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ABSTRACT Inferior Alveolar Nerve (IAN) canal detection has been the focus of multiple recent works
in dentistry and maxillofacial imaging. Deep learning-based techniques have reached interesting results in
this research field, although the small size of 3D maxillofacial datasets has strongly limited the performance
of these algorithms. Researchers have been forced to build their own private datasets, thus precluding any
opportunity for reproducing results and fairly comparing proposals. This work describes a novel, large, and
publicly available mandibular Cone Beam Computed Tomography (CBCT) dataset, with 2D and 3D manual
annotations, provided by expert clinicians. Leveraging this dataset and employing deep learning techniques,
we are able to improve the state of the art on the 3D mandibular canal segmentation. The source code which
allows to exactly reproduce all the reported experiments is released as an open-source project, along with
this article.

INDEX TERMS 3D imaging, CBCT, image dataset, medical imaging, inferior alveolar nerve.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have provided
amazing results for a multitude of computer vision tasks
[1]–[7]. One of these, image segmentation, is an important
processing step in medical image analysis, for a multitude of
research fields including image-guided interventions, radio-
therapy, or improved radiological diagnostics. Segmentation
plays an important role before surgical operations. In fact,
avoiding contact with the Inferior Alveolar Nerve (IAN) is a
primary concern during dental implant placement within the
mandible. These kinds of operations are routinely executed,
but may become very complex due to the local presence
of the IAN. The nerve might be in close relation to the
roots of impacted teeth (especially the molars) and a detailed
description of its position must be comprehended before the
surgical removal (Fig. 1).

The associate editor coordinating the review of this manuscript and

approving it for publication was Hengyong Yu .

FIGURE 1. Example of a 3D annotated mandibular canal in a CBCT
volume.

Nowadays, perfect anatomical annotation accuracy is usu-
ally not achieved, in favour of a fast execution time. A sparse
annotation, performed on a 2D image, can be realized in
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relatively small time, and has become the de facto standard
in radiologic medical centers for dentistry and maxillofacial
purposes (a specialty also known as dento-maxillofacial radi-
ology). However, 2D annotations lack a considerable amount
of inner information about the bone structure and the IAN
position. Surgeons rely on a partial and incomplete idea of the
nerve positioning, which is generally sufficient for a positive
outcome of surgical intervention, but does not represent an
accurate anatomical representation. Switching to 3D annota-
tions solves the issue, but raises the costs in terms of work-
ing time: the manual segmentation of a single scan volume,
depending on the available software, can take hours. There-
fore, although dento-maxillofacial radiology would largely
benefit from 3D annotated patients, any manual method cur-
rently appears unsuitable for practical applications.

On the other hand, a well-trained CNN can accurately
segment the 3D structures of a scan in a matter of seconds.
Accordingly, CNNs have the potential to supplement tradi-
tional medical imaging workflows, to reduce the associated
costs. Unfortunately, the full potential of CNNs in this field
is still untapped due to the lack of valid training sets. Indeed,
despite the significant amount of raw information available,
the supervised learning paradigm requires the presence of
3D densely labeled data in order to achieve its full potential.
As already stated, acquiring large amounts of those high
quality annotations is extremely expensive.

An additional constraint when dealing with the medical
branch of deep learning regards the extra consideration for
sensitive data, which must always be taken into account.
Medical data contain a huge amount of personal informa-
tion which must be protected through data anonymization.
Beside the sensible details about the patient, generally stored
in the DICOM format, when it comes to medical imaging,
personal features of one subject can be inherently carried by
the images. Therefore, in order to evaluate the correctness
of the anonymization steps and the security of the infor-
mation, every medical dataset must undergo the evaluation
of specific committees. Several bureaucratic steps generally
stand before the official release to the scientific community.
This circumstance, combined with the laws of individual
countries, creates a serious burden for the spread of medi-
cal datasets and make any contribution valuable. For those
reasons, deep learning works applied to medical imaging —
and in particular, to the maxillofacial field— are often based
on private internal datasets [8]. Despite any alleged intention,
datasets are rarely released after publication, creating a vast
information gap for the research community: researchers are
unable to replicate experiments, and lack valid benchmarks
for their novelties.

In this work, we introduce and publicly release a novel
maxillofacial dataset, annotated by medical practitioners at
voxel level as shown in Fig. 1. We call this 3D annotation
in contrast to the traditional one, which is performed on a
2D ‘‘panoramic view’’ obtained from the volume (Fig. 2).
Our dataset is specifically devised for the segmentation of
the mandibular canal, and paves the way for future works

which will finally benefit from a public reference in the field.
We also prove the effectiveness of our proposal by showing
that the current state of the art results in IAN segmentation can
be improved by training a neural network with the proposed
dataset.

From a medical point of view, many investigators are
redefining anatomic landmarks fundamental in clinical prac-
tice (IAN injection, third molars removal, endodontics, place-
ment of dental implants, IAN injury with osteotomic device,
forensic dentistry) through CBCT 3D data [9]–[15]. The
proposed dataset can improve the actual knowledge regard-
ing the anatomy of the mandibular canal and its variations.
Moreover, the open access granted to our 3D dataset is the
basis for guaranteeing worldwide high-quality 3D data for
investigators interested in further anatomic studies.
In summary, the novelties introduced by this paper are:

1) First publicly released CBCT (Cone Beam Computed
Tomography) 3D dataset with professionally produced
3D annotations;

2) Improved state-of-the-art mandibular canal segmen-
tation accuracy, using a newly trained deep learning
architecture;

3) The source code which allows to exactly reproduce all
the reported experiments is released as an open source
project.

The paper is organized as follows: in Section II the state-
of-the-art approaches for automatic detection of the inferior
alveolar nerve are detailed. Section III describes the collected
dataset, providing a comparison with the current training
set-up available in the literature. Section IV includes an expla-
nation of the processing methods used to refine the input data
quality and introduces the deep learning model employed.
Experiments are reported in Section V, and conclusions are
drawn in Section VI.

II. RELATED WORKS
Three-dimensional imaging has long been a fundamen-
tal technology for diagnosis in dentistry and maxillofa-
cial surgery [16]. Earlier studies have been focused on CT
scans [17], [18]; then, after the diffusion of CBCT [19] in
the early 2000s, a substantial amount of research has been
dedicated to the development of automatic systems for the
segmentation of the IAN in CBCT scans, both using classical
computer vision methods [10], [20]–[25] and, more recently,
machine learning and deep learning [26]–[28].

For what regards classical computer vision, one of the first
fully automatic proposals by Kainmueller et al. [20] dates
back to 2009. Their method is based on a combined Sta-
tistical Shape Model (SSM) of the bone surface and the
nerve course, and the nerve position reconstruction is further
improved with a Dijkstra-based tracing algorithm. A simi-
lar solution was also proposed by Abdolali et al. [23], who
added a pre-processing step based on low-rank decomposi-
tion, and replaced the tracing algorithm with fast marching,
to find the optimal path between mandibular and mental
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FIGURE 2. CT annotation based on 2D panoramic views. (a) is an axial slice extracted from the CT volume. The red curve, called panoramic base
curve, identifies the jawbone. (b) is the panoramic view obtained from the CT-volume displaying voxels of the curved plane generated by the base
curve and orthogonal to the axial view. (c) is the same view of (b) showing a manual annotation of the IAN performed by an expert technician.

foramen. These methods, however, are limited by the need for
segmented mandible bone in the training annotation, which
requires additional manual work.

Following a different approach, in the work by
Moris et al. [24], the volume is considered from three per-
spectives to produce a collection of slices, and the canal is
extracted by searching several candidate positions in subse-
quent slices between the mental and mandibular foramen.
These candidate positions are selected between those with
the highest similarity with an ideal model of the canal.
A weakness of the method is the use of predefined thresholds
to separate the canal from other tissue, which often results in
the exclusion of part of the canal, because of the low contrast
of CBCT scans.

Recently, Wei and Wang [25] published a method based
on the curved Multi-Planar Reconstruction (MPR) image set.
The MPR and total average intensity projection panoramic
image are reconstructed with the sampling distance of 1 pixel,
and then texture features of the gray level-gradient co-
occurrence matrix of the region of interest are clustered with
K-means, to improve the image contrast of the IAN canal.
Finally, the mandibular canal edges are segmented using 2D
line-tracking, and the so obtained results are fitted by the
fourth-order polynomial.

One of the first applications of deep learning to the segmen-
tation of the mandibular canal is represented by the work by
Jaskari et al. [28], who trained a fully convolutional network
on a dataset of coarsely annotated 3D scans. On average,
each canal is annotated using 10 manually assigned control
points, which are then interpolated in a spline, and finally
turned into a volume applying a static 3.0 mm diameter. Their
approach achieves better results than previous attempts based
on SSM, but is still hindered by the lack of handmade voxel-
level annotations, and the suboptimal quality of segmentation
masks automatically generated from coarse annotations.

Another recent work based on convolutional neural net-
works is due to Kwak et al. [27], who trained 2D and 3D
models based on SegNet [29] and U-Net [1], [30] on a private
annotated dataset. Because neither the dataset nor the code
of the experiments is publicly available, it is not possible to
directly compare our work to theirs.

To the best of our knowledge, none of the proposals
related to the mandibular canal segmentation includes a
link to the data or the source code required to repro-
duce the experiments. Few papers mention data availabil-
ity on explicit request. We tried, but the answer (if any)
has always been negative. This paper aims at breaking this
objectively bad practice. The full dataset with annotations
and subdivision in training and testing splits is available at
https://ditto.ing.unimore.it/maxillo/.

III. DATASET
This section introduces and describes the maxillofacial
dataset released with this paper, detailing the entire procedure
carried out for data acquisition and the subsequent annota-
tion steps. The 3D CBCT volumes composing our dataset
have been acquired by the Affidea center located in Modena,
Italy. Affidea is a leading pan-European healthcare group
specialized in the provision of advanced diagnostics, spe-
cialist outpatient services, laboratory analyses, physiotherapy
and rehabilitation, cancer diagnosis and treatment. It counts
312 different centers in 15 different countries, with about
11 000 professionals.

The dataset counts 347 dental scans obtained by means of
Cone Beam Computed Tomography (NewTom/NTVGiMK4,
3 mA, 110 kV, 0.3 mm cubic voxels). Pixel spacing and
intra-slice distance are always 0.3 millimeters. Data volumes
are already converted to the Hounsfield Unit (HU) and their
values range between −1 000 and 5 264. During the conver-
sion to HU we also took care of the proper processing for the
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FIGURE 3. Overview of patients by age. Ranges of age on the X-axis,
amount of patients on the Y-axis.

window width and center according to the DICOM format.
Volume shapes range from (148, 265, 312) to (178, 423, 463)
for the Z , Y and X axes respectively. Every patient was
anonymized, hence we were only able to access few personal
details - namely gender, age and year of the scan. Specifically,
59% of the patients are female, all the scans were performed
between 2019 and 2020, and volumes belong to patients with
ages in range (10-100] with the highest frequencies in ranges
(20-30] and (60-70], see Fig. 3 as a reference.

After user registration, the dataset is available at
https://ditto.ing.unimore.it/maxillo/.

A. 2D ANNOTATIONS
Technicians involved in the diagnostic exam were also
responsible for the original sparse annotation of the mandibu-
lar canal. This annotation, performed on 2D panoramic views
of the jawbone, is employed in everyday surgical practice to
measure the height and depth of the sites where the implant
must be placed, avoiding inferior alveolar nerve injuries.
In these labels, the upper bound of the canal is marked along
the entire dental arch, providing a useful sparse approxi-
mation trace of nerve position. Particularly, the annotation
process starts from an axial slice of the original volume
(Fig. 2a). Upon this slice, a spline is manually drawn to fit
the central part of the jawbone (red curve in the image). This
spline, called panoramic base curve, is then employed for
generating the panoramic view (Fig. 2b), composed by the
voxels of the curved plane identified by the base curve and
orthogonal to the axial slice. From this view, the inferior alve-
olar nerve canal should be clearly identifiable. Fig. 2c depicts
an annotation example provided by an expert technician.

Unfortunately, due to the poor amount of actual canal cov-
ered in the three-dimensional space, this type of annotation
is still unsuitable for the training of a deep neural network.
As a matter of fact, the lack of densely labeled volumes
has long posed the problem of what kind of data should be
used for training the neural network, and drove researchers
to engineer new ways to infer 3D annotations for the training
set. Jaskari et al. [28] based their method on the assumption
that mandibular canals have a pipe-shaped structure. Starting

FIGURE 4. Panoramic base curve (red curve) computed on the axial slice,
and series of axial cuts (blue lines) orthogonal to the panoramic base
curve. Best viewed in color.

from sparsely annotated volumes, they expanded the labels
to produce a tubular shape. In order to create a 3D synthetic
dataset out of sparsely annotated patients, we implemented
the method described by Jaskari et al. from scratch as follows:

• For each point in the sparse annotation, the direction of
the canal is firstly determined using the coordinates of
the next point.

• A 1.6 voxel-long radius is computed to be orthogonal
to the direction of the canal in that point, and a circle is
drawn.

• The radius length is set to ensure a circle diameter of
3 millimeters in real-world measurements. This unit can
differ due to the diverse voxel spacing specified in the
patient DICOM files (0.3 millimeters for each dimen-
sion, in our data).

• The previous step produces a hollow pipe-shaped 3D
structure, that is finally filled with traditional computer
vision algorithms.

For the rest of the paper, this type of annotation will be
referred to as Circle Expansion or synthetic, in opposition
to the new densely annotated dataset introduced with the
present work. We refer to Jaskari et al. as a competitor, and in
Section V we prove how our new manual-annotated dataset
overcomes the limitations of a training set generated in a
semi-supervised manner.

B. 3D ANNOTATIONS
In order to obtain finely-grained annotations, a team of doc-
tors with years of experience in maxillofacial surgery elab-
orated 91 volumes to produce dense voxel-level annotations
of the canal. The proposed dataset of 347 scans is therefore
divided into two partitions: the primary dataset, composed
of the 91 volumes for which both dense and sparse annota-
tions are available, and the secondary dataset, only sparsely
annotated.
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FIGURE 5. Visualization of the cross-sectional plane (blue) and its
rotation around the CSL (green). The inferior alveolar nerve is depicted in
red. Best viewed in color.

The entire voxel-level annotation procedure has been per-
formed bymeans of the tool described in [31]. The annotation
steps can be summarized as follows:

• After loading the input data, the arch approximation that
better describes the canal course is identified inside one
of the axial images and manually adjusted. The output
is a one-pixel thick curve crossing the dental arch which
is approximated with a polynomial. The result is similar
to the one of Fig. 2a, but this time it is automatically
generated and manually adjusted only if needed.

• Sampling the polynomial, the tool thus generates a
Catmull-Rom spline. For each point of the spline, a per-
pendicular line (lying on the axial plane) is computed
(Fig. 4). These lines are called Cross-Sectional Lines or
CSLs in short. Here, a different resolution of the spline
generates more or fewer CSLs. This represents a crucial
step for having a complete annotation of the mandibular
canal. Indeed, with a short spline, some regions of the
jawbone —especially near the mandibular foramen—
would be excluded from the next stages.

• CSLs are the base ofMulti Planar Reformations (MPRs)
called Cross-Sectional Views (CSVs). These views are
2D images obtained interpolating the values of the
respective base lines (CSL) across the whole volume
height. As an example, the blue plane reported in Fig. 5
is a Cross-Sectional Plane (CSP) generating a Cross-
Sectional View. CSPs are additionally rotated around the
CSLs, to have CSVs orthogonal to the canal slope (green
plane of Fig. 5).

• For each CSV, a closed Catmull-Rom spline is finally
drawn to annotate the position of the IAC (green lines of
Fig. 6).

• The splines are saved as the coordinates of their control
points. The final smooth and precise ground-truth vol-
ume constituting the dataset is generated from this set
of points by means of the α-shape algorithm, which is
described in details in Section IV-A.

FIGURE 6. Examples of the Cross-Sectional Views (CSVs). The green
closed spline is the annotated canal on the specific view. Combining the
annotations from each CSV we obtain the final voxel-level dense
annotation. Best viewed in color.

Comparing the two procedures, it is possible to see that while
sparse annotations are quick and easy to obtain, creating
dense labels from 3D volumes is a very tedious and time-
consuming process. For this reason, researchers typically
have few dense annotations available and preserve them as
test set. Indeed, densely annotated volumes must always be
used in test, to ensure a real medical feedback on model per-
formance. A comparison between the 3D dense annotations
provided by expert doctors and available in the new dataset
and the synthetic generated ones is reported in Fig. 7, where
the typical errors of the semi-supervised approach are clearly
visible.

IV. METHOD
A. PRE-PROCESSING: ALPHA-SHAPE
The hand-drawn ground truth annotations produced with the
tool described in [31] and summarized in the previous section
result in a dense and jagged point set; an example is depicted
in Fig. 8a. Starting from this point set, we reconstruct a
smoother polygon mesh in the form of the α-shape.

The α-shape, defined by Edelsbrunner et al. [32], is a gen-
eralization of the concept of convex hull, useful to capture the
intuitive notion of shape of a point set. The definition refers
to the 2-dimensional case, but the extension to point sets in k-
dimensions is straightforward. The α-shape is parameterized
over α ∈ R, which determines the ‘‘crudeness’’ of the
result. First, a generalized disk of radius 1

α
, Dα , is defined

in Equation 1.

Dα =



The complement of a disc of radius

−
1
α
, if α < 0

A halfplane, if α = 0

A disc of radius
1
α
, if α > 0

(1)

Then, given a point set S and a specific value for α, the
α-shape graph is constructed in the following way: an edge is
created between two points pi and pj whenever there exists
a Dα containing the entire S, and which has the property
that pi and pj lie on its boundary. It is straightforward to
notice that, when α = 0, this process constructs the convex
hull. Instead, positive or negative values of α allow to build

11504 VOLUME 10, 2022



M. Cipriano et al.: Deep Segmentation of Mandibular Canal: New 3D Annotated Dataset of CBCT Volumes

FIGURE 7. Cross-Sectional Views of an annotated volume at different depth using (a) Circle Expansion (synthetic) and (b) α-shape labels
contained in the proposed dataset. From this perspective, the canal can be spotted for its circular shape. This figure highlights the typical errors of
the semi-supervised approach. First, the labels result inaccurate near the borders due to the natural variation of the canal along the jawbone.
Furthermore, the ground truth mask is not centered —mostly near the mandibular foramen— because the sparse annotations used to generate
these labels are generally marked on the upper area of the canal. To cope with this problem it is not sufficient to translate down the mask by a
few voxels, because the width —hence the center— of the canal varies with its depth.

FIGURE 8. Ground truth preprocessing. The annotation tool outputs a dense and jagged point set (a), which shape is given by the
concave α-shape (b). Finally, the so obtained polygonal mesh undergoes voxelization, resulting in a binary raster volume (c) that is used
as ground truth for the training process.

cruder or finer shapes respectively, with the latters possibly
including concave angles. Because of the geometrical nature
of the alveolar nerve, we are indeed exclusively interested in
concave α-shapes, i.e., with α < 0.
When α < 0, the α-shape can be computed starting from

the Delaunay triangulation: the set of triangles of the Delau-
nay triangulation whose circumradius is at most − 1

α
form

a simplicial subcomplex, called α-complex, and its border
coincides with the α-shape. The process is exemplified in
Fig. 9.

The generalization of the above notions to 3-dimensions is
just a matter of substituting disks and triangles with spheres
and tetrahedra. An example of α-shape constructed from the
volumetric annotations of the alveolar nerve is depicted in
Fig. 8b.

The α-shape is a good representation of the annotated
volume, but because it is a polygonal mesh, it cannot directly
be used as a ground truth segmentation mask for training
a neural network. Therefore, the next mandatory step is the
voxelization, through which the α-shape is transformed into

VOLUME 10, 2022 11505



M. Cipriano et al.: Deep Segmentation of Mandibular Canal: New 3D Annotated Dataset of CBCT Volumes

FIGURE 9. α-shape construction process for the point set of (a), with α = −2.5. First the Delaunay triangulation is built (b), then only triangles whose
circumradius is at most − 1

α are kept, which form a subcomplex called α-complex (c). Finally, the border of the α-complex is the α-shape (d).

a binary raster volume. The voxelization of a polygonal mesh
consists of finding which cubes (voxels) of a 3-dimensional
grid intersect any triangle composing the mesh: the specific
method used to check triangle-cube intersection is described
in [33]. The final result of the ground truth preprocessing is
illustrated in Fig. 8c.

B. MODEL
Themain goal of this paper is to provide the research commu-
nity with a new and valid dataset for the automatic segmenta-
tion of the alveolar canal. Hence, our focus went on proving
that our data can be proficiently exploited for achieving this
goal. For this reason, we choose to preserve competitor’s
pipeline —including the base model—, highlighting the dif-
ferences between two identical training experiments carried
out with the synthetic generated data (competitor) and with
the proposed dataset (ours).

The neural network employed for the experiments is built
from scratch, following the description provided in [28].
This 3D segmentation method is based on the U-Net
3D [30] fully convolutional neural network. Feature maps
are down-sampled with stride 2 convolutions in the contrac-
tive path of the network, while they are up-sampled with
stride 2 transpose convolutions in the expanding path. All
the convolutions (transpose included) have a size of 3 ×
3 × 3 and are followed by batch normalization and Recti-
fied Linear Unit non-linearity (ReLU). The only exception
is for the last layer, which has a convolution with a 1 ×
1 × 1 size kernel and employs the logistic sigmoid as link
function. Long skip connections concatenate the hidden lay-
ers of the contracting and expanding path, along the chan-
nel dimension. Moreover, each of the down-sampling and
up-sampling blocks make use of residual connections. The
PyTorch-based [34] implementation of this model can be
found at https://ditto.ing.unimore.it/maxillo.

The training set is prepared offline: input values, stored in
Hounsfield units, need to be cropped to avoid peak values due
to metal artifacts in the patient mouth or acquisition noise.
In their work, Jaskari et al. employed the range [0, 3 095],
but our experiments identify 2 100 as the best upper bound
value for our data. We then re-sampled all of our volumes
to have a 0.4 millimeters voxel spacing from the original

0.3 millimeters. Finally, we executed a grid sampling [35]
in which 323-sized patches were extracted using a stride of
22. Training patches without any mandibular canal voxel
are discarded to reduce class imbalance. Data patches are
shuffled on every training epoch and augmented with random
flips in all the spatial dimensions, with a probability of 0.8.

The primary dataset—available bothwith dense and sparse
annotations— is splitted to have 68, 15 and 8 volumes
for training, test and validation set respectively. The grid-
sampling process produced 4 831 and 3 897 training patches
from the synthetic and dense datasets respectively.

Test and validation volumes were not subject to any sam-
pling. On inference, a grid sampling is applied at run-time,
without discarding any patch. Model outputs are then aggre-
gated to rebuild the original volume shape and metrics are
computed by using the initial ground truth volume directly.

Our secondary dataset —consisting of 256 sparsely anno-
tated volumes— produced 19 466 patches and is used only
for the training stage.

Numbers of patches resulting from the sampling process
are conveniently summarized in Table 1. In each configura-
tion setting, the model is trained for 100 epochs using a batch
size of 24, and employing the Adam optimizer with an initial
learning rate of 0.0001.

C. POST-PROCESSING
The 3D network outputs were further refined by the
post-processing technique described in [28]. We implement
their method by applying a 3D connected components label-
ing (CCL) [36] algorithm on the output masks, preserving
only the two largest objects that should represent the left
and right branch of the inferior alveolar nerve canal. Unlike
Jaskari et al., there is no need to verify at run-time how many
connected components we have in our ground truth volumes
since these are always two in the proposed dataset, namely
the two branches of the canal. This filtering approach aims at
removing the high amount of false-positive voxels, probably
related to the small dimension of the employed patches.

By visually inspecting the network outputs, the back-
ground noise can be classified into two main categories:

1) False positives scattered over the mental foramen, but
mostly not connected to the alveolar canal;
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FIGURE 10. Examples of the post-processing algorithm when applied to our and competitor predictions. Specifically, (a) is the ground truth selected for
this showcase, (b) is the competitor original prediction which produces (c) after noise filtering. Finally, (e) depicts our post-processed prediction when
applying filtering on (d).

TABLE 1. Summary of the datasets employed for the experiments reported in section V.

2) Some additional noise sprinkled in very remote areas
of the volume.

The post-processing technique appeared to be particularly
effective to filter out both types of artifacts. See Fig. 10 as a
reference.

V. RESULTS
This section reports the experimental results obtained by
employing the dataset described in Section III and the meth-
ods depicted in Section IV (Jaskari et al.). Three separate tests
are run, as displayed in Table 2.
To ensure experiment fairness and avoid producing fabri-

cated results [37], [38], all of the hyperparameters are tuned
using the randomly-selected validation set, which is also
employed to apply the early-stopping technique and select
the length of the training process. Once the training process
is completed, inference is run over the official test set, and
the different methodologies are compared over two different
metrics.

Although both Intersection over Union and Sørensen–Dice
similarity [39] (Dice score) are presented, their values are
very strictly correlated, and thus only the latter is discussed
in the following.

In the first experiment the synthetic data obtained from
sparse annotations is compared against dense voxel-level
annotations, by using solely the primary dataset. Although
the number of volumes used for sampling is 68 in both cases
(synthetic and dense), the amount of final patches for training
have different values, as reported in Table 1. This difference
is due to a diverse number of empty samples, which are
discarded during the patch generation process. The tests result
in 0.56 and 0.67 Dice score for the synthetic and dense labels
respectively. The model trained on densely annotated data
achieves a 20% improvement on the Dice score, proving how
this new dataset is indeed suitable and effective for deep
learning purposes.

In the second experiment we test the effectiveness of the
whole synthetic dataset, first by training a CNN with only
the secondary dataset, and then merging the primary and
secondary datasets in a single training process. In this case,
the sample patches amount to almost 20k, extracted from
256 volumes (Table 1). The model reaches a Dice score of
0.60, which rises to 0.62 when using the entire dataset. This
test demonstrates that the best results obtained with a large,
sparsely annotated dataset are unable to reach the perfor-
mance achieved with a much smaller voxel-level labeled one.

Overall, the circle expansion technique can be useful for
deep learning algorithms, despite being based on the wrong
assumption that the canal preserves a regular shape on its
entire body. Several clinical studies [40] have highlighted
how the alveolar nerve diameter is subject to huge varia-
tions: larger in the mandibular foramen areas, shorter near
the mental foramen. Circle expanded volumes exploit the
direction of the canal over its entire body, but they provide
no information about the actual thickness and size in the
orthogonal directions to its axis.

Nonetheless, the second experiment suggests that the sec-
ondary sparsely annotated dataset might be useful for our
segmentation task, as we further explore in the third test.
In this regard, the first attempt consists inmerging the primary
and secondary subsets into a single dataset, despite the differ-
ent quality of available labels. As a matter of fact, merging
a large amount of low-quality labels with a much smaller
amount of high-quality labels (experiment III, first line) can
lower performance w.r.t. only using the smaller high-quality
set [41], [42] (experiment I, second line). Unfortunately, due
to the different number in samples —19 466 synthetic over
3 897 dense patches— the primary dataset fails to improve
the performance with respect to the experiment conducted
with synthetic labels only (0.62 Dice similarity). The second
and most successful attempt, on the other hand, regards the
adoption of the secondary dataset in a pre-training step before

VOLUME 10, 2022 11507



M. Cipriano et al.: Deep Segmentation of Mandibular Canal: New 3D Annotated Dataset of CBCT Volumes

TABLE 2. Experimental results using the different datasets and techniques.

using the primary dataset with dense labels for the fine-tuning
of the network. This method is responsible for an additional
0.02 increment in the Dice similarity on the test set (0.69).
To the best of our knowledge, this is the highest Dice score
ever reached on the segmentation of the inferior alveolar
canal.

To further consolidate the proposed benchmark, the per-
formance of the described network is compared with Med3D
(the last two columns of Table 2), a 3D segmentation CNN
that exploits residual blocks and transfer learning to tackle
several medical imaging tasks [43]. The performance of this
architecture confirms all of the insights pointed out so far,
albeit with lower overall accuracyw.r.t. the originally selected
model.

We finally conclude this section with some evaluation of
the post-processing technique. Experiments that solely rely
on the circle expansion labels gain, on average, an additional
0.02 on both IoU and Dice metrics after the post-processing.
These values are already considered in the scores presented
in Table 2. As already stated, this is due to a large number
of false positives in the prediction masks. Experiments that
use our new densely labeled dataset appear to mitigate this
issue, since no measurable benefits are achieved when the
CCL filter is applied. However, the post-processing is always
employed, due to the better qualitative result of the final
output, clearly visible in Fig. 10.

VI. CONCLUSION
This paper presented a novel dataset of 3D annotated
mandibular images. To the best of our knowledge, this is the
first 3D mandibular dataset with voxel-level annotations of
the Inferior Alveolar Nerve canal which is publicly available
for the scientific community. Therefore, our work stands as
a milestone for researchers who want to apply deep learn-
ing for the segmentation of the IAN canal. By training a
well-known deep learning model with this new dataset we
established a new state-of-the-art result for the canal segmen-
tation. We strongly believe that our 3D dataset can boost the
research in the field of mandibular canal anatomy, the knowl-
edge of which is fundamental for clinicians who operate in
the oral cavity.

In order to ensure experiments reproducibility, the
pipelines described in the manuscript are publicly accessi-
ble to the scientific community as an open-source project

alongside the proposed dataset. The code is wrapped in
a plug&play set-up that easily allows researchers to repli-
cate the reported experiments. The code includes sev-
eral utilities to recreate the Circle Expansion dataset,
the training patches and the α-shape outcomes. All the
aforementioned resources can be reached by visiting
https://ditto.ing.unimore.it/maxillo/.
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