31 132

33 13 135

136 137 80

25 40 141

 , A3 =


142 25 144

145 14 47

48 149 50

151 52 153

 at t = 3

Figure 3.1: Twelve slices of an example data set I.

implicitly used in the definition of τ i,jfst(P ). Classes, in particular, have a very clear behavior, as they are

unaffected by the preprocessing. Observe, however, that the number of resulting instances may decrease

after pre-processing, due to the fact that there is not enough information to preprocess all instances; for

example, if T [i] = 1 for any attribute Ai, then each name will have one less instance after the application

of τfst. Thus, we have:

τ ifst(



N1 . . . a1i . . .

. . . . . . . . . . . .

N1 . . . am∗i . . .

. . . . . . . . . . . .

Nz . . . a1i . . .

. . . . . . . . . . . .

Nz . . . am∗i . . .


, P ) =





N1 . . . . . .

. . . . . . . . .

N1 . . . . . .

. . . . . . . . .

Nz . . . . . .

. . . . . . . . .

Nz . . . . . .


if T [i] = −1



N1 . . . τ
i,T [i]
fst (P ) . . .

. . . . . . . . . . . .

N1 . . . τ
i,m∗−T [i]
fst (P ) . . .

. . . . . . . . . . . .

Nz . . . τ
i,T [i]
fst (P ) . . .

. . . . . . . . . . . .

Nz . . . τ
i,m∗−T [i]
fst (P ) . . .


otherwise

(3.3)

In other words, applying a feature selection and transformation operator to a data set and a specific

attribute entails either de-selecting that attribute, or transforming it. The most simple transformations

are temporal, by which one obtains, for example, the lagged version of that attribute. More complicated

transformations can be obtained by looking for the values of the same attributes at different (past) times

and different (neighboring) locations and, in the most general cases, combining them using a function F .
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A1 =

[
31

52

]
, A2 =

[
98

101

]
, A3 =

[
80

113

]
at t = 2 (3.5)

A1 =

[
60

68

]
, A2 =

[
13

137

]
, A3 =

[
14

149

]
at t = 3 (3.6)

Figure 3.2: The example data set of Figure 3.1, after applying a feature selection and transformation.

Functions are taken from a finite set, and can therefore be denoted by natural numbers as well. We let

the code 0 denote the simplest substituting function, applicable when A(t− t′, s− s′) is a singleton; the

remaining codes can be decided depending on the application. Finally, we obtain the whole preprocessing

τfst by applying, in any order, the preprocessing τ1fst, . . . , τ
n
fst. Thus:

τfst(I, P ) = τ1fst(τ
2
fst . . . (τ

m
fst(I, P )) . . .) (3.4)

In order to understand how feature selection and transformation work on a practical case, consider

the following scenario. A data set I consists of 48 instances, each one contains the values of three

attributes A1, A2, A3 at one of 12 possible neighboring locations, at one of 4 time points t0, t1, t2, t3.

We assume that the locations form a rectangular 3 × 4 shape. For convenience, visualize I at the four

times separately, focusing on each attribute separately. The results are 12 slices, as in Figure 3.1. In

this example, we assume to have a vocabulary of three combining functions, denoted by {0, 1, 2}. In

particular, 0 represents the uniform combining function (i.e., all neighboring locations contribute the

same), 1 represents the linear combining function (i.e., the contribution decreases in a linear way), and

2 represents the hyperbolic combining function (i.e., the contribution decreases in a non-linear way). We

want to understand the effect of applying the following feature selection and transformation operator:

Pfst : [(2, 1, 0), (0, 0, 0), (0, 0, 0)]

In other words, the intended effect is that all three attributes are selected, no transformation is applied to

A2, A3, and the following transformation is applied to A1: each value is substituted by a uniform average

of all values at the neighboring locations (distance 1) plus the value itself, two time points before. As a

consequence, the resulting data set can only have information about time points 2 and 3, and, out of the

12 positions, only the two in the center. Thus, the resulting data set will have the aspect in Figure 3.2.

An alternative way to see the same situation is shown in Figure 3.3, where different colors represent

different time points, and the spatial locations are drawn to form a rectangular shape. As a final note,

recall that, in real data sets, there may be several locations and several time points. Transformations

have the effect of returning smaller data sets but, in the event of a real case, the information loss is

usually negligible (unlike our example seems to suggest).

3.1.3 Semantics of Outlier Detection

Let us call τod the specific operator for outlier detection; τod is defined row-by-row. For a specific

component j, Pod[j] ∈ {0, 1}, and we define τod by components; each component corresponds to an

instance j, and it is teated by the operator τ jod. The idea is that the value in the j-th position represents

the elimination, or not, of the j-th row. For example, Pod[j] = 0 (resp., 1) is interpreted as the j-th

instance is not eliminated (resp., eliminated). Thus, we have:
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Figure 3.3: Example graphical representation.

τ jod(



N1 r1 . . . . . .

. . . . . . . . . . . .

Np rj . . . . . .

. . . . . . . . . . . .

Nz rm∗ . . . . . .


, P ) =





N1 r1 . . . . . .

. . . . . . . . . . . .

Np rj . . . . . .

. . . . . . . . . . . .

Nz rm∗ . . . . . .


if Pod[j] = 1


N1 r1 . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

Nz rm∗ . . . . . .

 otherwise

(3.7)

The entire preprocessing τod is obtained by applying, in any order, the preprocessing τ1od, . . . , τ
m
od:

τod(I, P ) = τ1od(τ2od . . . (τ
m
od(I, P )) . . .) (3.8)
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3.1.4 Semantics of Instance Selection

The case of instance selection behaves exactly as the previous one. Let us call τis the specific operator

for outlier detection; again, τis is defined row-by-row. For a specific component j, Pis[j] ∈ {0, 1}, and we

define τis by components, each component corresponds to an instance j, and it is treated by the operator

τ jis. The idea is that the value in the j-th position represents the elimination, or not, of the j-th row.

As such, for example, Pod[j] = 1 (resp., 0) is interpreted as the j-th instance is not eliminated (resp.,

eliminated). In other words, instance selection and outlier detection are opposite to each other. Thus,

we have:

τ jis(



N1 r1 . . . . . .

. . . . . . . . . . . .

Np rj . . . . . .

. . . . . . . . . . . .

Nz rm∗ . . . . . .


, P ) =





N1 r1 . . . . . .

. . . . . . . . . . . .

Np rj . . . . . .

. . . . . . . . . . . .

Nz rm∗ . . . . . .


if Pis[j] = 0


N1 r1 . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

Nz rm∗ . . . . . .

 otherwise

(3.9)

The whole preprocessing τis is obtained by applying, in any order, the preprocessing τ1is, . . . , τ
m
is :

τis(I, P ) = τ1is(τ
2
is . . . (τ

m
is (I, P )) . . .) (3.10)

The reason of having both outlier detection and instance selection, and to treat them separately, is

that, generally, they are associated with different objectives and different evaluations. In short, outlier

detection aims to identify the few instances that are the result of mistakes, or do not contribute to defining

the problem. Their number is usually minimized and the evaluation is performed on the resulting data

set. Instance selection aims to identify the subset of instances that, alone, represents the whole problem,

avoiding duplicated instances or useless ones; their number is usually not included as objective.

3.2 NSGA-II: Multi-Objective Evolutionary Computation

3.2.1 EMO algorithm

As explained in Chapter 2, EMO algorithms (see Figure 3.4) consist of a main loop where there is an

initial population (of solutions), whose members are evaluated and a new population is generated by using

four main operations: (i) selection, (ii) crossover, (iii) mutation, and (iv) elite-preservation.This set of

operations is performed until one or more stopping conditions are met. The final population constitutes

a set of Pareto-optimal solutions. Then, EMO algorithms differ in selection, mutation, crossover and

elite-preservation operations. We chose NGSA-II algorithm because it employs a strategy with a binary

tournament selection and a better rank-crowding function, where the rank of an individual in a population

is the non-domination level of the individual in the whole population.

3.2.2 Individual and Evaluation

The NSGA-II algorithm is one of the most used EMO procedures during the last decade. It is

computationally fast, is available as open-source from the suite jMetal [94] and we can easily find research

to compare it with. The jMetal package offers simplicity and ease of use, that is, the classes provided follow
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Figure 3.4: EMO algorithm scheme.

the principle that each component should only do one thing; flexibility, that is, the software incorporates

a simple mechanism to execute the algorithms with different parameter settings; portability, that is, the

framework and the algorithms developed with it run on machines with different architectures and/or

with different operating systems; and extensibility, that is, new algorithms, operators and problems can

be easily added to the framework. Therefore, we can easily use the semantics of P as representation of

the individuals and define the objective functions and the crossover and mutation operators according to

them. The entire operator P looks like:

P : [(T, S, F )0, . . . , (T, S, F )n−1︸ ︷︷ ︸
Pfst

| Bn, . . . , B(n+m)−1︸ ︷︷ ︸
Pod

| Bn+m, . . . , B(n+2m)−1︸ ︷︷ ︸
Pis

]

Each individual is represented as an operator P . To define the objective functions, as previously

mentioned, we focused on the meta-problem rather than the problem itself, so, in addition to the

performance of the learning algorithm, we are interested in measures related to data transformations

that give us interpretability information. Then, objective functions generally are associated with the

performance of the learning algorithm and another(s) associated to the dynamic preprocessing. As

performance measures, they are state-of-the-art measures since the learning algorithm is a black-box.

Some examples of performance measures are correlation coefficient, accuracy, mean absolute error,

specificity, sensibility, area under the ROC curve, etc. Furthermore, different approaches have been

used as an evaluation mode: full training, k cross-validation, leave-one-out cross validation or test and

training. Then, as an objective function we have:

Eval(V(I, P ))

On the other hand, as measures related to data transformation we define the cardinality as the number

of features of each solution. Cardinality is defined based on the P representation as follows:

Cardfst(P ) =

n∑
i=1

{
0 if P [i] = (−1, S, F )

1 if P [i] = (T, S, F ), T 6= −1
(3.11)
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Cardod(P ) =

n+m∑
i=n+1

{
0 if P [i] = 1

1 if P [i] = 0
(3.12)

Cardis(P ) =

n+2m∑
i=n+m+1

{
0 if P [i] = 0

1 if P [i] = 1
(3.13)

Finally, these functions together with the previous one, can be seen as objective functions of the

multi-objective optimization problem and equation 2.2 becomes:
min /maxEval(V(I, P )),

min /maxCard1q(P ),

. . .

min /maxCardzq(P )

(3.14)

where if z = 1 we have a two-objectives optimization problem; if z = 3 our problem is a three-objectives

optimization problem; and if z = 3 we have a fourth-objective optimization problem.

3.2.3 Single-point Crossover Operator

We now have two solutions as two operator solutions. Depending on the preprocessing technique, the

crossover is done in a determinated sequence of the solutions. As previously explained, each solution

has three sequences: one of n triples and two of m pieces. Once the sequence to be worked on has been

selected, the crossover operation consists of juxtaposing a certain part of the sequence of the first solution

with another part of the sequence of the second solution, keeping the length of the operator. An example

can be as follows: in the feature selection and transformations case, there should be P 1
fst, P

2
fst ∈ P , as

two sequences of n triples (T,S,F). Then, a randomly chosen integer i ∈ {1, . . . , n} and generate P 1′

fst by

juxtaposing the first i triples from P 1
fst with the last n− i triples from P 2

fst; similarly for P 2′

fst if needed.

A pseudo code for this operation can be found in Algorithm 1.

3.2.4 Mutation Operator

We consider a solution seen as an operator solution. The mutation operation consists of flipping a

component of the solution. Taking into account that our operator is made up of triples and pieces, the

mutation will flip a complete triple or a piece, depending on the sequence we are working with. An

example can be: in the outlier detection case, we are supposed to have P 1
od ∈ Pod, represented as a

sequence of m bits B. Then, we generate P 1′

od by randomly flipping a bit from P 1
od. Flipping a bit consist

of changing the B value with another B′ value that is randomly generated. Bits’ values can be mutated

considering that the binary random values make sense in the solution. However, when mutating a triple,

new values must be limited. For example, considering the T element, if we have data of 5 times before

the current time, it makes no sense to generate a T value of 6. Now, we define two modes of flipping

a triple: adding or subtracting 1 unit to the original value or changing the original value by randomly

generating a new value in a limited range. Here, we defined the minimum range value as 0 for the three

elements and as maximum range values: we called maxT to the maximum value of the temporal element,

maxS to the maximum value of the spatial element and maxF to the maximum value of the function

element. A pseudo code of the mutation operation is shown in Algorithm 2.
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Algorithm 1

1: procedure Crossover

2: Input← P1, P2, probability

3: Output← Offspring1, Offspring2

4: if randomDouble < probability then return (Offspring1, Offspring2) = (P1, P2)

5: else

6: for i← 0 : (n+ 2m)− 1 do

7: internalProb← randomInt(1, 3)

8: if internalProb = 1 then

9: crossPoint← randomInt(0, n− 1).

10: Offspring1← juxtaposing triples of P1[0 : crossPoint] with P2[crossPoint : n− 1].

11: Offspring2← juxtaposing triples of P2[0 : crossPoint] with P1[crossPoint : n− 1].

12: end if

13: if internalProb = 2 then

14: crossPoint← randomInt(n, (n+m)− 1).

15: Offspring1← juxtaposing bits of P1[n : crossPoint] with P2[crossPoint : (n+m)− 1].

16: Offspring2← juxtaposing bits of P2[n : crossPoint] with P1[crossPoint : (n+m)− 1].

17: end if

18: if internalProb = 3 then

19: crossPoint← randomInt(n+m, (n+ 2m)− 1).

20: Offspring1← juxtaposing bits of P1[n+m : crossPoint] with P2[crossPoint : (n+2m)−1].

21: Offspring2← juxtaposing bits of P2[n+m : crossPoint] with P1[crossPoint : (n+2m)−1].

22: end if

23: end for

24: end if

25: end procedure
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Algorithm 2

1: procedure Mutation

2: Input← P, probability,maxT,maxS,maxF

3: Output← Offspring

4: if randomDouble < probability then return Offspring = P

5: else

6: for i← 0 : (n+ 2m)− 1 do

7: internalProb← randomInt(1, 3)

8: if internalProb = 1 then

9: mutPoint← randomInt(0, n− 1).

10: for j ← 0 : P (i).length do

11: if j = 0 then

12: if randomBinary = false then

13: Offspring ← T [mutPoint] = randomInt(0,maxT ).

14: else

15: Offspring ← T [mutPoint]± 1.

16: end if

17: end if

18: if j = 1 then

19: if randomBinary = false then

20: Offspring ← S[mutPoint] = randomInt(0,maxS).

21: else

22: Offspring ← S[mutPoint]± 1.

23: end if

24: end if

25: if j = 2 then

26: if randomBinary = false then

27: Offspring ← F [mutPoint] = randomInt(0,maxF ).

28: else

29: Offspring ← F [mutPoint]± 1.

30: end if

31: end if

32: end for

33: end if

34: if internalProb = 2 then

35: mutPoint← randomInt(n, (n+m)− 1).

36: Offspring ← fliping bit in P [mutPoint].

37: end if

38: if internalProb = 3 then

39: mutPoint← randomInt(n+m, (n+ 2m)− 1).

40: Offspring ← fliping bit in P [mutPoint].

41: end if

42: end for

43: end if

44: end procedure
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Chapter 4

Application 1: Groundwater

Aquifers

Within the last few decades, the continuous growth of the exploitation of water resources for industrial,

human and agricultural purposes has brought great attention to the need for preserving the quality of

groundwater [95,96]. The complex reality of this sector has pushed the scientific community to research

the proper management of water resources in order to improve knowledge and to protect every aspect of

this resource. The goal of this research is to deal with the problems that originated from the variation

of volume and intensity of precipitation due to climate change, over-exploitation, salinization, anthropic

pollution, degradation, and large scale irrigation. An example of the need for a multidisciplinary approach

is [97] but, in fact, many studies have demonstrated that a deliberate protection of existing water resources

could contribute to the preservation of the availability of fresh water [98–100]. This chapter presents two

of the problems concerning the preservation of the existing fresh water resources. Starting with a data

set obtained from the physical-chemical analysis of several samples of groundwater in the same area, we

focused our attention on two problems. First, we considered the presence of mercury in the samples,

and we approached the problem of establishing a relationship between the physical-chemical spectrum of

the sample and the amount of mercury. We used a simple regression to establish this relationship and

then we used our dynamic preprocessing techniques to ensure the quality of the data, by searching for

possible outliers. Therefore, our first problem is an outlier detection for regression problem. As such,

individuals will be taking into account, as explained in the previous chapter, the possibility of eliminating

instances in order to improve the performance of the regression. In this problem, we take advantage of

our general setting that allows us to search for outliers in the context of a feature selection, with and

without non-linear modifications of the data. Second, we approached the problem of establishing whether

or not the groundwater has a specific physical-chemical fingerprint from which the specific aquifer (one

of four possibilities) can be identified. We approached the problem by using the names of the aquifers

as classes, and by interpreting it as a feature selection for classification problem. Once again, we take

advantage of our general setting that allows us to try different non-linear contributions of the attributes,

and different methods of defining the performances of a fingerprint. This chapter is based on [101–103].

4.1 Data and Statistical Analysis

We analyzed a data set of physical-chemical samples of underground water from a very specific area

in northeastern Italy. These samples were collected as part of an ongoing investigation commissioned

by the local Regional Agency for Environment and Prevention of the University of Ferrara. It consists

of 229 samples extracted from 57 wells located in the province of Ferrara, all belonging to the most
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superficial geological aquifer group, from 2010 to 2017. The hydro-stratigraphic units of interest were

named from A1 to A4, from the most to the least superficial. Referring to our data as a matrix definition

explained in Chapter 2, in this case, the sources are the aquifer groups which have four names, A1, A2,

A3 and A4. Each sample contains 16 chemical-physical indicators that are our independent attributes

and, for which there is no temporal or spatial information available. In summary, our data matrix

consists of a matrix of 229 rows and 18 columns (N ,A1, . . . , A16). The independent attributes are

Br (Bromine), Ca2+ (Calcium), Cl− (Chlorine), Fe (Iron), HCO−3 (Bicarbonate), I (Iodine), K+

(Potassium), Mg2+ (Magnesium), NH+
4 (Ammonium cation), NO−3 (Nitrate), Na+ (Sodium), SO2−

4

(Sulfate), Hg (Mercury), T (Temperature), Eh (Reduction potential), DO (Chemical oxygen demand),

and E.C. (Electric conductivity). Recalling that there are two problems, the first of which concerns

outliers for regression, Hg and is the considered as the class (and therefore it will be numeric). However,

in the one concerning aquifer fingerprints, Hg will be excluded and the name of the aquifer will be the

(categorical) class. In this last case, Br, Eh, and DO will also be excluded. Prior to any learning phase,

it is useful to understand the basic properties of the data. The analysis schema will be applied to every

problem and will include the following steps:

• An assessment of the basic characteristics of the dataset;

• A normality study of each variable;

• A univariate correlation study among all variables.

The relevant statistical measures of the different independent attributes are shown in Table 6.1. These

are: the (non-standardized) mean, the p-value associated with a Shapiro normality test (in which the

null hypothesis is that the population is normally distributed), the kurtosis, and the skewness of each

distribution. As indicated in the figures, none of the variables are normal (their p-values are well below

0.05), and they present very high levels of kurtosis and skewness, with Mg2+ and Ca2+ being the most

evident examples. Figure 6.1 and Figure 6.2 show the graphical representation of the statistical behavior

of each of the variables except for the temperature, which presented the closest-to-normal behavior and

is, therefore, less informative. As indicated, the parameters show very erratic behavior, with the presence

of a relevant percentage of outliers [104] and the fact that most variables do not display normal behavior

can be considered as an argument against traditional statistical methods for fingerprint extraction. The

correlation between elements can be seen in Table 4.2; the most evident ones are E.C. with Cl−, and

E.C. with HCO−3 .

4.2 A Brief Background

Outlier detection (OD) has been approached with evolutionary algorithms in the literature. In [105],

for example, OD is solved by harmony search and differential evolution, where a single objective is

defined using the sparsity coefficient. Additionally, in [106], the anomaly detection problem is dealt

with as a classification problem. Voronoi diagrams are used for the task of classification, and they are

generated by a many-objective evolutionary computation where objectives are progressively added. They

correspond to the classical performance metrics for classification and for Voronoi diagrams (accuracy,

recall, number of cells, total empty volume, and so on). Finally, in [107], a multi-objective evolutionary

algorithm is proposed to determine the best penalty factors of a sparse group and a lasso constraint is

imposed on the learning objective of Adabost, which is combined with an autoencoder for image outlier

detection. Applications of geochemical fingerprinting range in a wide set of contexts, from studies of

ancient artifacts such as glass or ceramics [108], to mineral identification and the discovery of Jurassic-age

kimberlite [109], to dust transport monitoring [110], to groundwater resources identification and this
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feature min max mean p-value kurtosis skewness

Br 0.05 0.87 0.42 0.10 ∗ 10−2 0.11 0.23

DO 0.90 13.00 2.72 1.70 ∗ 10−24 13.51 2.90

Eh -165.00 259.00 29.45 4.77 ∗ 10−6 -0.69 0.28

T 11.20 20.00 15.81 1.16 ∗ 10−18 5.37 0.55

E.C. 252.00 4175.00 1574.00 1.36 ∗ 10−18 2.45 1.08

HCO−3 140.00 1879.00 606.50 3.54 ∗ 10−11 4.44 1.18

Cl− 0.50 1413.00 56.00 2.43 ∗ 10−21 2.81 1.25

SO2−
4 0.50 143.00 18.05 1.61 ∗ 10−19 7.59 2.03

Ca2+ 26.00 18400.00 462.70 1.91 ∗ 10−29 64.02 7.03

Mg2+ 9.00 74740.00 381.33 2.89 ∗ 10−32 226.95 15.03

Na+ 8.00 763.30 183.52 1.79 ∗ 10−18 4.02 1.51

K+ 0.89 768.50 24.39 1.27 ∗ 10−29 42.85 6.13

NH+
4 0.00 63062.00 2135.61 2.01 ∗ 10−27 43.06 5.51

Fe 0.00 41824.00 1501.52 1.40 ∗ 10−27 39.20 5.47

As 0.01 0.04 3.23 ∗ 10−3 1.38 ∗ 10−22 18.84 3.23

Hg 0.00 0.42 0.03 2.72 ∗ 10−30 49.97 5.49

Table 4.1: Some basic statistical measures of the variables.

T E.C. HCO−3 Cl− SO2−
4 Ca2+ Mg2+ Na+ K+ NH+

4 Fe As Br DO Eh Hg

T 1

E.C. 0.050 1

HCO−3 0.069 0.479 1

Cl− 0.026 0.956 0.249 1

SO2−
4 0.208 -0.329 -0.344 -0.294 1

Ca2+ 0.002 0.189 0.109 0.159 -0.082 1

Mg2+ 0.038 0.102 -0.019 0.132 -0.038 -0.010 1

Na+ -0.031 0.842 0.265 0.866 -0.364 -0.093 0.131 1

K+ 0.012 0.248 0.049 0.248 -0.061 0.767 -0.009 -0.093 1

NH+
4 -0.005 0.366 0.345 0.305 -0.213 -0.096 -0.030 0.332 -0.096 1

Fe 0.053 0.357 0.472 0.269 -0.141 -0.054 0.007 0.223 -0.062 0.112 1

As -0.003 -0.206 -0.073 -0.208 0.029 -0.051 -0.018 -0.154 -0.047 0.051 -0.004 1

Br 0.041 0.723 -0.419 0.939 -0.599 0.703 0.765 -0.412 -0.057 -0.029 0.123 0.015 1

DO -0.223 -0.004 0.067 -0.094 0.287 -0.170 -0.206 0.237 -0.123 0.062 0.069 -0.013 -0.109 1

Eh -0.105 0.074 0.398 -0.128 -0.088 0.038 -0.010 0.092 0.027 -0.041 -0.441 0.063 -0.157 0.040 1

Hg -0.132 0.413 -0.063 0.456 -0.251 0.463 0.410 -0.254 -0.143 -0.038 0.430 -0.079 0.400 0.010 -0.114 1

Table 4.2: Correlation matrix.

study [111]. Groundwater resource analysis has been the focus of studies aimed at fingerprinting for

different purposes. In [112], for example, the authors use fingerprinting to evaluate the occurrence of

microorganic elements and to help with understanding the sources and the processes which may be

controlling the transport and fate of emerging contaminants in the floodplain of the River Thames to

the northwest of Oxford and in the River Lambourn, in South-East England. In [113], top and subsoil

groundwater were sampled around a station in Tomiño, in North-East Spain, and analyzed to identify

and quantify volatile fuel organic compounds as well as diesel range organic elements. Also, in [114],

discriminant analysis was used to identify the most probable source of chloride salinity in groundwater

samples based on their geochemical fingerprints. Finally, geochemical fingerprinting proved itself relevant

for the study of the quality of food and beverages, especially wine, as shown in [115]. We consider that

the fingerprint extraction problem can be seen as a feature selection problem, that is, the problem of

establishing the best subset of chemical-physical parameters. Thus, we developed a model that consists

of a feature selection with non linear transformation.
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Figure 4.1: Distribution and outliers detection analysis: E.C.,η,HCO−3 ,Cl
−, SO2−

4 ,Ca2+.

4.3 Learning Schemata for Outlier Detection

Recall that for this problem, we ignore the different names of the aquifers, and interpret the amount of

mercury in each sample as the class. The problem to be solved involves identifying possible outliers in

the regression model in which we link samples to the amount of mercury in them. We developed six

models for outlier detection, all within our general schema as presented in the previous chapter. Model

1 consists of performing a feature selection (FS) alone, and model 2 consists of performing an OD alone.

Now, considering that an instance could be an outlier only in the context of certain features, we applied

the combined models of FS and OD and followed the sequential and simultaneous strategies. Thus,

we have models 3 and 4 that consist of applying a FS+OD (resp. OD+FS) following the sequential

strategy and model 5 that consists of performing a FS and OD simultaneously. Finally, considering

that the variation in the amount of mercury can not be proportional to the variation of the chemical

attributes, we developed model 6 that consists of applying a nonlinear feature transformation and OD

simultaneously. The individual representations are as follows; in model 1 the individuals are represented

as:
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Figure 4.2: Distribution and outliers detection analysis: Mg2+,Na+,K+,NH+
4 , F e,As.

P : [(T )0, . . . , (T )n−1︸ ︷︷ ︸
Pfst

]

where T [i] takes values of 0, that means that the attribute is selected; or -1, that means that the attribute

is not selected. In model 2 the individual is represented as:

P : [Bn, . . . , Bm−1︸ ︷︷ ︸
Pod

]

In model 3 (resp. model 4) when we apply FS (resp. OD) the individual is represented as in model 1

(resp. model 2); and when we sequentially apply OD (resp. FS) the individual is represented as in model

2 (resp. model 1). In model 5 the individual is represented as:

P : [(T )0, . . . , (T )n−1︸ ︷︷ ︸
Pfst

| Bn, . . . , B(n+m)−1︸ ︷︷ ︸
Pod

]

where as in model 1, T [i] takes values of 0, that means that the attribute is selected; or -1, that means

that the attribute is not selected. Finally, in model 6 the individuals are represented as:
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P : [(T, F )0, . . . , (T, F )n−1︸ ︷︷ ︸
Pfst

| Bn, . . . , B(n+m)−1︸ ︷︷ ︸
Pod

]

where T [i] takes values of 0, that means that the attribute is selected; or -1, that means that the

attribute is not selected; and F [i] takes values from 0 to the maximum function value maxF . As black

box learning algorithm in all cases, we used the linear regression with the following default parameters:

no embedded feature selection method, elimination of collinear features, and ridge penalty 10−8, run in

10-fold cross-validation mode. Let I be our data set and the performance measure we used:

Corr(V(I, P ))

where Corr measures the correlation between the stochastic variable obtained by the observations and

the linear variable obtained by linear regression on the data set I after the transformation indicated by

P . The correlation varies between −1 (perfect negative correlation) to 1 (perfect positive correlation),

being 0 the value that represents no correlation at all. Furthermore, we used the cardinality, previously

defined in Chapter 3, in all models as an interpretability measure. Thus, we have a two or three

objective optimization equations depending on the model. Specifically, in model 1 we have a two-objective

optimization equation: {
maxCorr(V(I, P )),

minCardfst(P )
(4.1)

The same occurs in model 2, where the optimization equation is:{
maxCorr(V(I, P )),

minCardod(P )
(4.2)

In the rest of models we have a three-objective optimization equation:
maxCorr(V(I, P )),

minCardfst(P ),

minCardod(P )

(4.3)

4.4 Settings

Since NSGA-II does not allow for the managing of external constraints and since the solution space

is particularly wide, we have hardwired a constraint on the number of selected outliers. Thereby, in

models in which OD is performed, every solution with more than 10% outliers have been excluded. Also,

solutions that emerge during the different generations are artificially given the worst possible values in

each objective and are therefore discarded. In terms of parameterization, we proceeded as follows. In

every experiment, the population size is 100 and after an initial preliminary test, we found that 10,000

total evaluations (100 generations) were sufficient to show convergent behavior. In models 3 and 4,

each of the sequential phases were granted 10,000 evaluations, which means that the last population in

a sequential experiment is the result of 20,000 evaluations. For this reason, in models 1, 2 and 5 the

number of evaluations was set to 20,000. The maximum percentage of detected outliers was set to 10%.

Also, we used the standard crossover and mutation, with probabilities (set after an initial explorative

analysis) of 0.7 and 0.3, respectively. Finally, in terms of an a posteriori decision, in each experiment, we

chose to select the individual with the best value of Corr(V(I, P )). We ran 10 different executions for

each model and the seeds for folder extraction are always fixed from 1 to 10, to ensure the repeatability

of the experiments. In model 6, the maximum exponent was set to 3 and we have set each execution for

a total of 10,000 evaluations.
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ex cc rmse rae(%) rrse(%)

1 0.61 0.002 65.81 78.84

2 0.62 0.002 65.18 78.21

3 0.61 0.002 66.11 79.29

4 0.62 0.002 64.90 78.15

5 0.61 0.002 65.72 78.97

6 0.60 0.002 65.42 79.47

7 0.63 0.002 64.47 77.70

8 0.59 0.002 66.44 80.77

9 0.61 0.002 66.16 79.01

10 0.61 0.002 65.42 78.60

avg 0.611 0.002 65.564 78.901

Table 4.3: Evaluation of linear regression on each of the 10 data sets obtained by selecting the best

individual from 10 executions; the seed was varied, and model 1 was used.

ex cc rmse rae(%) rrse(%) out(%)

1 0.74 0.001 60.21 67.56 9.82

2 0.74 0.001 59.08 67.77 9.82

3 0.74 0.001 58.31 67.94 8.42

4 0.68 0.001 64.56 73.25 9.1

5 0.74 0.001 61.12 67.03 9.12

6 0.69 0.001 63.52 72.95 8.07

7 0.72 0.001 60.79 69.27 8.42

8 0.73 0.001 61.74 68.54 9.47

9 0.68 0.001 63.86 73.77 7.37

10 0.76 0.001 59.05 65.01 3.86

avg 0.720 0.001 61.222 69.309 8.350

Table 4.4: Evaluation of linear regression on each of the 10 data sets obtained by selecting the best

individual from 10 executions; the seed was varied, and model 2 was used.

4.5 Results for Outlier Detection

The presence of features that are noise with respect to the problem is seen in Table 4.3, which shows

the results of the experiments with the pure FS strategy. The following indicators are presented: cc

(the correlation coefficient), rmse (the root mean squared error), rae (the relative absolute error), and

rrse (the root relative squared error). When we conducted the OD experiments, it was noted that the

correlation coefficients increased significantly. The last column of Table 4.4 indicates the rate of outliers

that were selected and eliminated for the best individual in each experiment. As was seen, especially in

some cases, the number was very low, which indicates that a correct choice of (suspected) outliers can

truly improve the learning phase, even in the presence of noise features (recall that there was no feature

selection). When we ran the simultaneous FS and OD experiment with model 5, we obtained the results

in Table 4.5 which, as expected, proved that outliers should be detected relative to the features that are

being used in the learning phase. In this table we included a final column # with the number of the

selected features. While a simultaneous, integrated, and automated system is certainly preferable over

a semiautomated system, such as a sequential strategy, for practical reasons, the question remains that if
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ex cc rmse rae(%) rrse(%) out(%) #

1 0.73 0.002 62.08 68.34 7.96 14

2 0.74 0.001 61.27 67.14 5.62 15

3 0.73 0.001 59.18 68.15 9.13 14

4 0.73 0.001 58.17 68.71 8.43 13

5 0.71 0.002 62.39 69.67 9.84 11

6 0.72 0.001 58.94 69.13 8.43 13

7 0.74 0.001 58.81 67.46 8.89 15

8 0.73 0.001 58.79 67.91 6.56 14

9 0.71 0.001 60.88 70.57 6.79 15

10 0.76 0.001 59.19 64.96 9.84 15

avg 0.730 0.001 59.971 68.204 8.149 13.9

Table 4.5: Evaluation of linear regression on each of the 10 data sets obtained by selecting the best

individual from 10 executions; the seed was varied, and model 5 was used.

ex cc rmse rae(%) rrse(%) out(%) #

1 0.75 0.001 61.87 66.37 6.56 7

2 0.71 0.002 63.71 70.47 8.66 6

3 0.69 0.002 64.80 71.45 6.56 6

4 0.70 0.002 63.61 71.34 7.96 7

5 0.68 0.002 63.25 73.39 9.37 6

6 0.69 0.002 63.33 72.11 7.73 5

7 0.72 0.001 62.95 68.68 8.20 7

8 0.73 0.002 61.90 68.21 8.66 6

9 0.74 0.001 60.79 67.35 9.84 8

10 0.68 0.002 63.49 73.41 7.49 9

avg 0.709 0.002 62.969 70.280 8.102 6.7

Table 4.6: Evaluation of linear regression on each of the 10 data sets obtained by selecting the best

individual from 10 executions; the seed was varied, and model 3 was used.

selecting features and then detecting outliers, or the other way around, gives results that are comparable

to those obtained with the simultaneous strategy. The results of two experiments that correspond to the

two possible sequential strategies, shown in Table 4.6 and Table 4.7, respectively, prove that while both

of them are comparable to the simultaneous strategy in terms of improvement over the original problem,

the simultaneous strategy still presents a slight advantage over both sequential schemata. Results of

experiments with model 6 are in Table 4.8, in which we show the correlation coefficient of the polynomial

function, in 10-fold cross-validation, along with its relative absolute error and its root relative squared

error. Results also show the number of features that correspond to the selection and the percentage

of outliers that were detected (and eliminated). As observed, our optimization algorithm extracted

non-trivial polynomial functions with a very high correlation coefficient and a small percentage of real

outliers (as witnessed by the difference between correlation coefficient with and without their elimination).

Table 4.9 summarizes the average results.
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ex cc rmse rae(%) rrse(%) out(%) #

1 0.77 0.001 59.38 63.84 7.73 13

2 0.73 0.001 60.97 68.28 8.66 10

3 0.74 0.001 58.08 67.42 8.66 9

4 0.71 0.002 61.90 70.69 7.96 9

5 0.73 0.001 58.25 67.96 4.92 13

6 0.74 0.001 57.40 67.14 9.60 12

7 0.71 0.002 63.50 70.03 9.84 11

8 0.71 0.002 61.52 70.36 7.73 12

9 0.69 0.002 61.67 71.93 6.79 9

10 0.72 0.002 61.12 68.80 7.73 11

avg 0.72 0.001 60.38 68.64 7.96 10.9

Table 4.7: Evaluation of linear regression on each of the 10 data sets obtained by selecting the best

individual from 10 executions; the seed was varied, and model 4 was used.

ex cc rmse rae(%) rrse(%) out(%) #

1 0.80 0.001 57.58 60.47 9.13 10

2 0.79 0.001 55.66 60.68 9.83 16

3 0.79 0.001 57.62 61.84 8.15 14

4 0.79 0.001 56.17 60.87 3.27 14

5 0.79 0.001 57.47 60.93 7.25 15

6 0.79 0.001 56.75 60.77 2.10 13

7 0.78 0.001 58.91 62.27 8.89 15

8 0.78 0.001 58.79 62.26 8.66 16

9 0.78 0.001 58.30 63.63 5.15 14

10 0.78 0.001 60.03 64.18 2.81 15

avg 0.79 0.001 57.73 61.79 6.52 14.2

Table 4.8: Evaluation of linear regression on each of the 10 data sets obtained by selecting the best

individual from 10 executions; the seed was varied, and the model 6 was used.

model cc rmse rae(%) rrse(%)

1 0.61 0.002 65.56 78.90

2 0.72 0.001 61.22 69.31

3 0.73 0.001 59.97 68.20

4 0.71 0.002 62.97 70.28

5 0.73 0.001 60.38 68.64

6 0.79 0.001 57.73 61.79

Table 4.9: A summary of the results.

4.6 Learning Schemata for Fingerprinting

Recall that for this problem, we interpreted the names as classes in I. So, I is labeled with four classes

A1, . . . , A4 that correspond to the four aquifers, and we then asked the question: what is the smallest

and most accurate fingerprint that uniquely identifies an aquifer? In this case, the individuals are defined

45



4.6. LEARNING SCHEMATA FOR FINGERPRINTING

as follows:

P : [(T, F )0, . . . , (T, F )n−1︸ ︷︷ ︸
Pfst

]

where, as previously mentioned, since we had no temporal or spatial information, T [i] takes values of

0 (that means that the i feature is selected), or -1 (that means that the i feature is not selected) and

F [i] takes values from 0 to the maximum function value, maxF . In this case, the classes are the aquifer

names and we chose to model the fingerprint of an aquifer as the set of values that best represent an

(ideal) sample of groundwater from that aquifer, that is, its centroid. Then, we denoted, by using Cj(P ),

the centroid of the j-th aquifer (1 ≤ j ≤ 4, in our case) and computed precisely using the features that

correspond to P . The performance measures of our model are defined as simple accuracy and adjusted

accuracy. Indicated by A(I) the (true) aquifer to which the instance I corresponds, we computed the

simple accuracy of P over I as follows:

SimpleAcc(P ) = ΣI∈I

{
1 if A(I) = argminAj{d(I, Cj(P ))}
0 otherwise

(4.4)

where, to evaluate the distance between two instances I = (a1, . . . , ad) and J = (a′1, . . . , a
′
d), we used the

well-known notion of Euclidean distance, as in (4.5), below:

d(I, J) =
√

Σd
i=1(|ai − a′i|2) (4.5)

Because of the particular nature of our problem, we can modify (4.4) to take into account that, although

the existence of an impermeable layer between aquifers is hypothesized, infiltration may occur. Therefore,

a misclassification can be graded as less severe if the expected aquifer confines with the true one. The

adjusted accuracy takes this aspect into account:

AdjustedAcc(P ) = ΣI∈I


1 if A(I) = argminAj{d(I, Cj(P ))}
1
2 if A(I) = argminAj{d(I, Cj(P ))} ± 1

0 otherwise

(4.6)

In addition, we considered the cardinality as an interpretability measure and finally, in order to take into

account the nonlinear transformation, we defined two new measures, the sum of all exponents:

SumExp(P ) = Σn
i=1F [i] (4.7)

and the maximum exponent:

MaxExp(P ) =
n

max
i=1

F [i] (4.8)

Now, all measures SimpleAcc(P ), AdjustedAcc(P ), Card(P ), MaxExp(P ) and SumExp(P ) can be

combined to obtain four variants of the optimization equation (2.2):
max SimpleAcc(P ),

min SumExp(P ), (1)

min Cardinality(P )


max AdjustedAcc(P ),

min SumExp(P ), (2)

min Cardinality(P )


max SimpleAcc(P ),

min MaxExp(P ), (3)

min Cardinality(P )


max AdjustedAcc(P ),

min MaxExp(P ), (4)

min Cardinality(P )
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Results of variants (1), (2), (3), and (4) will be tested and compared to each other in order to establish

the best schema.

4.7 Settings

In this experiment, we used the standard parameters of the NSGA-II evolutionary algorithm, and

implemented elementary variants of mutation and crossover for them to be specific to our solution format.

To cope with the intrinsic unbalancing of our data (over 70% of the samples belong to A1), we operated

a re-sampling, to obtain a training set with 10 samples per aquifer (Itraining), and left every other

sample for testing (Itest). The test was performed by applying the accuracy function(s) to Itest using

the centroid and the selected attributes extracted from the chosen solution. For each of the four different

multi-objective optimization variants, we executed 10 runs, each with a different seed. The population

side was 100 in each experiment, and we set each experiment to run for 100 generations.

4.8 Results for Fingerprinting

For this next set of experiments, we used Itraining and Itest without any further transformation. We

obtained four sets of results, displayed in Table 4.10. The column acc indicates the test results for

obtained accuracy, and the remaining columns show how this accuracy changes when analyzed by class,

that is, how accurate is our model in identifying each of the four aquifers. As was observed, the general

accuracy ranges from 0.54 to 0.66, which can be considered relatively high. By looking at the single class

results, evidently, the aquifers A3 and A4 are identified with accuracies ranging from 0.9 to 1, and aquifer

A2 is correctly identified with a rate from 0.71 to 0.81. Aquifer A1 seemed to be the most difficult one.

For each model, we identified the most simple and accurate solution with results that can be displayed,

looking at the highest accuracies within fingerprints with less than four columns, and with a preference

for lower exponents - these are indicated by a ∗ in Table 4.10. In Figure 4.3, such solutions are displayed

graphically, where their distinguishing power becomes evident. These results can be explained as follows.

The Ca2+ and HCO−3 levels are controlled by the interaction between rock and water, and related to

the dissolution of carbonate and to the degradation of organic matter [116]. Hydrogen carbonate, in

particular, is dissolved inorganic carbon in fresh waters, which is derived from the dissolution of calcite

and dolomite, and its levels, therefore, implicitly express the concentrations of calcium and magnesium

derived from these two minerals. Moreover, calcium and magnesium, together, define the level of hardness

(η) of the water. Finally, iron and manganese, among others, are widely found in soils and aquifers, and

have similar geochemical behavior. The reducing conditions, residence time, well depth and salinity are

the key factors leading the dissolution and migration of Fe and Mn to groundwater [117]. This may

explain our findings, that seem to indicate the HCO−3 , Fe, and η, allows one to distinguish between the

aquifers of the group under analysis. The fingerprinting problem can be also approached by looking into

subsets of ratios among characteristics, instead of subsets of characteristics. In other words, instead of

looking for the geochemical fingerprint of each aquifer among combinations of the chemical indicators, we

examined different combinations of ratios of affine elements and quantities. This entailed pre-processing

the data set to compute such ratios, and then applying the same optimization models. The reason

behind this approach lies in the fact that the combinations of ratios of affine elements are sometimes

better suited to identifying the geochemical signatures of an aquifer. This is because affine elements

tend to be preserved during the dilution contribution of meteoric waters of reborn. Table 4.11 shows

the ten executions with the four models. As indicated, some of the proposed solutions present very high

accuracies; general accuracy now ranges from 0.79 to 0.91, and aquifer A1 is now correctly identified with

accuracies from 0.75 to 0.91. For those fingerprints with three elements or less, their ability of discernment
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recall

fingerprint acc. A1 A2 A3 A4

va
ri

a
n

t
(1

)

η, (HCO−3 )
3
, (NH+

4 )
2

, (Fe)
2

0.60 0.55 0.71 1.00 1.00

η, (HCO−3 )
3
, (NH+

4 )
2
, Fe 0.60 0.55 0.71 1.00 1.00

(η)
3
, (HCO−3 )

2
, (Fe)

3
0.60 0.55 0.71 0.90 1.00

(T )
2
, η, (HCO−3 )

3
0.55 0.49 0.81 0.90 0.75

η, (HCO−3 )
2
, (Na+)

2
, NH+

4 0.54 0.47 0.81 1.00 1.00

(η)
3
, HCO−3 , Fe 0.60 0.55 0.71 0.90 1.00

(η)
3
, (HCO−3 )

2
, (Fe)

3
0.60 0.55 0.71 0.90 1.00

(T )
2
, η, HCO−3 0.55 0.49 0.81 0.90 0.75

η, (HCO−3 )
3
, (Na+)

3
, (Fe)

3
0.54 0.47 0.71 1.00 1.00

∗ (η)
3
, HCO−3 , Fe 0.60 0.55 0.71 0.90 1.00

va
ri

a
n

t
(2

)

(η)
2
, (HCO−3 )

3
, (NH+

4 )
3
, (Fe)

2
0.66 0.55 0.71 1.00 1.00

(η)
2
, (HCO−3 )

3
, (Fe)

3
, (As)

2
0.66 0.55 0.71 0.90 1.00

(η)
2
, HCO−3 , (NH+

4 )
2

0.64 0.53 0.81 1.00 1.00

(η)
2
, (HCO−3 )

3
, NH+

4 , (Fe)
2

0.66 0.55 0.71 1.00 1.00

η, (HCO−3 )
2
, (Na+)

2
, (NH+

4 )
3
, (As)

2
0.62 0.47 0.81 1.00 1.00

(η)
2
, (HCO−3 )

3
, NH+

4 , Fe 0.66 0.55 0.71 1.00 1.00

(η)
2
, (HCO−3 )

3
, (NH+

4 )
3
, (Fe)

2
0.66 0.55 0.71 1.00 1.00

(η)
2
, (HCO−3 )

3
, NH+

4 , (Fe)
3

0.66 0.55 0.71 1.00 1.00

∗ (η)
3
, (HCO−3 )

2
, Fe 0.66 0.55 0.71 0.90 1.00

η, (HCO−3 )
2
, (Na+)

2
, (NH+

4 )
2
, (Fe)

3
0.62 0.47 0.81 1.00 1.00

va
ri

a
n

t
(3

)

(η)
2
,HCO−3 , (NH+

4 )
3

0.59 0.53 0.48 1.0 1.00

(η)
3
, HCO−3 , (Fe)

3
0.60 0.55 0.43 0.90 1.00

(η)
3
, (HCO−3 )

3
, (Fe)

3
0.60 0.55 0.43 0.90 1.00

(η)
2
, (HCO−3 )

3
, (NH+

4 )
2
, Fe 0.60 0.55 0.48 0.90 1.00

(T )
2
, (HCO−3 )

2
, SO2−

4 , NH+
4 0.54 0.48 0.43 1.00 0.75

(η)
3
, (HCO−3 )

3
, (Fe)

3
0.60 0.55 0.43 0.90 1.00

(η)
3
, (HCO−3 )

3
, (Fe)

3
0.60 0.55 0.43 0.90 1.00

(T )
2
, η, (HCO−3 )

2
0.55 0.49 0.43 1.00 0.75

∗ (η)
3
, HCO−3 , (Fe)

3
0.60 0.55 0.43 0.90 1.00

(T )
2
, η, HCO−3 0.55 0.49 0.43 1.00 0.75

va
ri

a
n

t
(4

)

(η)
2
, (HCO−3 )

3
, (NH+

4 )
3
, (Fe)

2
0.66 0.55 0.71 1.00 1.00

η, HCO−3 , NH+
4 , Fe 0.64 0.54 0.81 0.90 1.00

∗ (η)
2
, (HCO−3 )

2
, NH+

4 0.64 0.53 0.81 1.00 1.00

(η)
2
, (HCO−3 )

3
, (NH+

4 )
2
, NH+

4 , (As)
2

0.66 0.55 0.71 1.00 1.00

η, (HCO−3 )
2
, (Na+)

2
, (NH+

4 )
3
, (As)

2
0.62 0.47 0.81 1.00 1.00

η, (HCO−3 )
2
, (Na+)

2
, (NH+

4 )
3

0.62 0.47 0.81 1.00 1.00

(η)
2
, (HCO−3 )

2
, (NH+

4 )
2

0.64 0.53 0.81 1.00 1.00

η, (HCO−3 )
2
, Na+, (NH+

4 )
2
, (Fe)

2
, (As)

3
0.62 0.47 0.81 1.00 1.00

(η)
2
, (HCO−3 )

3
, (NH+

4 )
2
, (Fe)

3
0.66 0.55 0.71 1.00 1.00

η, (HCO−3 )
2
, (Na+)

2
, NH+

4 , (Fe)
2

0.62 0.47 0.81 1.00 1.00

Table 4.10: Results of the characteristics-based fingerprinting experiment. From top to bottom: variants

(1), (2), (3), and (4). Starred items indicate the best results of each variant.)

can be also shown graphically (see Figure 4.4); thus, the most simple and accurate solution for each

model is shown. As can be seen, using ratios increases the accuracy of our characterization in a practical

manner; the ratios that emerged as those with a better discernment ability can be explained as follows.

First, electrical conductivity has been used to characterize groundwater by several authors [118,119], the

presence of inorganic suspended solids such as chloride, nitrate, phosphate, and sulfate ions (ions that
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Figure 4.3: Graphical representation of the starred solutions from Table 4.10. Figure (a): η3, HCO−3 , F e.

Figure (b): η3, HCO−3
2
, Fe. Figure (c): η3, HCO−3 , F e

3. Figure (d): η2, HCO−3
2
, NH+

4 .

carry a negative charge), or aluminum, calcium, magnesium, iron, and sodium ions (ions that carry a

positive charge) may affect electrical conductivity. Electrical conductivity values may reflect both the

recharge dynamics and the possible excessive pumping of wells. Second, the concentration ratios between

alkaline earth elements could be correlated to water-sediment interaction times, and the contribution

of fossil water content trapped in deep sediments [120]. In conclusion, the fingerprints that emerge

from our analysis seem to indicate that the different aquifers can be distinguished from these elements:

freshwater/fossil water mixing and saltwater contamination.

After an analysis of the results, it is evident that the following pair of ratios:

E.C./Cl−, E.C./Ca2+

is able to distinguish the four aquifers with the most accuracy. By reading the linear boundaries between

values, it is noticeable that each aquifer is characterized by the following intervals:

A1 : under E.C./Ca2+ = −0.272 · E.C./Cl− + 14.251

A2 : between E.C./Ca2+ = 0.16 · E.C./Cl− + 7.267 and

E.C./Ca2+ = 0.1748 · E.C./Cl− + 15.475

A3 : between E.C./Ca2+ = 0.161 · E.C./Cl− + 0.049 and

E.C./Ca2+ = 0.16 · E.C./Cl− + 7.267

A4 : under E.C./Ca2+ = 0.161 · E.C./Cl− + 0.049

49



4.8. RESULTS FOR FINGERPRINTING

recall

fingerprint acc. A1 A2 A3 A4

va
ri

a
n

t
(1

)

E.C./Cl−, HCO−3 /Ca2+ 0.84 0.90 0.52 0.50 1.00

(E.C./Cl−)
3
, (η/Cl−)

2
, (Na+/T )

2
, (HCO−3 /Ca

2+)
2

0.86 0.90 0.52 0.80 1.00

∗ (E.C./Cl−)
3
, (HCO−3 /Na

+)
3
, (E.C./Ca2+)

3
0.85 0.90 0.48 0.80 1.00

(η/Cl−)
3
, HCO−3 /Ca2+ 0.79 0.81 0.62 0.90 1.00

E.C./Cl−, η/Cl−, (η/T )
3

0.85 0.91 0.43 0.80 1.00

(Cl−/Na+)
2
, E.C./Cl−, Na+/T , (HCO−3 /η)

2
0.83 0.90 0.43 0.50 1.00

(E.C./Cl−)
3
, (HCO−3 /T )

2
0.79 0.79 0.67 0.90 1.00

(E.C./Cl−)
2
, (η/Cl−)

2
0.85 0.90 0.48 0.80 1.00

(E.C./Cl−)
2
, Ca2+/K+, (E.C./Ca2+)

2
0.75 0.82 0.24 0.70 1.00

(E.C./Cl−)
3
, (HCO−3 /T )

3
, (η/T )

3
0.84 0.86 0.62 0.90 1.00

va
ri

a
n

t
(2

)

η/Cl−, (η/Na+)
3

0.90 0.82 0.43 0.80 1.00

(NH+
4 )

2
, (E.C./Cl−)

3
, (η/Cl−)

3
0.91 0.90 0.48 0.70 1.00

(η/Cl−)
2
, E.C./Ca2+ 0.88 0.75 0.57 0.90 1.00

(E.C./Cl−)
3
, (η/Cl−)

3
, Na+/T 0.87 0.90 0.43 0.80 1.00

(E.C./Cl−)
3
, (η/Cl−)

2
,(η/Na+)

3
0.91 0.90 0.48 0.80 1.00

(E.C./Cl−)
3
, Na+/T , η/T 0.89 0.76 0.67 1.00 1.00

(E.C./Cl−)
2
, (HCO−3 /η)

3
, (HCO−3 /T )

3
0.86 0.79 0.67 0.90 1.00

Cl−/Na+, E.C./Cl−, Na+/T 0.91 0.90 0.43 0.50 1.00

E.C./Cl−, η/Cl−, (η/T )
3

0.90 0.91 0.43 0.80 1.00

∗ E.C./Cl−, E.C./Ca2+ 0.91 0.90 0.48 0.60 1.00

va
ri

a
n

t
(3

)

(Cl−/Na+)
2
, (E.C./Cl−)

2
, (η/Cl−)

2
0.85 0.90 0.48 0.80 1.00

∗ E.C./Cl−, (η/Cl−)
2

0.85 0.90 0.48 0.80 1.00

NH+
4 , E.C./Cl−, η/T 0.83 0.90 0.38 0.50 1.00

(NH+
4 )

3
, (η/Cl−)

2
, (HCO−3 /Ca

2+)
2
, E.C./η 0.81 0.83 0.67 0.80 1.00

T , (η/Cl−)
2
, HCO−3 /Ca2+ 0.79 0.80 0.62 0.90 1.00

η/Cl−, HCO−3 /Ca2+ 0.79 0.81 0.62 0.90 1.00

As, E.C./Cl−, E.C./Na+ 0.84 0.91 0.48 0.50 1.00

(E.C./Cl−)
2
, (Na+/T )

2
0.83 0.90 0.43 0.50 1.00

η/Cl−, E.C./Ca2+ 0.75 0.75 0.57 0.90 1.00

η/Cl−, HCO−3 /T 0.66 0.60 0.81 1.00 1.00

va
ri

a
n

t
(4

)

(E.C./Cl−)
2
, (E.C./Ca2+)

2
0.90 0.90 0.48 0.60 1.00

E.C./Cl−, η/Cl−, HCO−3 /Na+ 0.91 0.90 0.48 0.80 1.00

(NH+
4 )

2
, (η/Cl−)

3
, (HCO−3 /Ca

2+)
3
, (E.C./HCO−3 )

3
0.88 0.82 0.67 0.80 1.00

(η/Cl−)
3
, (HCO−3 /Ca

2+)
2
, (T/K+)

2
0.87 0.81 0.62 1.00 1.00

E.C./Cl−, η/Cl− 0.91 0.90 0.48 0.80 1.00

(E.C./Cl−)
3
, (η/Cl−)

2
0.91 0.90 0.48 0.80 1.00

(η)
2
, (HCO−3 )

3
, η/Cl−, (HCO−3 /Ca

2+)
3

0.89 0.88 0.57 0.90 1.00

η/Cl−, (HCO−3 /Ca
2+)

3
, η/T 0.86 0.78 0.62 0.90 1.00

E.C./Cl−, (η/Cl−)
2
, η/T 0.91 0.91 0.43 0.80 1.00

∗ E.C./Cl−, E.C./Ca2+ 0.90 0.90 0.48 0.60 1.00

Table 4.11: Results of the ratios-based fingerprinting experiment. From top to bottom: variants (1), (2),

(3), and (4). Starred items indicate the best results for each variant.
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Figure 4.4: Graphical representation of the starred solutions from Table 4.11. Figure (a):

(E.C./Ca2+)3, (E.C./Cl−)3. Figure (b): (E.C./Ca2+), (E.C./Cl−). Figure (c): (η/Cl−), (E.C./Cl−).

Figure (d): (E.C./Ca2+), (E.C./Cl−).
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Chapter 5

Application 2: Air Pollution

Monitoring Stations

Anthropogenic environmental pollution is a known and indisputable issue. In everyday life, the human

body is exposed to harmful substances in various ways, including the consumption of food and drink or

via absorption with breathing. While it is possible to limit the absorption of harmful chemical compounds

with nourishment by selecting the right products, it is impossible to choose the air you breathe. Every day,

with every breath, chemicals that are potentially dangerous to health become absorbed into the lungs and

body, particularly if they are suspended particulate matters, nitrogen oxides, CO, and SO2. Exposure

to each of these pollutants adversely affects human health [121]. This is confirmed by numerous scientific

studies conducted over many years, around the world: Europe [122], and, in particular, Poland [123,124],

Deutschland [125], and Italy [126], USA [127–129], Canada [130], Australia [131], Chile [132], among

many others. Air quality is regularly monitored and alert systems inform residents about the forecasted

or ensuing high concentrations of air pollutants. Undoubtedly, actions leading to the reduction of air

pollution are definitely more effective. Generally, anthropogenic sources of air pollution are the common.

Due to the development of civilization, it is impossible to completely eliminate them. However, it is

possible to monitor their behaviour, and predict their effect in the short and medium-term. This chapter

considers an air pollution prediction problem and, in particular, the problem of establishing how nitrogen

oxides are correlated to the amount of traffic and to the weather conditions at a specific geographical

point, in a crossroad in Wroc law, Poland. We define this problem within our framework as a feature

selection and transformation problem for regression. This chapter is based on [133–137].

5.1 Data

There is only one communication station for measuring the air quality in the city of Wroc law, and it

is located within a wide street with two lanes in each direction (GPS coordinates: 51.086390 North,

17.012076 East). The center of one of the largest intersections in the city with 14 traffic lanes is located

approximately 30 meters from the measuring station; this area is observed by a traffic monitoring system.

The measurement station is located on the outskirts of the city, at 9.6kms from the airport. Pollution

data are collected by the Provincial Environment Protection Inspectorate and encompasses the hourly

NO2 and NOx concentration values during three full years, from 2015 to 2017. The traffic data (denoted

by t, in our results) are provided by the Traffic Public Transport Management Department of the Roads

and City Maintenance Board in Wroc law, and include hourly count of all types of vehicles passing

the intersection. Public meteorological data are provided by the Institute of Meteorology and Water

Management, and they include: air temperature (a), solar duration (d), wind speed (w), relative humidity
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5.2. STATISTICAL ANALYSIS

feature min max mean p-value kurtosis skewness

a -15.7 37.7 10.9 7.21 ∗ 10−31 -0.412 0.200

d 0 1 0.23 - -0.113 1.287

w 0 19 3.13 1.65 ∗ 10−42 1.614 1.065

r 20 100 74.9 2.82 ∗ 10−35 -0.453 -0.698

p 906 1028 1003 2.87 ∗ 10−36 0.975 -0.359

t 30 6713 2771 4.9 ∗ 10−49 -1.567 -0.175

NO2 1.7 231.6 50.4 9.03 ∗ 10∗−26 1.786 0.767

NOx 3.9 1728.0 142.2 - 16.302 2.553

Table 5.1: Descriptive statistics.

a d w r p t

a 1

d 0.461 1

w 0.0121 0.146 1

r -0.561 -0.641 -0.269 1

p -0.178 0.039 -0.211 0.044 1

t 0.247 0.403 0.198 -0.439 -0.034 1

NO2 0.140 0.081 -0.249 -0.189 -0.439 0.045

NOx -0.126 0.010 -0.214 0.067 0.104 0.444

Table 5.2: Correlation matrix.

(h), and air pressure (p). For the sake of uniformity, solar duration values have been re-normalized in

the real interval [0, 1] (as standard). The full data set contains 26,304 observations. In the preprocessing

phase, the instances with at least one missing value (617 samples, 2.3%) were excluded. In summary, the

data matrix consists of a matrix with one named attribute, the Station name (since it is the same name

for all instances, we do not take into account this attribute); 26,304 rows; 6 independent attributes a,

d, w, h, p and t; one time T attribute in which temporal information is codified hourly; and one class

attribute that takes values of NO2 or NOx.

5.2 Statistical Analysis

The relevant statistical measures of the attributes are shown in Table 5.1: the (non-standardized) mean,

the p-value associated with a Shapiro normality test (in which the null hypothesis is that the population

is normally distributed), the kurtosis, and the skewness of each distribution. As was observed, variables

are no-normal (their p-values are considerably below 0.05), and they present with lower levels of kurtosis

and skewness, being NOx and w are the examples with higher levels. In Figure 5.1 and 5.2 we included

the graphical representation of the statistical behaviour of each of the variables. As noted, the parameters

demonstrated erratic behaviour, with the presence of a relevant percentage of outliers and most variables

did not show a normal behaviour. The correlation between elements can be seen in Table 5.2; the most

evident ones are t with d, and t with NOx.
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Figure 5.1: Distribution and outliers detection analysis: a, d, w, h, p, t.

5.3 Learning Schemata

The first environmental study that relates air pollution and meteorological variables and traffic conditions

in Wroc law (Poland) was presented in [138]. The overall goal of the study was to determine how the

levels of specific pollutants, namely, NO2, NOX , and PM2.5, are related to the values of other attributes,

such as weather conditions and traffic intensity, with the purpose of building an explanation model. In

it, the value of a pollutant at a certain time instant is linked to the value of the predictor attributes

from the same time instant. In [138], a non-linear, non-interpretable, atemporal model was used. The

fitting ability of a non-interpretable model partially compensates for not using the historical values of the

predictor, giving rise to a relatively good explanation model. In [139], the authors use random forests in

an attempt to model the regression relationships between concentrations of NO2, NOx and PM2.5, and

nine variables describing meteorological conditions, temporal conditions and traffic flow. Furthermore, in

the literature, there are mathematical models that predict concentrations of pollutants and recognize the
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Figure 5.2: Distribution and outliers detection analysis: NO2 and NOx.

factors that have the greatest impact on them; these are called autoregressive models [140,141]. On the

other hand, land use regression models (LURs) are a cost-effective approach for predicting the variability

within ambient air pollutant concentrations with high resolution, shortening the time of exposure to the

contaminants’ harmful effects and reducing the intensity of this action; examples include [142, 143] (see

also [144] for a survey). These models are often developed based on a series of previous observations

however, it is unclear how well such models perform when extrapolated over time [145]. Moreover, in

addition to the identification of the factor itself, the time of its operation also plays a significant role.

For example, a momentary gust of wind results in a much smaller evacuation of pollutants and, thus, a

decrease in concentration, when compared with the wind with the same speed persisting for several hours.

To better explain a contamination concentration and taking the temporal component into account, one

may want to identify not only the factors at play but also the moment in time for which their influence

is the greatest, and build a temporal land use regression model (TLUR). By taking into account the

temporal component, a TLUR is more accurate and more interpretable than a LUR. In order to identify

the factors that most influence the amount of air pollutant and the time of its operations, we looked at

the temporal information of our data and we developed three models. Model 1 consists of a lag selection

only; in model 2 we performed a lag selection with interval and functions, that is, we apply a feature

transformation; and model 3 looked at lag selection and nonlinear transformation. The individuals are

represented as follows: in model 1 the individuals are:

P : [(T, F )0, . . . , (T, F )n−1︸ ︷︷ ︸
Pfst

]

where only T [i] takes values in {−1,maximumLag}; T [i] = −1 means that the attribute is not selected

and T [i] 6= −1 means that the attribute i has a delay of T [i]. Spatial S and function F elements do not

play any role in this case. In model 2 the individual is represented as:

P : [(T, F )0, . . . , (T, F )n−1︸ ︷︷ ︸
Pfst

]

where T [i] takes values in {−1,maxT}; T [i] = −1 means that the attribute is not selected and T [i] 6= −1

means that the attribute i has a delay of T [i]; and F [i] takes values in {0,maxF}. Here the element
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F codifies the way in which delays can act in the phenomena, for example a uniform, exponential or

hyperbolic way. Finally, in model 3, the individual is represented as:

P : [(T, F )0, . . . , (T, F )n−1︸ ︷︷ ︸
Pfst

]

where T [i] takes values in {−1,maxT}; T [i] = −1 means that the attribute is not selected and T [i] 6= −1

means that the attribute i has a delay of T [i]; and F [i] takes values in {0,maxF}. Here, F codifies the

nonlinear transformation that is, the power to which each attribute is elevated. As a black box learning

algorithm, we used the linear regression in all cases. In model 1, we ran in 5-fold cross-validation mode,

with standard parameters and no embedded feature selection. While in the rest of models we ran in

10-fold cross-validation mode, also with standard parameters and no embedded feature selection. The

optimization problem is a two-objective optimization problem in models 1 and 2 and a three-objective

optimization problem in model 3. In models 1 and 2, the optimization equation looks like:{
maxCorr(V(I, P )),

minCardfst(P )
(5.1)

where, Corr(V(I, P )) refers to the correlation between the stochastic variable obtained by the

observations and the linear variable obtained by linear regression on the data set I after the transformation

indicated by P , and Cardfst refers to the number of selected features. In model 3, we have two variants

of a three-objective optimization equation, that is:
maxCorr(V(I, P )),

minCardfst(P ),

minMaxExp(P )

(5.2)

where MaxExp(P ) measures the maximum exponent of the nonlinear transformation, and:
maxCorr(V(I, P )),

minCardfst(P ),

minSumExp(P )

(5.3)

where SumExp(P ) measures the sum of all exponents of the nonlinear transformation.

5.4 Settings

In model 1, we used the standard mutation and crossover operations (suitably adapted to correctly deal

with our solution representation), with probabilities (tuned with an initial experiment) of 0.3 and 0.7,

respectively. Our population was composed of 100 individuals. We set the algorithm for a total of

1,000 evaluations in a single execution, and launched 5 independent executions, with seeds from 1 to

5. Moreover, we considered only one pollutant, NO2. We considered only the 10% of the entire data

set, and we split it into a training set and a test set, operating the optimization on the former only.

The maximum lag (value of T [i]) allowed is 24 hours. In model 2, we used the first 30% of the data

(taking into account both pollutants, NO2 and NOx). For each execution, NSGA-II was run with an

initial, randomly generated population of 100 individuals, for 100 generations. Mutation and crossover

have been suitably modified to deal with our individuals, and their relative probabilities have been left

as originally set in the jMetal library. We launched 10 independent executions, with random seeds from

1 to 10; the maximum value of T [i], maxT was set to 24, and the maximum value of F [i] was set to 3

including the uniform (F [i] = 0), linear (F [i] = 1) and hyperbolic (F [i] = 2) functions. Finally, in model

3, we initially partitioned our data into a training set (30%) and a test set (70%), respecting the temporal
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individual

exec. coeff. a,d,w,h,p,t

1 0.718 14,7,2,10,0,0

2 0.718 14,0,2,8,10,0

3 0.719 21,5,2,9,23,0

4 0.721 20,0,2,7,19,0

5 0.704 21,0,3,8,7,0

Table 5.3: Results, one line per execution, for NO2 after performing model 1.

individual

exec. coeff. a d w h p t

1 0.730 (10,1) (1,0) (2,0) (7,0) (2,1) (1,0)

2 0.728 (0,1) (7,1) (2,0) (9,0) (4,1) (2,0)

3 0.732 (22,1) (2,0) (5,0) (7,0) (0,1) (2,0)

4 0.729 (2,0) (12,0) (2,0) (11,0) (1,1) (2,0)

5 0.729 (1,1) (14,0) (2,0) (8,0) (0,0) (2,0)

6 0.733 (6,0) (2,1) (3,0) (10,1) (21,0) (2,1)

7 0.737 (23,1) (2,1) (4,1) (8,1) (3,0) (3,1)

8 0.732 (2,1) (1,0) (3,0) (6,0) (2,0) (2,1)

9 0.733 (2,1) (2,1) (3,0) (9,0) (11,0) (2,0)

10 0.737 (22,1) (2,1) (3,0) (8,1) (1,1) (2,0)

Table 5.4: Results, one line per execution, for NO2 after performing model 2.

ordering, taking into account both NO2 and NOx pollutants. We performed 10 independent executions

on the training data and then we chose the best-performing (and explainable) solutions and applied the

corresponding transformation to the test data set. On each execution, we set the maximum value of T [i]

at 6 hours (maxT = 6), and the maximum value of F [i] at 3 (maxF = 3).

5.5 Results

Table 5.3 shows the correlation coefficient of the best individual for each of the five executions for NO2

after applying model 1. We also show the individual values for each variable, in the original order: air

temperature, solar radiation, wind, relative humidity, pressure and traffic. Boldfaced values have the

highest performance measure. Table 5.4 and 5.5 shows the results of the experiment with model 2.

Results after performing model 3 are shown in Table 5.6 for NO2, and in Table 5.7 for NOx. Both tables

are structured in the same way as the previous ones. In view of the results that have been obtained,

two important elements must be considered: first, how lags and non-linear transformations are explained

in the physical process and, second, how the transformations improve the synthesis of regression models.

Regarding the first point, it is important to understand that different executions may give rise to different

results and, yet, have similar performances. On one hand, some lags are consistent in all executions, which

indicates that the temporal component of their contribution is stable and clear. On the other hand, some

lags do show certain variability: we believe that in such cases, more experiments are necessary to fully

understand the underlying mechanisms. All notwithstanding, it is clear how individuals have a clear

positive effect on the cross-validated performances for linear regression. Observe both the average and

the each single cross-validation execution the correlation coefficient of the models. In both cases, for NO2

and NOx, linear regression performed on the original data (that is, without any transformation) left a

58



CHAPTER 5. APPLICATION 2: AIR POLLUTION MONITORING STATIONS

individual

exec. coeff. a d w h p t

1 0.629 (1,0) (11,0) (2,0) (1,0) (2,0) (1,0)

2 0.628 (4,0) (8,1) (4,0) (1,1) (20,0) (1,0)

3 0.629 (1,1) (10,1) (3,0) (24,1) (1,1) (2,1)

4 0.628 (4,1) (12,0) (2,0) (2,1) (0,1) (1,0)

5 0.638 (2,1) (10,0) (4,0) (2,0) (23,1) (1,0)

6 0.632 (0,1) (12,1) (3,0) (1,1) (7,1) (1,0)

7 0.632 (1,0) (9,0) (4,0) (1,1) (2,0) (2,1)

8 0.630 (2,1) (13,0) (2,1) (1,0) (1,1) (2,1)

9 0.631 (1,0) (10,0) (2,0) (2,0) (4,0) (2,1)

10 0.630 (1,0) (9,0) (2,0) (2,1) (14,1) (1,0)

Table 5.5: Results, one line per execution, for NOx after performing model 2.

individual

exec. coeff. a d w r p t

1 0.727 (0,3) (1,1) (2,1) (5,1) (5,1) (1,1)

2 0.725 (5,2) (0,1) (2,1) (5,1) (1,2) (1,1)

3 0.725 (6,1) (1,1) (2,1) (6,1) (4,1) (1,1)

4 0.723 (5,3) (6,3) (2,1) (5,3) (0,3) (1,1)

5 0.728 (0,3) (0,1) (2,1) (6,1) (0,1) (1,1)

6 0.729 (0,2) (1,1) (2,1) (6,1) (0,1) (1,1)

7 0.732 (1,3) (1,1) (2,1) (6,1) (1,1) (1,1)

8 0.725 (4,3) (4,2) (2,1) (6,1) (5,1) (1,1)

9 0.733 (6,3) (1,2) (2,1) (6,1) (0,1) (1,1)

10 0.729 (3,3) (0,1) (2,1) (6,2) (3,1) (1,1)

Table 5.6: Results, one line per execution, for NO2 after applying model 3.

correlation coefficient of 0.63 and 0.61 respectively. It is clear that linear regression on the transformed

data improved the coefficients. Moreover, we can observe as higher performances are obtained when lag

combinations or nonlinear transformations are applied. By looking at each variable separately, consider

the following. Traffic influences the amount of pollutant concentrations in a positive way, and with one

hour of delay. This delay can be explained by the fact that the effect of exhaust gases need some time to

accumulate. Also observe that we are limited by the granularity of observations: if the sensors collected

data with granularity, for example, one minute, we may have seen shorter delays for this variable. Higher

air temperatures are associated with a decrease in NO2 and NOx concentrations, which is caused by

three processes: at higher air intake temperatures, less NO2 is produced in the process of fuel combustion

in the engine; (i) higher air temperatures usually imply more favorable atmospheric conditions, which

encourages residents to use alternative means of transportation which reduces traffic volume [146], and

(ii) NO2 is dynamically transformed into NO (and back) at a higher rate with higher temperatures.

Wind always affects concentration in a negative way, with a constant (across different executions) delay

of two hours. This is likely due to the distance between the intersection and the meteorological station;

the average wind speed of 3 ms−1, as well as the roughness of terrain explains the amount of the delay.

Higher humidity may cause a decrease in NO2 concentration in exhaust gases (as observed in [147,148]).

We have found that such an effect takes place with 5-6 hours of delay. High solar duration and high
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individual

exec. coeff. a d w r p t

1 0.614 (2,1) (5,2) (2,1) (0,1) (6,1) (1,1)

2 0.619 (1,1) (6,1) (2,1) (1,1) (4,1) (1,1)

3 0.618 (1,1) (6,1) (2,1) (1,2) (6,3) (1,1)

4 0.613 (2,2) (6,2) (2,1) (1,1) (5,1) (1,1)

5 0.615 (0,1) (5,1) (2,1) (1,1) (3,1) (1,1)

6 0.616 (2,1) (6,1) (2,1) (0,1) (3,1) (1,1)

7 0.614 (1,1) (6,1) (2,1) (0,1) (0,1) (0,1)

8 0.615 (1,1) (5,1) (2,1) (1,2) (5,1) (1,1)

9 0.618 (0,1) (6,1) (2,1) (1,1) (6,1) (1,1)

10 0.616 (2,1) (5,1) (2,1) (1,1) (0,1) (1,1)

Table 5.7: Results, one line per execution, for NOx after applying model 3.

temperature favor the transformation of nitrogen oxides into secondary pollutants, which includes ozone,

and this implies a decrease in NOx concentration. Even more important is sunlight, which acts as a

catalyst and explains the negative coefficient and the delay for sunlight duration.
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Chapter 6

Application 3: Antique Buildings

Materials research applied to the study of archaeological ceramic artifacts is now a consolidated practice,

and during the last decades the interest of scientists, architects, engineers and archaeologists towards

architectural heritage preservation has risen. The ancient buildings within historic city centres mark the

image and history of each city at different periods. When damaged these buildings become damaged,

the restoration of historic masonry is needed. A good characterization of both new and old material

is crucial to predict the behavior of the system. Historical understanding is not only useful to analyze

and preserve objects but also to investigate the knowledge and skills used to produce and use them. In

this light, the main goals of the building materials’ characterization are preservation and restoration,

which include [149]: (i) origin of historical raw materials, (ii) processes and changes in archaeological

artifacts, (iii) determination of original firing temperature, and (iv) reconstruction of firing techniques

and manufacturing technologies. Bricks and ceramics can be considered artificial rocks fired in kilns.

Under this point of view, mineralogical, petrological and geochemical study approaches can be useful

tools for the study of archaeological ceramic materials. Bricks in ancient buildings preserve the trace of

the claystone geological formation used to create them and geology influences raw material availability

and, thus, building methods. This chapter considers the problem of establishing a chemical fingerprint of

antique buildings in the city of Ferrara, Italy. We define this problem within our framework as a feature

selection and transformation for classification problem. This chapter is based on [150].

6.1 Data

The data used for this study consists of 113 samples of clays and bricks from nine different antique

palaces located in the province of Ferrara. These included the Monastery of Sant’Antonio in Polesine

(built in several phases during the 12th -16th centuries), the Church of Santa Maria in Vado (founded

in the 10th century and extensively modified in the 15th-16th centuries), the Church of Santo Stefano

(founded in the 10th century, but rebuilt in the 15th -16th centuries), the Cathedral of Ferrara (apse,

15th-16th centuries), the Schifanoia Palace (’Hall of Stuccoes’, 15th-16th centuries), the surrounding city

walls (15th century), the Palazzo Roverella (built in the 16th century), the Monastery of Santa Maria

delle Grazie (built in several phases starting from the 14th century) and the church of San Andrea (built

around the year 1000, in the east part of the Byzantine Castrum, but what currently remain of the

ancient splendor is only the aisle with small semicircular apses and a small portion of the apse remain).

This nine-building compound is the the class attribute of our data matrix. The chemical variables, which

are the independent attributes of our data matrix, are: TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O,

K2O, P2O5, V , Cr, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Ba, La, Ce, Pb, Sc, Co, Th and Y . The source in

this case is equal to the class, therefore, our data matrix has no named attribute. Moreover, we have no
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feature mean p-value kurtosis skewness

SiO2 52.27 0.023 4.08 ∗ 10+14 -0.32

TiO2 0.68 0.576 2.68 ∗ 10+14 -0.11

Al2O3 14.34 0.749 2.62 ∗ 10+13 -0.09

Fe2O3 5.93 0.636 2.71 ∗ 10+14 0.17

MnO 0.12 0.105 2.71 ∗ 10+14 0.04

MgO 4.45 0.921 ∗ 10−3 3.81 ∗ 10+14 -0.73

CaO 10.80 0.555 3.70 ∗ 10+13 -0.02

Na2O 1.47 1.349 16.46 3.14 ∗ 10+14

K2O 2.51 9.433 24.34 3.51 ∗ 10+14

P2O5 0.24 0.003 3.33 0.71

LOI 6.96 0.013 2.25 0.29

Pb 43.47 0.729 17.60 3.36 ∗ 10+12

Zn 114.45 1.273 ∗ 10−7 75.39 8.02 ∗ 10+14

Ni 146.47 0.564 ∗ 10−3 4.21 -0.70

Co 19.49 0.212 3.00 -0.25

Cr 205.36 0.0428 3.34 -0.55

V 102.53 0.001 5.89 0.88

Th 9.84 0.322 3.15 -0.23

Nb 8.49 1.237 -1.417 0.289

Zr 134.68 0.023 2.79 -0.46

Rb 118.15 0.576 52.23 5.62 ∗ 10+14

Sr 297.80 0.749 3.87 -0.18

Ba 417.82 0.636 25.51 3.10 ∗ 10+14

Y 25.34 0.105 4.278 -1.792

La 31.22 0.921 ∗ 10−3 3.18 0.63

Ce 52.26 0.555 4.33 0.58

Table 6.1: Descriptive statistical analysis of the data.

temporal or spatial information, as such, the data matrix has no temporal or spatial attributes.

6.2 Statistical Analysis

Some of the relevant statistical measures of our variables are shown in Table 6.1. They can be classified

by their behavior in three major groups according to a Shapiro normality test: normal variables (that

follow a normal distribution), that is, TiO2, Al2O3, Fe2O3, MnO, CaO, Na2O, K2O, Pb, Co, Th, Rb,

Sr, Ba and Ce; quasi normal variables (that do not follow a normal distribution, but with low values of

skewness and kurtosis), that is: P2O5, LOI, Cr, La, V and Zr; non-normal variables: SiO2, MgO, Zn,

Ni and La. We show in Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4 the graphical representation of

the statistical behavior of each of the variables and the correlation between the elements can be seen in

Table 6.2.
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Figure 6.1: Distribution and outliers detection analysis: SiO2,T iO2,Al2O3,F e2O3, MnO,MgO.

Ni Co Cr V Th Nb Zr Rb Sr Ba Y La Ce

1 0.699 0.801 0.432 0.441 -0.210 -0.324 0.097 -0.124 0.137 0.070 0.061 0.339 Ni

SiO2 1 1 0.582 0.341 0.371 -0.020 -0.304 0.138 -0.047 0.106 0.015 0.057 0.379 Co

TiO2 0.453 1 1 0.544 0.354 0.040 -0.312 0.047 -0.255 0.178 -0.087 -0.011 0.347 Cr

Al2O3 0.408 0.860 1 1 0.160 0.26 -0.113 0.048 -0.223 0.193 -0.037 0.012 0.295 V

Fe2O3 0.267 0.932 0.846 1 1 -0.180 0.001 0.073 0.190 0.129 0.255 -0.030 0.303 Th

MnO 0.086 0.342 0.176 0.373 1 1 0.106 -0.189 -0.416 -0.069 -0.094 0.186 -0.02 5 Nb

MgO 0.046 0.436 0.504 0.415 0.012 1 1 0.038 0.272 -0.214 0.658 -0.018 -0.102 Zr

CaO -0.516 -0.088 -0.263 -0.029 0.168 -0.157 1 1 0.222 0.134 -0.040 -0.088 0.154 Rb

Na2O -0.232 -0.328 -0.408 -0.312 -0.036 -0.228 0.017 1 1 -0.007 0.461 -0.142 0.015 Sr

K2O -0.060 -0.187 -0.132 -0.048 -0.040 -0.126 -0.232 0.217 1 1 -0.090 -0.128 -0.038 Ba

P2O5 0.073 0.188 0.270 0.206 -0.110 0.066 0.228 -0.396 -0.206 1 1 -0.047 0.098 Y

LOI -0.677 -0.678 -0.068 -0.591 -0.271 -0.279 -0.007 0.267 0.067 -0.172 1 1 -0.037 La

Pb 0.198 0.047 0.728 0.027 -0.019 -0.141 -0.121 -0.089 -0.140 0.219 -0.055 1 1 Ce

Zn 0.314 -0.169 0.693 -0.115 -0.053 0.029 -0.406 -0.044 0.621 -0.098 -0.034 0.102 1

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Pb Zn

Table 6.2: Correlation matrix.
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Figure 6.2: Distribution and outliers detection analysis: CaO,Na2O,K2O,P2O5, LOI,Pb.

6.3 Learning Schemata

The typical by hand process for fingerprinting is very expensive and entails an elevated risk of inaccuracy

due to potential loss of information, manual loading of data, and prolonged analysis time. In recent

times, several statistical methods have been applied to aid the traditional geochemical investigation in

understanding, for example, pollution sources via fingerprinting, possible correlation among elements

and, in some cases, the nature of the contamination [151–153]. Examples of fingerprinting include recent

works focused on the protection of groundwater against pollution and deterioration. Input pollution

identification includes applying geographical information systems and decision analysis [154,155], logistic

regression model learning [156], univariate and multivariate analysis [157], and multiple regression

models [158]. In this work, we define a model to solve the geochemical fingerprint problem based on

our general framework that consists of a feature selection with nonlinear transformation. The individual

is represented as follows:

P : [(T, F )0, . . . , (T, F )n−1︸ ︷︷ ︸
Pfst

]

where T [i] takes values in {−1, 0}; T [i] = −1 means that the attribute is not selected and T [i] = 0 means
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Figure 6.3: Distribution and outliers detection analysis: Zn,Ni,Co,Cr, V,Th.

that the attribute i is selected. F [i] takes values in {0,maxF} where F [i] = 0 means that the attribute i

is not elevated to any power. F [i] 6= 0 means that the attribute i is elevated to the power F [i]. Utilizing

a black box learning algorithm, we used three different classifiers in order to determine which type of

classification shows the best performances for this particular problem. In particular we used a single

decision tree (J48), a random forest (RF), and a logistic regression algorithm (LR). Thus, as performance

measures, the accuracy and the function are defined as:

Acc(V(I, P ))

Finally, the following optimization equation used was:


maxAcc(V(I, P )),

minCardfst(P ),

minMaxExp(P )

(6.1)

where, as in previous applications, MaxExp(P ) measures the maximum exponent of the nonlinear

transformation and Cardfst the number of selected features.
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Figure 6.4: Distribution and outliers detection analysis: Nb,Zr,Rb,Sr, Ba,Y.

Figure 6.5: Distribution and outliers detection analysis: La,Ce.
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6.4 Settings

We ran two experiments, one using all chemical variables and another adding the following ratios of

variables: MgO/Cr, SiO2/TiO2, SiO2/Al2O3, SiO2/CaO, SiO2/Na2O, SiO2/K2O and Cr/Ni. All

classifiers were used with their standard parametrization. To evaluate them, we used the so-called

leave-one-out cross validation (LOOCV), which is a variant of the more general cross validation (CV). In

cross validation, we randomly divided a dataset into k disjoint folds of approximately equal size, and each

fold is then used to test the model induced from the other k − 1 folds by a classification algorithm. The

performance of the classification algorithm is evaluated by averaging the performances of the k models,

and hence the level of averaging is assumed to be at fold. The leave-one-out version is used to estimate

the performance of a classification algorithm by setting k to be the number of examples in the dataset,

making it the best option to be used in the case of small datasets, and is able to produce robust enough

estimates of model performance as each instance is given an opportunity to represent the entirety of the

test dataset. The maximum function allowed was set to three and we limited the fingerprint lenght to less

than six variables. We used the evolutionary algorithm, NSGA-II with the standard parameters, in each

experiment with standard mutation and crossover. We used an initial population of 10 individuals, each

evolving 1,000 times. Each experiment was run 10 times and the best absolute solution was considered,

in terms of accuracy of the classification model.

6.5 Results

Table 6.3 and Table 6.4 display the results of the experiment without ratios variables. In particular, we

show the most accurate fingerprints per each execution. Table 6.4 shows the shorter fingerprint and we can

initially conclude that the fingerprinting problem per se can be solved, as the average accuracies in leave

one out cross-validation mode range from 65% to 81%. More specifically, we also observe that interpretable

and quasi-interpretable models seem to work slightly better than non-interpretable models. In this case

and considering this, across all selected fingerprints, their average accuracy is slightly higher. Table 6.5

and Table 6.6 show the results of the experiment including ratios variables. In some cases, We observe that

the accuracies are higher while also maintaining an interpretable fingerprint. Finally, our approach can

be completed with a graphical account of selected solutions. We show two examples in Figure 6.6 and 6.7,

in which we displayed only the buildings that separate best from each other. As observed, separating

lines are highly non-linear: this can be taken as empirical proof that non-automatized approaches to this

problem are not feasible, as fingerprints cannot be easily noticed by a visual examination of the data.
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classifier fingerprint acc.

J
4
8

SiO2
3, Al2O3

3, Na2O
3, P2O5

2, Th2, Nb3, Zr, Rb3, Y 2 0.88

P2O5
2, LOI, Zn2, Cr, V 3, Nb3, La3 0.86

Fe2O3, Na2O
3, Ni, Co, Th3, Nb2, Zr, Rb, Y 0.86

SiO2
3, MgO3, Na2O

3, K2O
2, Nb, Zr3, Rb, Sr, Y 3 0.86

SiO2, MnO3, P2O5
3 V , Nb, Ce 0.86

R
F

MgO2 ,Na2O
3 ,LOI2, Pb2, V , Nb2 , Zr3, Sr3, Y 3 0.87

K2O
2, P2O5

2, LOI2, Nb2, Zr, Sr2, Ba, Y 3, La3 0.88

Al2O3
2, P2O5

3, Zn, V 3, Nb2, Rb3, Sr2, La3 0.86

Na2O, P2O5
3, Pb, Zn, Co2, Nb3, Zr3, Ba2 0.88

MnO, MgO2, Na2O
3, P2O5

3, LOI3, Th2, Nb2, Zr2, Rb2 0.90

L
R

Fe2O3, Na2O, K2O, LOI3, Zn, Ni3, Nb3, Sr2, Ba3, La3, Ce 0.84

SiO2
2, Al2O3, MnO2, MgO, P2O5

3, LOI, Ni, Th3, Nb2, Sr3, Y , Ce3 0.86

TiO2, Al2O3, P2O5, Zn, Co3, Nb2, Zr3, Sr3, Y 2, Ce2 0.81

TiO2
2, MnO, Na2O

2, P2O5, LOI2, Ni, V 2, Rb, La2 0.82

SiO2
3, TiO2

3, MgO2, Na2O, LOI, Zn, Co3, Nb3, Zr, Rb2, La3 0.86

Table 6.3: Results of the major and trace elements fingerprinting experiments.

classifier name fingerprint acc.

J
48

f1 Al2O3, P2O5
2, Nb2, Y 2 0.83

f2 MgO, Na2O
3, P2O5

2, Nb, Zr2 0.87

f3 TiO2
2, P2O5

3, Nb, Sr3 0.82

f4 Na2O, P2O5, Nb2, Rb2, Y 2 0.86

f5 Al2O3
2, MgO, P2O5

2, Nb3, Ce3 0.83

R
F

f6 Fe2O3
3, Na2O, P2O5

3, Nb3, Zr3, Ba 0.87

f7 MgO3, CaO3, Na2O
3, Nb, Ce3 0.86

f8 Fe2O3
3, MnO, Zn3, Nb2, Y 3, La 0.86

f9 Na2O
2, P2O5

2, Nb, Zr3, Rb3 0.87

f10 SiO2, CaO3, Na2O
2, Nb3, Zr2, Rb, Ce2 0.88

L
R

f11 Na2O, Pb, Co3, V , Nb, Zr2 0.82

f12 K2O, Pb2, Zn, Nb3, Sr3, Y 2, Ce3 0.80

f13 Na2O
2, P2O5

2, Nb, Zr3, Rb3 0.85

f14 Al2O3
2, Na2O

2, K2O
3, P2O5

2, Nb2, Zr3, Ba, La3 0.83

f15 TiO2
3, Fe2O3, MgO2, CaO3, Na2O, Nb3, Rb, Ce2 0.83

Table 6.4: Results of the shortest fingerprinting.
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classifier fingerprint acc.
J
48

SiO2
3, TiO2, K2O

2, Nb3, Zr2, Ce2, MgO/Cr
2
, SiO2/Na2O

2
0.87

SiO2, K2O, Co2, V 2, Nb3, Rb3, SiO2/Al2O3
3
, SiO2/Na2O

2
0.88

Na2O
2, Nb3, Zr, Rb, Sr2, Y 3, SiO2/K2O 0.87

TiO2
3, K2O

3, Nb2, Rb, Y , SiO2/Na2O, SiO2/K2O
3

0.85

Fe2O3
2, Na2O

2, Nb, Rb3, Ba2, SiO2/TiO2, SiO2/CaO
3

0.87

R
F

SiO2, Fe2O3
2, LOI, Nb2, Zr2, Ce, MgO/Cr

2
, SiO2/TiO2 0.85

P2O5
2, Co, Cr, V 3, Nb, Zr, Rb2, La2, SiO2/K2O

2
0.88

Al2O3, Fe2O3
2, Nb3, Rb3, La2, MgO/Cr

3
, SiO2/T iO2

2
, SiO2/Na2O

3
0.89

Fe2O3, Na2O, LOI, Pb2, V , Nb2, Zr3, Sr2, SiO2/Al2O3
3

0.88

SiO2, Na2O
2, Ni, Co3, Nb, Ba2, MgO/Cr

3
, SiO2/TiO2 0.86

L
R

TiO2, Al2O3
2, MgO3, Na2O

2, Pb, Nb2, Y , La, MgO/Cr, SiO2/TiO2, SiO2/CaO, SiO2/K2O, Cr/Ni 0.84

CaO2, LOI3, Zn2, V 2, Nb3, Zr2, Rb, Ba3, Ce, SiO2/Na2O
3
, SiO2/K2O 0.88

Al2O3
3, CaO2, P2O5

3, LOI2, Pb2, Zn3, Nb, Zr3, Rb2, Ba2, SiO2/TiO2, SiO2/Na2O, SiO2/K2O 0.91

SiO2
2, MnO2, Na2O, P2O5

3, Cr2, Nb, Y 2, Ce3, MgO/Cr
2
, SiO2/CaO

2
0.87

SiO2
2, Al2O3, MnO2, MgO2, CaO, Na2O, LOI3, Nb, Zr, Sr, Ce2, SiO2/K2O

3
0.89

Table 6.5: Results of the major and trace elements ratios-based fingerprintings.

classifier fingerprint acc.

J
48

P2O5, Ni2, Nb, SiO2/Al2O3 0.84

SiO2
3, Na2O

2, P2O5, Nb3, SiO2/TiO2 0.85

Pb, Nb3, Y 2, SiO2/Na2O 0.97

MnO2, P2O5, Ni, Nb2, SiO2/TiO2 0.85

Na2O
2, Nb3, Zr2, Y 3, Cr/Ni

2
0.85

R
F

SiO2, Al2O3
2, V , Nb, Rb, SiO2/Al2O3 0.80

Pb2, Co3, Cr2, Nb3, Ce, SiO2/TiO2, SiO2/Na2O
2

0.87

MnO2, Zn, Ni3, Nb2, Ce2, SiO2/CaO
2
, SiO2/K2O

3
0.96

Na2O
2, P2O5, La3, SiO2/Al2O3

2
, SiO2/CaO

3
, SiO2/K2O

3
0.83

K2O
3, V 3, Nb, Ce3, SiO2/T iO2

2
, SiO2/Al2O3

2
, SiO2/Na2O 0.87

L
R

MgO, P2O5
2, Nb, Zr, Y , Ce2, SiO2/K2O

2
0.83

P2O5, LOI2, Zn, Nb3, La3, SiO2/Al2O3
3
, SiO2/Na2O

3
0.86

P2O5
2, Ni, Nb2, SiO2/Al2O3 0.82

P2O5
3, V , Nb, Zr3, Sr2, SiO2/T iO2

2
, Cr/Ni 0.86

TiO2
2, Nb, Sr, Y 2, Ce, SiO2/Al2O3 0.84

Table 6.6: Results of the shortest ratios-based fingerprintings.
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6.5. RESULTS
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Figure 6.6: Fingerprint representation of solution 12 (Duomo building in red, Pietro building in green

and Roverella building in yellow; centroids are represented with a triangle)
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Figure 6.7: Fingerprint representation of solution 1 (Grazie building in blue, Duomo building in red and

Roverella building in yellow; centroids are represented with a triangle).
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Chapter 7

Conclusions

The starting point of this work was the observation that many statistical learning problems share common

characteristics in both data presentation and learning objectives. Because of this, as a first step, we

introduced a generalized data set syntax which highlighted the roles of attributes, the temporal and the

spatial components, the class, and the names. Inspired by previous research, we then identified a series of

meta-problems of interest to the real world by learning from data, including fingerprinting, temporal lag

identification, non-linear transformations, and spatial displacements. We separated these meta-problems

from the learning problems and we proposed a generalized methodology for their solution. Such a

methodology is mathematically well-founded and formalized, reproducible, and specifically designed to

treat data of natural origin. Our contributions can be summarized as follows.

1. We first surveyed and systematized several recent scientific contributions to the field of data

preprocessing, in an attempt to highlight their common nature (Chapter 2). Thus, we give a

general vision of preprocessing data techniques that meta-problems require, the current availability

of preprocessing machine learning methods and what each preprocessing technique aims to solve.

2. Then we designed a mathematical framework that generalized most preprocessing techniques,

separated them from the learning phase, and allowed for each meta-problem to be individually

addressed (Chapter 3). As a result of such a separation, the result benefits the interpretability,

even when non-interpretable learning algorithms are used. Here, the principal element is the

individual of the multi-objective evolutionary algorithm and it serve as pivot of the mathematical

framework. The characteristics of the package of the multi-objective evolutionary algorithm allow

an easy implementation of all components according to the individual definition. And the individual

definition is the key of the interpretability of the results.

3. Finally, we tested our techniques in three different, real cases. Data came from very different

sources and application domains (groundwater wells, air pollution monitoring stations, and antique

buildings clay samples). We fitted the problems that were proposed on such data as instances of

our dynamic preprocessing technique, and, after analysing the solutions, we found that they were

always better, and more interpretable, than those that could be devised with standard methods

(Chapter 4, 5, and 6).

There are many questions that remain unanswered that could be addressed as future research. Firstly,

our definition of data set gives rise to a whole learning discipline characterized by instances of dimensional

components and individual classes. Thus, we assume that we want to classify (or regress) each instance

individually, but we want to take into account its ’surroundings’ (either temporal, spatial, or both). The

next step in this generalization, is classifying (regressing) names, instead of single instances. Here, the

entire set of instances is generally considered to learn a hidden phenomenon or process. However, in
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some cases in which instances belong to different sources, for example the clinical case in which instances

are associated with different patients, a learning task must by applied to the set of instances associated

with each (patient) name. In addition, the dynamic preprocessing methodology should be systematically

compared with its analogous methodology in terms of filters, and their differences and similarities should

be noted which, would enable a better understanding of them. Moreover, the entire problem could

be approached from the optimization algorithm point of view, thus answering the question of which

optimization algorithm, and implementation, is best to this end. But more important, and certainly

more challenging, is the question of how meta-problems and their solutions can be made available to the

end user. Inspired by widespread, open-access tools such as Weka, which offer some form of graphical

user interface and allows non-experts to tackle simple data science problems on their own, one can

imagine a similar, but more specific, fingerprinting, transformation, and cleaning tool that would allow

bio-geo-chemical experts to pose and solve their own meta-problems, and interpret the solutions. In such a

tool, one could directly ask the question of what is the geochemical fingerprint of this water sample, or food

samples, or cultivation, for example. Therefore, considering the possibility of cutting out the middle man

and focusing on real-world problems, we believe, should be the purpose of artificial intelligence: to avoid

repetitive questions or tasks and let the machine do all systematic work, which becomes non-intelligent

(because a machine is able to perform it), therefore freeing experts’ time and resources to focus on the

next intelligent question.
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[43] I. Triguero, J. Derrac, S. Garćıa, and F. Herrera. A taxonomy and experimental study on prototype

generation for nearest neighbor classification. Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, 42:86 – 100, 02 2012.

[44] L. Yang, Q. Zhu, J. Huang, Q. Wu, D. Cheng, and X. Hong. Constraint nearest neighbor for

instance reduction. Soft Computing, 23(24):13235–13245, Dec 2019.
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[141] PJ G. Nieto, F. S. Lasheras, E. Garćıa-Gonzalo, and FJ de Cos Juez. Pm10 concentration

forecasting in the metropolitan area of oviedo (Northern Spain) using models based on SVM, MLP,

VARMA and ARIMA: A case study. Science of The Total Environment, 621:753–761, 2018.

81



BIBLIOGRAPHY

[142] N.L. Gilbert, M.S. Goldberg, B. Beckerman, J.R. Brook, and M. Jerrett. Assessing spatial

variability of ambient nitrogen dioxide in montreal, canada, with a land-use regression model.

Journal of the Air & Waste Management Association, 55(8):1059–1063, 2005.

[143] S.B. Henderson, B. Beckerman, M. Jerrett, and M. Brauer. Application of land use regression

to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter.

Environmental science & technology, 41(7):2422–2428, 2007.

[144] G. Hoek, R. Beelen, K. De Hoogh, D. Vienneau, J. Gulliver, P. Fischer, and D. Briggs. A review

of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric

environment, 42(33):7561–7578, 2008.

[145] Y. Son, A.R. Osornio-Vargas, M.S. O’Neill, P. Hystad, J.L. Texcalac-Sangrador,

P. Ohman-Strickland, Q. Meng, and S. Schwander. Land use regression models to assess

air pollution exposure in mexico city using finer spatial and temporal input parameters. Science

of the Total Environment, 639:40–48, 2018.
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[149] Paula López-Arce, Javier Garcia-Guinea, Mercedes Gracia, and Joaqúın Obis. Bricks in historical
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